
symmetryS S

Article

Contact Symmetries of a Model in Optimal Investment Theory

Daniel J. Arrigo * and Joseph A. Van de Grift

����������
�������

Citation: Arrigo, D.J.; Van de Grift,

J.A. Contact Symmetries of a Model

in Optimal Investment Theory.

Symmetry 2021, 13, 217. https://

doi.org/10.3390/sym13020217

Academic Editor: José Carlos R.

Alcantud

Received: 31 December 2020

Accepted: 26 January 2021

Published: 28 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mathematics, University of Central Arkansas, Conway, AR 72035, USA; jvandegrift@cub.uca.edu
* Correspondence: darrigo@uca.edu

Abstract: It is generally known that Lie symmetries of differential equations can lead to a reduction
of the governing equation(s), lead to exact solutions of these equations and, in the best case scenario,
lead to a linearization of the original equation. In this paper, we consider a model from optimal
investment theory where we show the governing equation possesses an extensive contact symmetry
and, through this, we show it is linearizable. Several exact solutions are provided including a solution
to a particular terminal value problem.
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1. Introduction

Nonlinear partial differential equations (NLPDEs) play an integral part in describ-
ing the world around us. They can be found in the fields of nonlinear diffusion, wave
propagation, Mathematical Biology, ray optics, solid mechanics, and financial mathematics
to name just a few (see, for example, refs. [1–5] and the references within). However,
obtaining exact solutions of these equations is usually a difficult task and techniques for
obtaining solutions is a current area of research. One popular technique are symmetry
methods probably due to the fact that the method is rather algorithmic and thus computer
algebra systems such as Maple and Mathematica can be used. Symmetry methods have been
extensively used in a number of fields, and we refer the reader to the books by Arrigo [6],
Bluman et al. [7,8], Bordag [9], Cantwell [10], Cherniha et al. [11], and Olver [12] .

In this paper, we are interested in a model from optimal investment theory. Consider
an investment portfolio consisting of n + 1 assets. Let the first asset be a bond and the next
n assets be stocks, all of which are traded continuously. In the simplest case where n = 1,
the value of the portfolio, u(t, x), for time t and investment amount x, one model presented
by see Yong [13] is the NPDE

ut + rxux −
(b− r)u2

x
2σuxx

= 0, (1)

or
(ut + rxux)uxx − θu2

x = 0. (2)

where θ = b−r
2σ and the variables r, b, σ represent the interest rate, appreciation rate, and

volatility, respectively, and are assumed constant with σ > 0 and b− r > 0.
A classical symmetry analysis was performed by Yang and Xu [14] who were able to

show that (2) admitted the symmetry generator

Γ = T
∂

∂t
+ X

∂

∂x
+ U

∂

∂u
, (3)

where

T = c1,

X = c2x + c3ert,

U = c4u + c5,

(4)
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where ci, i = 1...5 are arbitrary constants. Through their analysis, they were able to exploit
several of these symmetries to obtain a number of reductions and, in some cases, construct
exact solutions. It is natural to ask whether (2) admits symmetries that are more general
than Lie point symmetries. In this paper, we consider contact symmetries of (2), and we will
show that, in fact, (2) admits a rather large contact symmetry which leads to its linearization.
In addition to recovering known solutions, we will obtain new exact solutions. We also
solve a particular terminal value problem.

2. Contact Symmetries

In this section, we construct contact symmetries of (2). If we denote this original
NLPDE by ∆ so

∆ = (ut + rxux)uxx − θu2
x = 0, (5)

then contact symmetries are given by

Γ(2)∆|∆=0 = 0, (6)

where the infinitesimal generator Γ is

Γ = U
∂

∂u
, (7)

where U = U(t, x, u, ut, ux); the first and second extensions of the generator are

Γ(1) = Γ + DtU
∂

∂ut
+ DxU

∂

∂ux
,

Γ(2) = Γ(1) + D2
t U

∂

∂utt
+ DtDxU

∂

∂utx
+ D2

xU
∂

∂uxx
,

(8)

where the operators Dt and Dx are

Dt =
∂

∂t
+ ut

∂

∂u
+ utt

∂

∂ut
+ utx

∂

∂ux
+ uttt

∂

∂utt
+ uttx

∂

∂utx
+ utxx

∂

∂uxx
· · ·

Dx =
∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ uxx

∂

∂ux
+ uttx

∂

∂utt
+ utxx

∂

∂utx
+ uxxx

∂

∂uxx
· · · .

(9)

This leads to the set of determining equations

Uutut = 0,

θu2
xUutux + (rxux + ut)Uxut + ux(rxux + ut)Uuut = 0,

(ut + rxux)
2Uxx + 2ux(ut + rxux)

2Uxu + u2
x(ut + rxux)

2Uuu +

2θu2
x(ut + rxux)Uxux + 2θu3

x(ut + 2rxux)Uuux+

θ2u4
xUuxux − θux(2ut + rxux)Ux − rθu3

xUux + θu2
xUt = 0.

(10)

Although somewhat a laborious calculation, we find the solution of (10) to be
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U = F(t, ux) + c1ut + c2xux + c3(xux − u)

+ c4

(
− xux − u

2θ
ln ux +

t
2θ

((θ − r)xux + (θ + r)u)
)

+ c5

(
tut −

1
4θ

((θ − r)xux + (θ + r)u) ln ux +
(θ + r)2

4θ
t(xux − u)

)
(11)

+ c6

(
t2ut +

xux − u
4θ

ln2 ux −
t

2θ
((θ − r)xux + (θ + r)u) ln ux

+

(
(r + θ)2t2 − 2θt

4θ

)
(xux − u)

)
where ci, i = 1...6 are arbitrary constants and the function F(t, ux) satisfies

θu2
xFuxux − ruxFux + Ft = 0. (12)

Equation (12) is linear and possesses an infinite number of solutions, which means that
there are an infinite number of symmetries to (2). Furthermore, since there is a particular
function F in (11) that satisfies a linear PDE, this suggests that (2) can be transformed to a
linear PDE (Bluman and Kumei [15]). As both t and ux are independent variables in (12),
this indicates that maybe we should use these as new independent variables.

3. A Linearization

Since the symmetry obtained in the last section contains an arbitrary function that
satisfies a linear PDE, this suggests that the original PDE is linearizable. Introducing the
new variables

t = T, x = UX , u = XUX −U, (13)

where U = U(T, X), derivatives transform as

ut = −UT , ux = X, uxx =
1

UXX
, (14)

and (2) becomes

θX2UXX − rXUX + UT = 0, (15)

which is exactly (12). Interestingly enough, (15) looks remarkably similar to the Black–Scholes–
Merton equation [16,17], which is known to be mappable to the linear heat equation ([16,18]),
so it should come as no surprise that the same is true for (15). However, it would make
the contact transformation (13) more complicated and, thus, we will not pursue this line
any further.

In the next section, we obtain simple exact solutions of (2) in addition to exploiting
Lie symmetries of the linearized Equation (15) to obtain additional solutions.

4. Exact Solutions

We have shown that the nonlinear PDE

(ut + rxux)uxx − θu2
x = 0 (16)

can be transformed to the linear PDE

θX2UXX − rXUX + UT = 0 (17)

via the transformation
t = T, x = UX , u = XUX −U. (18)
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We are now in a position to obtain a number of exact solutions to (16). For exam-
ple, (17) admits separable solutions of the form

U = F(T)G(X) (19)

where F and G satisfies

F′ − kF = 0, (20a)

θX2G′′ − rXG′ + kG = 0 (20b)

where k is a separation constant. Equation (20a) is easily solved giving

F = F0ekT (21)

for some arbitrary constant F0. Equation (20b) possesses solutions of the form Xm, where
m is a solution of

θm2 − (r + θ)m + k = 0. (22)

For example, if k = sm (where s is some constant), then the solution of (22) is

m1 = 0, m2 =
r + θ − s

θ
, (23)

leading to the exact solution

U = c1 + c2XmemT , m =
r + θ − s

θ
(24)

Passing (24) through the transformation (18) (resetting the constants c1 and c2) gives

u = c1 + c2eα(st−ln x), α = r+θ−1
1−r , (25)

which recovers the exact solution presented by Yang and Xu [14] by choosing c1 = 0, c2 = 1
and s = 1.

As a second example, if k = r, then, from (22), we obtain m = 1, r/θ ( 6= 1) and we
obtain the solution to (20b) as

G = g1X + g2Xr/θ (26)

and the general solution to (17)

U =
(

g1X + g2Xr/θ
)

erT . (27)

Passing (27) through the transformation (18) leads to the exact solution

u = a
(
x + bert) r

r−θ e−
rθ

r−θ t (28)

of (16), which we believe to be new. In the cases where r = θ, the solution of (20b) is

G = g1X + g2X ln X (29)

and the general solution to (17)

U = (c1X + c2X ln X)erT . (30)

Passing (30) through the transformation (18) leads to the exact solution

u = c1ert+c2xe−rt
, (31)



Symmetry 2021, 13, 217 5 of 7

which was given in [14] in the case of r = θ.
Of course, other choices of m that satisfy (22) would lead to exact solutions of (16)

which we will not pursue here.
We also note that symmetries of (17) can be used to generate new solutions of (17),

which could lead to new solutions of (16). It is well known (Broadbridge and Arrigo [19])
that, if (17) possesses symmetries with the generator

Γ = Σ
∂

∂T
+ Φ

∂

∂X
+ (ΞU + Q(T, X))

∂

∂U
, (32)

where Σ, Φ, and Ξ have some particular forms and Q satisfies the original PDE (17),
then, if one has one seed solution, say U = U0(T, X), then additional solutions can be
obtained from

Q = Σ
∂U0

∂T
+ Φ

∂U0

∂X
− ΞU0 (33)

For example, (17) admits the symmetry generator (32) where Σ, Φ, and Ξ are given by

Σ = c1 + 2c2T + c3T2

Φ = ((c2 + c3T) ln X + c4 + c5T)X

Ξ =

(
c3

4θ
ln2 X +

(c2 + c3T)(r + θ) + c5

2θ
ln X

+
(r + θ)2(2c2 + c3T)T + 2c5(r + θ)T

4θ
− c3T

2
+ c6

)
U

(34)

where ci, i = 1...6 are arbitrary constants.
One particularly simple solution of (17) is

U = 1. (35)

From (33), we obtain the solution

Q = −
(

c3

4θ
ln2 X +

(c2 + c3T)(r + θ) + c5

2θ
ln X

+
(r + θ)2(2c2 + c3T)T + 2c5(r + θ)T

4θ
− c3T

2
+ c6

)
.

(36)

Passing (36) through the transformation (18) leads to a solution that is parametric
in its nature (which we do not list here); however, setting c3 = 0, we obtain (omitting
translational constants)

u =
(r + θ)(c2(r + θ) + c5)

2θ
t− c2(r + θ) + c5

θ
ln x (37)

which we believe is new. Of course, other seed solutions could lead to an abundance of
exact solutions to (17) which, in turn, would lead to exact solutions to (16).

5. A Particular Terminal Value Problem

A particular problem of interest is one that is given in Koleva and Vulkow [20], which
is to solve (2) subject to the terminal condition

u(x, t∗) = 1− e−µx. (38)

Here, we introduce a slight variation of (18)

t = T + t∗, x =
UX
µ

, u = XUX −U + 1. (39)
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Under this transformation, the PDE (2) still transforms to (17); however, the terminal
condition (38) turns into the initial condition

U(X, 0) = X− X ln X. (40)

At this point, we exploit the symmetries obtained in the previous section. With these
symmetries, we associate an invariant surface condition

ΣUT + ΦUX = ΞU, (41)

where Σ, Φ and Ξ are given in (34). From (40) and (17), we obtain the initial conditions

UX(X, 0) = − ln X, UT(X, 0) = θX− rX ln X. (42)

Requiring that (40) and (42) satisfy (41) on the boundary T = 0 gives

c3 = 0, c4 = (θ − r)c1 − c2, c5 = (θ − r)c2, c6 = θc1, (43)

where c1 and c2 are arbitrary. Here, we choose c1 = 1, c2 = 0, leading to the invariant
surface condition

UT + (θ − r)XUX = θU. (44)

This is easily solved giving

U = eθT F(ln X + (r− θ)T). (45)

Imposing the initial condition (40) on the solution (45) gives

F(ln X) = X− X ln X, (46)

and, if we let λ = ln X, we obtain

F(λ) = (1− λ)eλ (47)

and, from (45), we obtain

U = X(1− ln X + (θ − r)T)erT (48)

and one can indeed verify that (48) does satisfy (17) and (42). As the final step, we pass (48)
through the transformation (39), leading to

u = 1− e−θ(t∗−t)−µxer(t∗−t)
, (49)

which satisfies the original PDE (2) and the terminal condition (38).

6. Conclusions

It is well known that classical Lie symmetries can lead to a reduction of a given PDE
and sometimes lead to exact solutions of the equation. The best case scenario, albeit rare,
indicates that the original equation is linearizable. In this paper, we constructed the contact
symmetries of a model from an optimal investment theory, which led to a linearization of
the given PDE. Several exact solutions were obtained. The symmetries of the linearized
equation were also considered where an additional exact solution was obtained in addition
to solving a particular terminal value problem.
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