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Abstract: The quantum phase transition studies we have done during the last few years for odd-even
systems are reviewed. The focus is on the quantum shape phase transition in Bose-Fermi systems.
They are studied within the Interacting Boson-Fermion Model (IBFM). The geometry is included in
this model by using the intrinsic frame formalism based on the concept of coherent states. First, the
critical point symmetries E(5/4) and E(5/12) are summarized. E(5/4) describes the case of a single
j = 3/2 particle coupled to a bosonic core that undergoes a transition from spherical to γ-unstable.
E(5/12) is an extension of E(5/4) that describes the multi-j case (j = 1/2, 3/2, 5/2) along the same
transitional path. Both, E(5/4) and E(5/12), are formulated in a geometrical context using the Bohr
Hamiltonian. Similar situations can be studied within the IBFM considering the transitional path
from UBF(5) to OBF(6). Such studies are also presented. No critical points have been proposed for
other paths in odd-even systems as, for instance, the transition from spherical to axially deformed
shapes. However, the study of such shape phase transition can be done easily within the IBFM
considering the path from UBF(5) (spherical) to SUBF(3) (axial deformed). Thus, in a second part,
this study is presented for the multi-j case. Energy levels and potential energy surfaces obtained
within the intrinsic frame formalism of the IBFM Hamiltonian are discussed. Finally, our recent
works within the IBFM for a single-j fermion coupled to a bosonic core that performs different shape
phase transitional paths are reviewed. All significant paths in the model space are studied: from
spherical to γ-unstable shape, from spherical to axially deformed (prolate and oblate) shapes, and
from prolate to oblate shape passing through the γ-unstable shape. The aim of these applications is
to understand the effect of the coupled fermion on the core when moving along a given transitional
path and how the coupled fermion modifies the bosonic core around the critical points.

Keywords: nuclear structure models and methods; collective models; models based on group theory

PACS: 21.60.-n; 21.60.Ev; 21.60.Fw

1. Introduction

An interesting aspect of modern nuclear physics is the study of the quantum shape
phase transition in atomic nuclei. Phase transitions are usually discussed and well defined
for macroscopic systems. However, in the last few years, precursors of phase transitions
have been observed in mesoscopic systems and then one talks about quantum phase
transitions. Classical phase transitions are usually classified into two classes, called first-
order and continuous phase transitions depending on the behavior of the order parameter
at the critical point. At this point, the order parameter changes typically from zero to a
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finite value. When this variation is discontinuous at the critical point it is said that the
transition is first order. On the contrary, when the variation of the order parameter is
smooth at the critical point, the transition is said to be continuous. The same ideas can
be translated to quantum phase transitions. It is clear that the concept of critical point is
intimately linked to the subject of phase transitions. In this context, about twenty years ago,
Iachello introduced the concept of the critical point symmetry [1] in relation to quantum
systems as atomic nuclei. Iachello worked out two critical point symmetries within the
geometrical model using the Bohr Hamiltonian [2]. One of them, called E(5), describes the
critical point in the shape transition from spherical to deformed γ-unstable shapes [1] and
is appropriate for continuous shape phase transitions. The other symmetry proposed by
Iachello, called X(5), describes the critical point in the transition from spherical to axially
deformed shapes [3] and is a benchmark for first order phase transitions.

Although the Interacting Boson Model (IBM) [4] is formulated from the beginning in
a second quantization formalism, one can obtain a geometric image of the model using
the idea of coherent state and intrinsic state formalism. In this way, one finds geometrical
shapes, as in the Bohr model, linked to the different dynamical symmetries of the model.
Thus, the U(5) limit corresponds to spherical shapes, the SU(3) (SU(3)) limit produces
prolate (oblate) axially symmetric shapes, and the O(6) limit generates deformed γ-unstable
shapes. Therefore, one can look for the equivalent to E(5) or X(5) symmetries in the IBM. In
this case, the critical points are called e(5) and x(5) and correspond to the transitional paths
from U(5) to O(6) and from U(5) to SU(3), respectively. Many experimental and theoretical
studies have been performed for quantum phase transitions especially for even-even nuclei
within the IBM [4], as reported in different review papers [5–9].

Relatively less attention has been devoted to the parallel topic of quantum phase
transitions in Bose-Fermi systems. In addition to the above mentioned critical point
symmetries for even-even systems, Iachello, also within the Bohr Hamiltonian, proposed to
extend the concept of critical point symmetry to Bose-Fermi systems for using it in odd-even
nuclei. Iachello worked out the case of an odd j = 3/2 particle coupled to a bosonic core that
undergoes a transition from spherical to γ-unstable shapes [10]. Soon after, an extension
to multi-j case, called E(5/12), including j = 1/2, 3/2, and 5/2 also within the Bohr
Hamiltonian was proposed [11]. No other critical point symmetries have been proposed
for odd-even systems. As in the case of even-even nuclei, the Interacting Boson-Fermion
Model (IBFM) [12] can be used to study similar transitional situations as those described in
the Bohr model and through any of the relevant transitional paths. Special relevance have
the paths from spherical to deformed γ-unstable and from spherical to axially deformed
shapes [11,13,14]. Although the E(5/4) and E(5/12), in the geometric model, and the
corresponding critical point in the IBFM (spherical to deformed γ-unstable) are different,
the results obtained within the IBFM and those from E(5/12) show a remarkable agreement
for the energy levels spectrum and electromagnetic transitions.

The transition from spherical to axially deformed shape in Bose-Fermi systems has
also been considered in the framework of the IBFM, where the odd fermion occupies the
set of j = 1/2, 3/2, 5/2 orbitals [15]. The energy levels and the electromagnetic transitions
of the odd-even system have been calculated within the IBFM Hamiltonian and also the
intrinsic frame formalism was employed to describe this quantum phase transition.

During the last decade, we have developed a systematic investigation of the quantum
shape phase transition in Bose-Fermi systems for the case of a single-j fermion coupled to
a bosonic core [16–20], making use of the intrinsic frame formalism to associate a given
shape to the solution of a IBFM Hamiltonian. Transitions from spherical to γ–unstable
shape [16], from spherical to prolate shape [18], from spherical to oblate shape [19] have
been studied up to now, with the aim of understanding the effect of the coupled fermion on
the core when moving to the transition paths and around the critical points. More recently,
we have closed the circle, by investigating the phase transition from prolate to oblate shape
passing through the γ-unstable shape in odd-even systems [20]. The different paths are
marked in Figure 1.
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Figure 1. Schematic representation of the Interacting Boson Model (IBM) model space with two
control parameters: one radial (x) and one angular (χ) (see boson hamiltonian (1)).

We would like to mention that other relevant contributions to the topic of shape phase
transitions in odd-even nuclei have been presented in the last 15 years in Refs. [10,21–36].

In this review paper, we present a summary of the most important results we have
obtained within the IBFM for shape phase transitions in odd-even nuclei, namely the critical
point symmetries for the specific E(5/4) [13] and E(5/12) [11,14] cases; the UBF(5)-SUBF(3)
transition in odd nuclei for multi-j orbits, j = 1/2, 3/2, 5/2 [15]; the results of our recent
works related to the case of a single-j fermion coupled to the bosonic core that performs
different transitions mentioned in previous paragraph [16,18–20]. The paper is organized
as follows. The IBFM model with its Hamiltonian and the intrinsic frame formalism for
Bose-Fermi systems are revised in Section 2. In Section 3, the E(5/4) and E(5/12) critical
point symmetries and some results for equivalent situations in IBFM are discussed. In
Section 4, the IBFM UBF(5) to SUBF(3) phase transition in odd nuclei for multi-j orbits
is briefly outlined and results are presented for energy levels and energy surfaces. The
results of the phase transitions in Bose-Fermi systems investigated within the intrinsic
frame formalism of the IBFM for the case of a single-j fermion coupled to a bosonic core
are reviewed in Section 5. General conclusions are drawn in the final section.

2. Methods: The IBFM Hamiltonian and the Intrinsic Frame Formalism

The IBM model [4] is designed to describe collective properties of medium and heavy
mass even-even nuclei. The model has three basic approximations: (i) only valence particles
are taken into account, (ii) these fermions are coupled to angular momentum L = 0 and
L = 2, and (iii) those coupled fermions are treated as bosons (s−bosons with L = 0 and
d−bosons with L = 2). With these approximations, many studies have been done for
even-even nuclei. The boson hamiltonian in terms of s− and d−bosons can be written as,

HB = (1− x)n̂d −
x

αNB
Q̂(χ)

B · Q̂(χ)
B , (1)

where NB is the number of bosons, α is a parameter, n̂d is the d−boson number operator,

n̂d = ∑
µ

d†
µdµ, (2)
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and Q̂(χ)
B is the boson quadrupole operator given by

Q̂(χ)
B = (s† × d̃ + d† × s̃)(2) + χ(d† × d̃)(2). (3)

The control parameters of the model are x, and χ. In Figure 1, the IBM model space
is schematically plotted. There are four dynamical symmetries in the model: U(5), SU(3),
SU(3), and O(6). Shapes can be obtained in the model by using the intrinsic state formalism
based on a coherent state (Refs. [37–39])

|Φgs(β, γ)〉 = 1√
NB!

[b†
gs(β, γ)]NB |0〉, (4)

where NB is the number of bosons for a particular nucleus, |0〉 is the boson vacuum, and
b†

gs(β, γ) is the ground state boson condensate creation operator given by

b†
gs(β, γ) =

1√
1 + β2

[
s† + β cos γd†

0 +
β√
2

sin γ(d†
2 + d†

−2)

]
. (5)

β and γ are shape variables that are related to the quadrupole deformation parameters of
the geometric collective model of Bohr-Mottelson [2]. The ground state energy surface is
established by calculating the expectation value of the given bosonic HB Hamiltonian (1)
in the intrinsic state (4)

Egs(β, γ) = 〈Φgs(β, γ)|HB|Φgs(β, γ)〉. (6)

Mathematically, β and γ are variational parameters in the intrinsic formalism of
IBM model in the classical limit [37–39] that can be determined by minimizing the energy
surface (6). This connection has been done and the correspondence with the IBM dynamical
symmetries is: U(5) corresponds to x = 0 and then β = 0, spherical shape, SU(3) (SU(3))
corresponds to x = 1 and χ = −

√
7/2 ( χ = +

√
7/2) and produces β =

√
2 and γ = 0

(γ = 60◦), axially deformed prolate (oblate) shape, and, finally, O(6) corresponds to x = 1
and χ = 0, and gives a deformed γ-unstable shape. See Figure 1.

The IBFM model [12] is the extension of the IBM model [4] for the description of
the properties of a system of NB bosons plus one fermion, the typical application being
represented by an odd-even nuclei. The general model Hamiltonian for the coupling of an
single fermion to the bosonic core is written as follows:

H = HB + HF + VBF, (7)

where HB is the pure bosonic Hamiltonian Equation (1), HF is the fermion Hamiltonian

HF = ∑
j

ε ja†
j · ãj, (8)

where ε j are the single-particle energies for the orbits j allowed for the fermion, and the
third term in (7), VBF, couples the bosonic and fermionic parts. Usually, a quadrupole-
quadrupole boson-fermion interaction is assumed:

V̂BF = −2
x

αNB
Q̂(χ)

B · q̂F, (9)

where Q(χ)
B is the boson quadrupole operator given in Equation (3) and q̂F is the fermion

quadrupole operator
q̂F = ∑

j
tj(a†

j × ãj)
(2), (10)
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where j indicates the single particle orbitals. In the case of a single-j shell, the coefficients tj
can be set to one without loss of generality. Notice that, in the case of j = 1/2, this operator
cannot be defined.

The intrinsic frame formalism for odd-even systems [40–42] leads itself to the descrip-
tion of the shapes involved in a quantum phase transition. A potential energy surface,
depending on the shape variables, can be associated to a given model Hamiltonian, such
as (7), in this formalism. To consider the intrinsic frame states of the mixed boson-fermion
system, the single-fermion states have to be coupled to the bosonic intrinsic ground-state
|Φgs(β, γ)〉 given by Equation (4). To obtain the lowest states of the odd-even nucleus, we
first construct the coupled states as follows

|ΨjK(β, γ)〉 = |Φgs(β, γ)〉 ⊗ |jK〉, (11)

and then diagonalize the total boson-fermion Hamiltonian in this basis, thus obtaining a
set of energy eigenvalues En(β, γ), that are functions of the variational parameters, where n
is an index that counts the solutions of the odd-even system.

In the following, we will use this formalism to study different transitional situations
in IBFM, starting with path 1 in Figure 1 and the comparison with the proposed critical
point symmetries.

3. The E(5/4) and E(5/12) Critical Points of the Boson-Fermion System

The concept of critical point symmetries in boson-fermion systems was fist proposed
by Iachello [10]. He studied the case of an odd particle moving in a single j = 3/2 shell
coupled to an E(5) bosonic core, and called the corresponding symmetry E(5/4). The
analytic solution of the E(5/4) model was first obtained from the Bohr Hamiltonian. Later
on, the IBFM Hamiltonian was used to study the corresponding phase transition, called
e(5/4), along the U(5)-O(6) line [13] for the even-even part, and the results are in good
agreement with those of Bohr Hamiltonian for E(5/4) model. A more complex case of
the critical point symmetry so-called as E(5/12) model [11,14] has been described for the
case of multi-j orbitals, again starting from the Bohr Hamiltonian. In addition, in this case,
comparable results are obtained within the IBFM model, called e(5/12). In this richer case,
the fermion that can occupy a set of single-particle states with angular momenta j = 1/2,
3/2, 5/2 and is coupled to a bosonic core undergoing the transition (path 1) from spherical
to deformed γ-unstable situation.

These two cases are discussed below.

3.1. The E(5/4) Critical Point of the Boson-Fermion System

For the bosonic part of both mentioned E(5/4) and E(5/12) critical point symmetries,
the bosonic Hamiltonian used is (7) with α = 1 (the selection of other α value displaces the
critical point in x but all the characteristics remain the same). Since the transition in the
bosonic core is from spherical to deformed γ-unstable shapes (path 1 in Figure 1), the value
of χ = 0 is fixed along the path. Thus, there is a single control parameter, x, that changes
in the interval [0, 1]. For x = 0, the system is in the U(5) dynamical symmetry (spherical),
and, for x = 1, the system is in the O(6) dynamical symmetry (deformed γ-unstable). All
along the path, the system is γ-independent. Notice that the quadrupole operator does not
show for this path the term with the coupling of two d bosons, since χ = 0 for this leg of
the Casten triangle. The critical point occurs at xc = NB/(5NB − 8). This result is obtained
analytically by using the intrinsic frame formalism [13].

The Hamiltonian (7) within the IBFM model [12], where a single fermion is coupled
to the even-even bosonic core, can be used to discuss the energy spectra evolution in odd
nuclei and the corresponding behavior around the critical point. The bosonic part for this
case is γ-independent, consequently, the Hamiltonian is only a function of β. The pure
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fermion part (8) in Equation (7) is just a constant for a single fermion: HF = constant. The
fermion quadrupole operator for this single-j case (j = 3/2) is

qF = (a†
3/2 × ã3/2)

(2),

and the coupling term for the boson-fermion interaction is given by Equation (9) with
α = 1.

The intrinsic frame states of the mixed boson-fermion system can be built by coupling
the j = 3/2 orbital with the ground state |Φgs(β, γ)〉 of the boson condensate given in
Equation (4) obtaining |Φgs(β, γ)〉 ⊗ |jK〉, Equation (11). The fermionic part, as mentioned
above, is just a constant because of the single-j, and so only the V̂BF coupling term has to
be diagonalized in this basis. The doubly degenerate eigenvalues E±(β) are given by

E±(x, β) = ±2
xβ

1 + β2 . (12)

Here, the coupled fermion does not destroy or alter the γ-instability of the system
and the energy surfaces obtained for the different intrinsic states of the odd system are
still γ-independent [42]. This special case of supersymmetry is known from the work of
Bayman and Silverberg [43].

The corresponding evolution of the spectrum is displayed as a function of the control
parameter x given in Hamiltonian (1) in Figure 2. The levels in the even-even system (left
side) are compared with those in the odd-even system (right panel). The number of bosons
is NB = 7 for both cases and the odd particle is assumed to be in the j = 3/2 orbital. The
critical point is xc = NB/(5NB − 8) = 7/27 ≈ 0.26 for seven bosons as marked in Figure 2.
The level evolution of the odd-even system exhibits quite a similar behavior to that of the
even-even system. In the odd system, the group SpinBF(5) replaces the group OB(5) of the
bosonic case and leads to a richer pattern for the fermionic case. In particular, the multiplet
(3/2, 1/2) plays the role of the τ = 1 multiplet of the even-even case, and leads to a larger
set of degenerate angular momenta, namely j = 1/2, 5/2 and 7/2. This is a clear signature
for the occurrence of this symmetry: there should be a relatively well isolated multiplet
with these quantum numbers, in order to speak of an underlying SpinBF(5) symmetry. The
energy ratios of the odd-even case are also slightly different from that of even-even case. In
the x = 0 limit, the ground-band with maximum σ values for both systems are obtained
(σ = NB for even-even nuclei and σ1 = NB + 1/2 for odd-even nuclei). The energy ratio
E(5/2,1/2)/E(3/2,1/2) of ground band is 2.4 and close to the ratio R4/2=2.5 of OB(6) symmetry.

To better evidence the peculiarity of the j = 3/2 case, we compare in Figure 3 the
evolution of the spectrum in the single-j cases, j = 3/2 and j = 5/2, as a function of
the control parameter x. As seen in this figure, the spectrum of the j = 5/2 case (right
panel) is more complex because of the degeneracies are broken, even though it exhibits
a qualitatively similar behavior with respect to that of the j = 3/2 case, displayed in the
left panel.

To summarize this subsection, we reviewed the results obtained within the IBFM
model for the coupling of a j = 3/2 particle to a bosonic core that undergoes a transition
from spherical to γ-unstable shapes. The energy levels of the odd-even system display
qualitatively similar behaviors with respect to levels of the even-even system. A more
detailed investigation can be found in Ref. [13], including a comparison of these results
with the E(5/4) model [10] based on the Bohr Hamiltonian.
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Figure 2. (Taken from Ref. [13]) The energy levels (normalized to the energy of the first excited state)
are plotted as a function of the parameter x for the even-even system (left) and the odd-even system
(right). In parenthesis, the value of (τ) in the even-even system and the values of (τ1, τ2) in the
odd-even system.

Figure 3. (Taken from Ref. [13]) The energy levels for the odd system are displayed as a function
of the parameter x for the odd particle taken in the j = 3/2 orbital (left panel) and in the j = 5/2
orbital (right panel). The number of bosons is NB = 7 for both cases.
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3.2. The E(5/12) Critical Point of the Boson-Fermion System

The E(5/12) critical point within the collective Bohr hamiltonian for the multi-j
case [11,14] is an extension of the E(5/4) critical point [10,13]. In this subsection, we re-
view the corresponding results for the equivalent critical point within the IBFM model, called
e(5/12), for the coupling of a single fermion moving in the j = 1/2, 3/2, 5/2 single-particle
orbits to the bosonic core undergoing a transition from spherical to γ-unstable shape (path 1
in Figure 1). It is worth mentioning that the Bohr Hamiltonian in this multi-j case has two
extra parameters as given explicitly in (Ref. [11], Equation (1)).

The bosonic term in the general IBFM Hamiltonian (7), parametrized as in Equation (1),
can be recasted into a combination of Casimir operators as follows [11,14];

HB = (1− x)C1[UB(5)]− x
2αNB

{C2[OB(6)]− C2[OB(5)]}, (13)

where C1[UB(5)] is the linear Casimir operator of the UB(5) algebra, and C2[OB(6)] and
C2[OB(5)] are the quadratic Casimir operators of the OB(6) and OB(5) algebras. For the
following results, we used α = 1. This bosonic Hamiltonian can produce a phase transi-
tion from spherical to γ-unstable case along the U(5)–O(6) line by sweeping the control
parameter x from 0 to 1, and the critical point occurs at xc = NB/(5NB − 8) [11,13,14].

The remaining pure fermionic term and the boson-fermion interaction term, that are
needed in the general Hamiltonian (7), have been parametrized as follows, in Refs. [11,14],

HF + VBF =
k′

2NB
C2[OF(5)] +

k
2NB
{C2[OBF(5)]− C2[OB(5)]− C2[OF(5)]}, (14)

where C2[OF(5)] and C2[OBF(5)] are the quadratic Casimir operators of the OF(5) and
OBF(5) algebras, respectively. k and k′ are the new parameters of the multi-j E(5/12) model,
that were fixed to k = −1/4 and k′ = 5/2 in Ref. [11]. For the IBFM comparison to the
geometric E(5/12), the same values for k = −1/4 and k′ = 5/2 have been used.

The general Hamiltonian (7) can be thus rewritten in terms of Casimir operators as

H = (1− x)C1[UB(5)]− x
2NB
{C2[OB(6)]− C2[OB(5)]}

+
k

2NB
{C2[OBF(5)]− C2[OB(5)]− C2[OF(5)]}+ k′

2NB
C2[OF(5)].

(15)

This Hamiltonian is designed to mimic the corresponding Hamiltonian in the geomet-
rical E(5/12) model [11].

The energy spectrum of the odd-even system corresponding to the results of the IBFM
calculation with the Hamiltonian (15) at the critical point, given in the lower panel of
Figure 4 is compared with the corresponding energy spectrum of the odd-even system
obtained within the E(5/12) model (upper panel). The critical point xc is roughly 0.26
for the choice of NB = 7 bosons. As seen in this figure, the energy spectrum obtained in
both approaches are structurally analogous with each other, even though small differences
remain in the energies and transition rates.

The above IBFM Hamiltonian (15) has been specifically designed to match the E(5/12)
Hamiltonian. An alternative way for checking the results of the E(5/12) model is to apply
the Hamiltonian (1) used in the previous subsection for the U(5)-O(6) transition in even-
even system and to select the critical point under these conditions. For the odd-even
system, the odd fermion, allowed to span the set of j = 1/2, 3/2, 5/2 orbitals, is coupled
to the bosonic core using the standard form of quadrupole-quadrupole boson-fermion
interaction. In this case, the single-particle energies in Equation (8) are taken as ε1/2 = 0,
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and ε3/2 = ε5/2 = (1− x) + 4x/NB. For the boson-fermion part, the usual form Equation (9)
is used with the fermion quadrupole operator given in this situation as [14]

q̂F = t(2)F

[
−
√

4
5
(a†

1/2 × ã3/2 + h.c.)(2) −
√

6
5
(a†

1/2 × ã5/2 + h.c.)(2)
]

. (16)

With these choices, the total Hamiltonian (7) can be recast in a way that is formally
equivalent to that given in Equation (13) for the boson part, namely

HBF = (1− x)C1[UBF(5)]− x
2NB
{C2[OBF(6)]− C2[OBF(5)]}. (17)

Figure 4. (Taken from Ref. [14]) Energy levels (normalized to the energy of the first excited state) in
the odd system within E(5/12) critical point (upper panel) and within the Interacting Boson-Fermion
Model (IBFM) Hamiltonian (15) at the critical point (lower panel). The value of the critical point
xc ≈ 0.26 for the number of bosons is NB = 7.

The evolution of the spectrum as a function of the control parameter x is shown in Figure 5.
The boson number used is NB = 7, and the critical point is xc = NB/(5NB − 8) ≈ 0.26 as
marked by a line. Energies are normalized to the energy difference between the first excited
state (which is always a 3/2− 5/2 doublet) and the JBF = 1/2 ground state. Each state is
characterized by the (τ1, τ2) quantum numbers, and the set [N1, N2](σ1, σ2, σ3), different for
each band, is given for each state on the right side of the figure.
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Figure 5. (Color online) (Taken from Ref. [14]) Energy levels (normalized to the energy of the first excited state) as a function
of the control parameter (x) in the Hamiltonian (17). The critical point (xc) is roughly 0.26 for 7 bosons.

The comparison of results obtained at the critical point for both the E(5/12) and
this new IBFM model is displayed in Figure 6. The IBFM states are labeled by the
[N1, N2](σ1, σ2, σ3) quantum numbers and labels (τ1, τ2) are given beside each level for
each band. The structure of the spectrum obtained within the IBFM model given in lower
panel resembles quite closely the spectrum of E(5/12) given in the upper panel.

For the shape phase transition in odd nuclei in a multi-j model, two IBFM Hamil-
tonians have been designed. The first one is produced to mimic the situation studied
in the E(5/12) model for the case of the coupling of a single fermion moving in the
j = 1/2, 3/2, 5/2 orbitals to a bosonic core at the critical point appearing in the transition
from spherical to γ-unstable shapes. In a second one, the IBFM model was considered for
the case of the coupling of a single fermion moving in the same multi-j orbitals to a bosonic
core undergoing a transition from U(5) to O(6) via a more realistic quadrupole-quadrupole
boson-fermion interaction. In this subsection, we reviewed both IBFM models and results
for the energy spectrum obtained by the IBFM calculations have been compared with the
analytical results of the E(5/12) model. Both IBFM models show a remarkable agreement
with each other and with the E(5/12) critical point symmetry. One can find a detailed
investigations in Refs. [11,14] including all formulations of both models and some other
comparisons for the results concerning the electromagnetic transitions and moments (E2
and M1).
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Figure 6. (Taken from Ref. [14]) Upper panel: E(5/12) results as explained in Figure 4. Lower
panel: Energy levels in the odd system at the critical U(5)-O(6) point with the Hamiltonian (17).
The difference between this figure and Figure 4 is that, in the lower panels, two different IBFM
Hamiltonians are used. The value of the critical point is xc ≈ 0.26 for 7 bosons.

4. UBF(5) to SUBF(3) Shape Phase Transition in Odd Nuclei for Multi-j Orbits
(j = 1/2, 3/2, 5/2): The Role of the Odd Particle at the Critical Point

In this section, we review some of the results obtained with the IBFM model for a
transition from sphericity to axial deformation, with the single fermion still occupying the
set of j = 1/2, 3/2, 5/2 orbitals. No critical point symmetry has been proposed for this
path in the case of odd-even systems (path 2 in Figure 1). However, the critical point in
this transitional path can be studied within the IBFM. For this case, the bosonic part of
the Hamiltonian, Equation (1), along the transition path from U(5) to SU(3) has a fixed
value for the χ parameter, i.e., χ = −

√
7/2. Thus, in this case, the only control parameter

is x that changes from zero (U(5)-spherical limit) to 1 (SU(3) -prolate axially deformed
limit). In addition, for the calculations in this section, α = 4 in Equations (1) and (9) (this
is just to have the critical point around the middle of the interval for the parameter x).
In fact, with this α value, the phase transition along this path occurs the critical point
xc = 16NB/(34NB − 27), as shown in Ref. [15].

The boson Hamiltonian (1) can be recast into the Casimir form (Ci with i = 1, 2 for
linear or quadratic Casimir operator of the listed Lie algebra) as follows [15];

HB = (1− x)C1[UB(5)]− x
8NB

{
3
2

C2[SUB(3)]− 3
8

C2[OB(3)]
}

. (18)
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A similar Casimir form can be used for the boson-fermion Hamiltonian to describe
the transition from spherical to axially deformed odd-even system within the IBFM by

HBF = (1− x)C1[UBF(5)]− x
8NB

{
3
2

C2[SUBF(3)]− 3
8

C2[OBF(3)]
}

. (19)

where the label BF stands for boson-fermion. The bosonic Casimir operators and the
Bose-Fermi Casimir operators are explained in detail in Refs. [4,12]. This boson-fermion
Hamiltonian is rewritten for the present problem as follows:

HBF = (1− x)(nd + n3/2 + n5/2)−
x

4NB
QBF ·QBF, (20)

where nj=3/2(5/2) is the fermion number operator, and QBF is the sum of the boson and
fermion quadrupole operators given by

QBF = Q(χ=−
√

7/2)
B + qF , (21)

where QB is the boson quadrupole operator (3) with χ = −
√

7/2, and qF is the fermion
quadrupole operator (10), given in this case by [15]

qF = −
√

4
5

[
(a†

1/2 × ã3/2)
(2) − (a†

3/2 × ã1/2)
(2)
]
−
√

6
5

[
(a†

1/2 × ã5/2)
(2) − (a†

1/2 × ã1/2)
(2)
]

−
√

7
2

[
−
√

14
25

(a†
3/2 × ã3/2)

(2) +

√
6
25

[
(a†

3/2 × ã5/2)
(2) − (a†

5/2 × ã3/2)
(2)
]
−
√

24
25

(a†
5/2 × ã5/2)

(2)

]
.

(22)

With particular choice of the control parameter x in Hamiltonian (20), one can obtain
the UBF(5) and SUBF(3) dynamical symmetries. The values are x = 0 for UBF(5) and
x = 1 for SUBF(3). Changing this x parameter in the Hamiltonian, one moves between
these symmetries following the transitional path from spherical (U(5)) to axially deformed
(SU(3)) shapes. In this case, calculations were done for a bosonic core with NB = 9 bosons
to which a single fermion (NF = 1) is coupled. The critical value of the control parameter
for the even-even system is xc ≈ 0.516 for 9 bosons since the phase transition occurs at
xc = 16NB/(34NB − 27), and the critical point of the odd-even case is xc ≈ 0.485 [15].
The full evolution of some selected energy levels, normalized to the energy of the first
excited state, along the UBF(5) to SUBF(3) transitional path is shown in Figure 7. Each state
is characterized by the SUBF(3) quantum numbers (λ, µ), which are strictly valid only at
x = 1, and the OBF(3) quantum number, L. As seen in this figure, the general behavior of
the energy levels is rather smooth close to the UBF(5) and SUBF(3) dynamical symmetries
and changes rapidly in the neighborhood of the critical point, indicated by a dashed vertical
line. This flat behavior close to the dynamical symmetries has been observed before, also
in even systems, and called quasi-dynamical symmetry by Rowe [44].

The concept of intrinsic states and associated energy surfaces can be used to better
understand the quantum shape phase transition from UBF(5) to SUBF(3). The intrinsic
frame formalism has been discussed in Section 2. In this specific case, for the UBF(5)-
SUBF(3) transition, the energy surface has a well-defined minimum for any value of the
control parameter x, as a function of the parameter β (for γ = 0). Detailed explanation
and formalism for the even-even system is discussed in Ref. [15]. Intrinsic frame states
for odd systems can be built by coupling the odd single-particle states (each with a given
angular momentum j and magnetic component K) to the intrinsic states of the even core as
formulated at the end of Section 2. For the specific UF(12) algebra, a total of 12 components
appears, due to the multi-j space given by j = 1/2, 3/2, 5/2, but this is restricted to 6
because of the symmetry K ↔ −K. For γ = 0, the Hamiltonian (20) conserves the quantum
number K and the diagonalization is independently done for each K-value. Thus, two
states with K = 1/2, one degenerate pair with K = 1/2, 3/2 and the degenerate pair with
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K = 3/2, 5/2 have been obtained in this case. Notice that one of the K = 1/2 states merges
with the K = 3/2, 5/2 pair in the strict x = 1 limit.
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Figure 7. (Taken from Ref. [15]) Energy levels (normalized to the energy of the first excited state) as a function of the control
parameter x in the Hamiltonian (20). Each state is characterized by the asymptotic quantum numbers (λ, µ) (strictly valid
only for x = 1, at the SUBF(3) extreme) and L. The two vertical lines indicate the position of the critical value of x for the
even-even and odd-even systems. These critical points are xc ≈ 0.516 for the even-even case with 9 bosons and xc ≈ 0.485
for the odd-even case.

The boson-fermion energy surfaces as a function of the deformation parameter β for
γ = 0 are shown in Figure 8, in comparison with the energy surfaces for the even–even core
with NB = 9 bosons (dashed lines). In left panel of this figure, we consider a well-deformed
case, corresponding to the SUBF(3) dynamical symmetry, by taking the control parameter
as x = 1. Here, it is clearly seen that all energy surfaces display the minimum at about the
same value of the deformation parameter, namely β ≈ 1.35. Therefore, the coupling with
the fermion is not changing the behavior of the system in the well-deformed case.

The other panels of Figure 8 correspond to the critical points in the even-even case
(x = 0.516) and the odd-even case (x = 0.485), respectively. As seen in the middle panel,
the situation is different around the critical point of the bosonic core: the coupled fermion
drives the system toward deformed or spherical shapes depending on the different states
of the odd-even system. This gives rise to an effective shift of the critical point. In the right
panel of this figure, the corresponding energy surface becomes flat for the critical point
x = 0.485.

The ground-state energy surfaces as a function of γ for minimum β are shown in
Figure 9 for the odd-even cases (solid line) and the even-even system (dot-dashed) with
9 bosons taken as reference. In the left panel, the control parameter is taken as x = 1,
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corresponding to the SUBF(3) of a well-deformed case, and β is 1.35 close to the minimum
of the energy surface in the odd-even nucleus as seen in the first panel of Figure 8. Other
panels display the critical points, xc = 0.516 of the even-even case and x = 0.485 of the
odd-even ones, with β = 0.5, close to the minima of the ground-state energy surfaces given
in the middle and right panels of Figure 8. As evidently seen in Figure 9, the minimum at
γ = 0 is quite deep for the well-deformed case (left panel), indicating axial deformation, but
the minima at the critical points of either the even-even or the odd-even systems become
rather shallow, and the system tends to be more γ-soft.
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Figure 8. (Color online) (Taken from Ref. [15]) Energy surfaces for the even-even (dashed) and odd-even (solid) case with
NB = 9 bosons as a function of the β parameter for γ = 0. They are characterized by good K values. The three panels
correspond to different values of the control parameter x: the left panel corresponds to x = 1, i.e., the SUBF(3); the middle and
right panels correspond to the critical points in the even-even case (x = 0.516) and the odd-even case (x = 0.485), respectively.

To summarize this section, we considered within the intrinsic frame formalism of the
IBFM model the case of the coupling of a single fermion moving in the j = 1/2, 3/2, 5/2
orbitals to a boson core undergoing a transition from spherical to axially deformed shape.
We reviewed some results including the energy levels along the given transitional path, the
energy surfaces as a function of β (for γ = 0) and the ground-state energy surfaces as a
function of γ (for selected minimal β). According to these results, obtained by resorting to
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the intrinsic fermion-boson states, the position of the critical point is shifted by the presence
of the coupled fermion. More detailed results can be found in Ref. [15].
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Figure 9. (Taken from Ref. [15]) Energy surfaces as a function of γ for the even-even (dot-dashed) and odd-even cases
(lowest solid line) with 9 bosons. The same three values of the control parameter x as in Figure 8 are taken, and the β is
chosen to match the value corresponding to the minimum of the energy surface.

5. Quantum Shape Phase Transition in Bose-Fermi Systems for a Single-j Orbit: The
Effect of the Coupled Fermion

In this part, we review our recent works for the cases of one fermion in a single-j
orbital coupled to a bosonic core that performs different transitional paths: from spherical
to γ-unstable shape, from spherical to axially deformed (prolate and oblate) shapes, and
from prolate to oblate shapes passing through the γ-unstable shape. These results are
obtained within the IBFM model. We will take as example the case of the j = 9/2 orbital,
but we expect analog results for other values of j, except for the already mentioned case of
j = 3/2.

For the quantum shape phase transitions in this section, the boson part of the general
model Hamiltonian (7) is taken as given in Equation (1) and the boson-fermion interaction
as in Equation (9), both with α = 4. The fermion quadrupole operator in this section has
just one term (single-j), and the corresponding coefficient tj can be set to one without loss
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of generality since a single-j shell case is considered. Notice that, in the case of j = 1/2, this
operator cannot be defined. The pure fermion part of the general IBFM Hamiltonian, given
in Equation (7), is just a constant for the single-j shell case. Thus, the IBFM Hamiltonian
used is

H = HB + VBF = (1− x)n̂d −
x

4NB
Q̂χ

B · Q̂
χ
B −

x
2NB

Q̂χ
B · q̂F. (23)

Consequently, there are two control parameters in the Hamiltonian: x and χ. Changing
appropriately these control parameters, one can explore the full IBM model space (see
Figure 1) to which the fermion is coupled in IBFM. Each dynamical symmetry of the model
corresponds to specific values of x and χ.

The intrinsic formalism discussed in Section 2 is used for the present applications.
For the single angular momentum j = 9/2 cases, the possible magnetic components are
K = −9/2, ..., 9/2 and there are ten different states in total. However, these states can be
restricted to five due to the symmetry involving the K↔−K components.

5.1. Quantum Phase Transition in Bose-Fermi Systems for a Single-j Orbit: From Spherical to
γ-Unstable Shapes

In this subsection, we discuss the effect of the coupling of a single fermion with
j = 9/2 to a bosonic core with NB = 5 bosons that performs a transition from spherical
to γ-unstable shape. Spherical and γ-unstable shapes are obtained by taking all along the
path χ = 0 in the boson quadrupole operator and selecting x = 0 and x = 1, respectively,
in the Hamiltonian (23). The critical point is found at xc = NB/(2NB − 2) for this second-
order shape phase transition and its value is 0.625 for NB = 5 bosons. Please note that, in
preceding Section 3, the critical point in the even-even system for the transitional path from
spherical to γ−unstable shapes was xc = NB/(5NB − 8), but that was the case with α = 1
in the Hamiltonian. In this section, as in Section 4, we are using α = 4 in the Hamiltonian
so as to have the critical point around the middle of the x interval.

In the right side of Figure 10, the bosonic energy surface is plotted in the β-γ plane at
the critical point (x = 0.625 for NB = 5 bosons). As seen from Figure 10c, the even-even
core is γ-unstable and has a spherical minimum. The single fermion with j = 9/2 is
coupled to this core using the boson-fermion interaction in Equation (23). Then, the five
fermionic energy surfaces are plotted as a function of β for γ = 0◦ in Figure 10d including
also the bosonic one as reference, plotted as a red color line. The positive and negative β
values indicate prolate and oblate shapes, respectively. As it is clearly seen in this figure,
the even-even energy surface is very flat, and this is a clue that indicates that it is the critical
point of a continuous phase transition. However, the odd-even system prefers prolate
shapes for K = 1/2, 3/2, 5/2, while it prefers to be oblate for K = 7/2, 9/2. The left
side of Figure 10 includes the bosonic energy surface of a purely γ-unstable core in the
β-γ plane, and the energy surfaces as a function of β are obtained by coupling a j = 9/2
particle to this bosonic core (again shown as a reference marked by red in Figure 10b). It is
seen from this panel that the even-even energy surface has two degenerate minima with
the same deformation value βmin = ±0.78 in both prolate and oblate sides. This suggests
γ-independence. The behavior of the odd-even energy surfaces are similar to the ones in
Figure 10d. The states with K = 1/2, 3/2, 5/2 have prolate minima, and the other K-states
have oblate minima, for roughly the same ±βmin of the bosonic core.

In Figure 11, the evolution of the bosonic and fermionic energy surfaces as a func-
tion of β deformation for γ = 0◦ is given for a set of x values along the transitional
region. When the core is inside the spherical region (β minimum in zero), the preference
of K = 1/2, 3/2, 5/2 states is for the prolate side shapes, and the preference of others
K-states is for oblate shapes with quite small values of deformation. When the core jumps
into deformed γ-unstable at the critical point and moves to more β−deformed γ-unstable
shapes, the behavior of all K-states remains similar, but the modulus of their β values at
the energy minimum increases, showing the differences more appreciably.
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Figure 10. (Color online) (Taken from Ref. [16]) Potential energy surfaces in the case of five bosons.
(a) Bosonic energy surface for the γ-unstable shape. (b) Bosonic (red) and five fermionic energy
surfaces as a function of β for γ = 0◦. (c) Bosonic energy surfaces as a function of β and γ at the
critical point xc = 0.625. (d) Five fermionic energy surfaces as a function of β for γ = 0◦; the bosonic
one is also plotted, red line, for reference.

Figure 11. (Color online) (Taken from Ref. [17]) Evolution of the energy surfaces as a function of
β (keeping γ = 0◦) for the bosonic core (red, upper left panel) and for the different K states in the
odd-even system. The control parameter x is changed in the Hamiltonian (23), where χ = 0.
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5.2. Quantum Phase Transition in Bose-Fermi Systems for a Single-j Orbit: From Spherical to
Prolate Shapes

In this part, we discuss the effect of the coupling of a single j = 9/2 fermion to a
bosonic core with NB = 5 that performs a transition from spherical to prolate shapes, in
particular, at and around the critical point. To obtain pure prolate shape, one has to choose
χ = −

√
7/2 and x = 1 in the Hamiltonian (23). In this situation, the phase transition

occurs at the critical point xcr = 16NB/(34NB − 27) along the transition spherical-prolate
shapes, as discussed in Section 4. For NB = 5, the value of the critical point is xcr = 0.56,
and the transition in the even-even system is known to be first-order [3].

To study the effect of the coupled fermion on the core around the U(5)-SU(3) critical
point, the control parameter values are taken as x = 0.5, xcr = 0.56, x = 0.6 in the Hamilto-
nian (23). Their ground state energy surface is obtained by calculating the expectation value
of this Hamiltonian in the intrinsic state. The bosonic energy surfaces as a function of β
and γ are plotted around the critical point as seen Figure 12. Later, the single fermion with
j = 9/2 is coupled to the core using the boson-fermion interaction VBF in Equation (23).
The behavior of the fermionic energy surfaces as a function of β (for γ = 0◦) is illustrated
around the critical point in the right side of each panel in Figure 12, where the bosonic core
is marked with red color as a reference. As seen in the middle panel, the bosonic surface
has two minima at xcr = 0.56. The even-even core is spherical before this point (in the first
panel) and then it jumps to prolate (in the last panel). The intrinsic states of the odd-even
system have a tendency to show prolate or oblate shapes, while the bosonic core is located
at critical point or in its close surroundings.

Figure 12. (Color online) (Taken from Ref. [18]) Bosonic energy surfaces in the β-γ plane for NB = 5 bosons at x = 0.5 in (a),
at the critical point xcr = 0.56 in (b), at x = 0.6 in (c). Fermionic energy surfaces for different K-states as a function of β

(γ = 0◦) are also given, including also the bosonic one as a reference (red line).

The evolution of the equilibrium deformation parameter for the bosonic core and five
fermionic states is illustrated in Figure 13 along the transition from spherical to prolate
shape (left panel). Fermionic states with smaller K = 1/2, 3/2, 5/2 always favor the
prolate shapes, while states with K = 7/2, 9/2 are oblate up to x7/2 ' 0.6 and x9/2 ' 0.69.
Later, these states with larger K suddenly jump to prolate shapes. It is clearly seen that both
states, K = 7/2, 9/2, show first order transitions at certain specific values of the control
parameter. In the prolate region, the core drives all K states into the prolate side and they
have roughly the same βmin ' 1.28. The case of U(5) to O(6) transition discussed in the
previous subsection is also given in the right panel of Figure 13 for the comparison. Here,
the tendency of the states with smaller K’s is always to be prolate, while states with higher
K’s always tend to oblate shapes.
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Figure 13. (Color online) (Taken from Ref. [18]) Evolution of the equilibrium deformation parameter for the bosonic core
(red) and for the different K-states in the odd-even system as a function of the control parameter x along the spherical to
deformed region: the transition from U(5) to SU(3) is shown in the left panel, while the transition from U(5) to O(6) is
shown in the right panel, discussed in Section 5.1. Positive and negative values of βmin indicate prolate and oblate shapes,
respectively.

5.3. Quantum Phase Transition in Bose-Fermi System for a Single-j Orbit: From Spherical to
Oblate Shapes

The effect of the coupling of a fermion moving in a single j = 9/2 shell to a bosonic
core with NB = 5 that performs the transition from spherical to oblate shapes is discussed.
The aim is to see how the coupled fermion modifies the shape of the coupled odd system
and how each of the odd states behaves along the given transition path (path 3 in Figure 1).
We show the case of j = 9/2, but the overall results for the effect of the coupled fermion are
also presented for a set of different values of j ranging from 3/2 to 13/2 along the same
transitional region. This case is similar to the preceding case, and we discuss it for the sake
of completeness.

The spherical shape is obtained for the control parameter x = 0 in the Hamiltonian (23),
while x = 1 and χ = +

√
7/2 produce a pure well deformed oblate shape. The critical point is

found at xcr = 16NB/(34NB − 27) in between spherical and oblate shapes, which correspond
to the value xcr = 0.56 in the case of five bosons. This value is exactly the same value of the
critical point that occurs in between spherical and prolate shapes. The bosonic energy surfaces
are plotted as a function of the deformation parameters (β, γ) for NB = 5 around the critical
point as shown in upper panels of Figure 14. As seen in the middle panel (b), the bosonic
surface has two degenerate minima (one spherical and one oblate) at the critical point value
xcr = 0.56. Before this point, the even-even system is spherical and after it jumps to oblate
shape. Comparing Figures 12 and 14, one sees that the two bosonic cases are completely
symmetric with respect of the sign change in chi, as expected. As seen in the lower panels
of Figure 14, the fermionic intrinsic states prefer either prolate or oblate shapes depending
on their K value; hence, their behavior around the critical point is quite different from that
illustrated in Figure 12.

The evolution of the equilibrium deformation parameter for the fermionic states and
the bosonic case along the transitional path from spherical to oblate shape is illustrated in
Figure 15. As seen in fourth panel (d) of Figure 15 for the case of j = 9/2, the states with
K = 7/2, 9/2 always favor oblate shapes, while states with the lower K = 1/2, 3/2, 5/2
are prolate up to their specific critical x values. After these values, they suddenly jump
from prolate to oblate shapes. They present two degenerate minima for these values and as
a result the components with lower K’s show first-order phase transitions. On the contrary,
in the case of phase transitions along the U(5) → SU(3) path, as illustrated in the first
panel of Figure 13, the states that show first order characteristics are those with higher
K = 7/2, 9/2. As seen in the panels of Figure 15 for the different single-j from 3/2 to 13/2,
the lower K states always prefer to be prolate up to their specific critical point, then they
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jump to oblate shape at these specific x values, while the higher K states always prefer
oblate shapes along the full transitional path. In the well deformed oblate region, close
to x = 1, once again we see that the oblate core drives all states to the oblate shape, with
approximately the same βmin ' −1.28.

Figure 14. (Color online) (Taken from Ref. [19]) Similar to Figure 12. Bosonic energy surfaces in the β-γ plane for different x
values around the critical point appeared in between spherical to oblate shapes. In the lower panels, the energy surfaces as
a function of β (γ = 0◦) for the five K states of j = 9/2, with the even-even core shown in red for reference.

Figure 15. (Color online) (Taken from Ref. [19]) Similar to Figure 13. Evolution of the equilibrium deformation parameter in
the odd-even system as a function of the control parameter x along the transition path from spherical to oblate shapes. Each
panel represents a different single-j case. The bosonic case is shown in red color.
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5.4. Quantum Phase Transition in Bose-Fermi System for a Single-j Orbit: From Prolate to
Oblate Shapes

Recently, we investigated [20] the case of a single-j = 9/2 fermion coupled to a bosonic
core with NB = 5 that performs a transition from prolate to oblate shapes. We focused on
the effect of the coupled fermion on the whole system along the transitional path from
prolate to oblate shapes, passing through the γ-unstable shape. For this transition, one
can move in between the SU(3)→ O(6)→ SU(3) symmetries (path 4 in Figure 1) in the
deformed region by taking a fixed value of x = 1 and changing the χ parameter from
χ = −

√
7/2, through χ = 0 to χ = +

√
7/2 in the Hamiltonian (23).

The deformed prolate, γ-unstable, and oblate shapes of the even-even core with
NB = 5 bosons are produced for different χ values as in the previous subsections of the
Section 5. Their ground state energy surface for each shape is obtained by calculating the
expectation value of the corresponding Hamiltonian (23) in the intrinsic state given in
Equation (4). These energy surfaces in the β and γ plane are presented for deformed prolate
shape in Figure 8 left panel. In this case, the bosonic energy surface has the minimum
at γ = 0. The projection of this energy surface on the γ = 0 plane is the dashed line.
In the same plot, the energy surfaces of the odd-even system are displayed. All of them
follow the behavior of the core with approximately the same deformation. The case for the
deformed oblate shape is similar to the prolate case but the deformations are for negative β
(or alternatively for γ = 60◦). Thus, one could conclude that all the magnetic substates of
the coupled single-fermion with j = 9/2 would be driven by the shape of the bosonic core.
However, for the γ-unstable case, Figure 10 (panel a) presents the bosonic energy surface
in the (β, γ) plane. This figure also include, in panel b, the odd-even energy surfaces of
a single fermion with angular momentum j = 9/2 coupled to it using the boson-fermion
interaction given in Equation (23). Now, we will show that, in the surroundings of the O(6)
point, the odd-fermion system follows some unexpected and unique paths.

The energy surfaces as a function of β and γ are calculated for the obtained odd-even
states. The notation with n = 1, ..., 5 is used instead of K, for the five magnetic substates
of j = 9/2 because K is not a good quantum number along this transition (it is still a
good quantum number at the extreme points where axial symmetry is recovered). These
calculated odd-even energy surfaces in (β, γ) are shown in Figure 16 for each n state for
different χ values. The three rows in the figure refer to three χ values selected around
the critical region for each n-state. The energy minimum is denoted by a blue dot in each
panel also including the values βmin, γmin, and Emin. In the middle panels of n = 2 and
n = 4 states, there are two blue circles since prolate and oblate minima are degenerate for
slightly different β-deformations separated by a small barrier with the Ebar marked with
blue squares.

For the complete analysis of the absolute minimum evolution for each n-state, polar
plots in the (β, γ) plane are presented in Figure 17. Each panel corresponds to a different
n-state and the β and γ values provide the absolute minima of the energy surface for different
χ-values. It is clearly seen that the five components of the j = 9/2 orbital seem to show
quite interesting and unexpected behavior. Two odd-states (n = 1, 4) move slowly from the
prolate (γ = 0) to the oblate (γ = 60◦) shape by venturing into the triaxial region, showing
γ-softness around their slow shape-changing region. The other three odd-states (n = 2, 3, 5)
show sudden jumps (critical point) at some χcrit from prolate side to oblate side without
passing through triaxial structures what generates shape coexistence, although one of them
(n = 3) is fairly close to γ-instability. Of course, care has been used here to ensure that the
jump is not a numerical artifact due to scales changing too slowly or too rapidly.



Symmetry 2021, 13, 215 22 of 26

Figure 16. (Color online) (Taken from Ref. [20]) The contour plots of the odd-even energy surfaces as a function of β and
γ for each n-state for different χ values. The absolute minima are marked with a blue dot, and the values of the energy
barriers’ heights are marked with blue squares.
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Figure 17. (Color online) (Taken from Ref. [20]) The values of (β, γ) at the energy minima for different χ values between
−
√

7/2 and +
√

7/2 for the five n-states. The absolute minima of the energy surface are indicated by full dots.

6. Summary and Conclusions

In this contribution, our works on quantum phase transition for Bose-Fermi systems
within the intrinsic frame formalism associated with the IBFM model have been reviewed.
The main aim of these studies is to understand the effect of the coupled fermion on the core
when moving along a given transitional path and how the coupled fermion modifies the
characteristics of the bosonic core around the critical points.

First, we presented some IBFM results trying to mimic the situation described by the
E(5/4) critical point symmetry, for the case of a single j = 3/2, and its extended version,
the E(5/12) critical point symmetry, for multi-j orbits (j = 1/2, 3/2, 5/2). A possible
example of the E(5/4) is 133Ba built on the single particle level d3/2. The multi-j situation
of E(5/12) can occur in odd-neutron Pt isotopes with the active orbits 3p1/2, 3p3/2, 2 f5/2
and in odd-proton Ir isotopes with active orbits 2d5/2, 2d3/2, 3s1/2 around the A ' 190
mass region and also in odd-neutron Ba isotopes with relevant orbits 2d5/2, 2d3/2, 3s1/2
around the A ' 130 mass region. Later, we recapitulated the IBFM results for the UBF(5)
to SUBF(3) transition in odd nuclei for the same multi-j orbits. These results include the
energy levels along the transition from spherical to the axially deformed shape and also the
energy surfaces for the even-even and odd-even cases. According to these results, the main
effect of the coupled fermion is to produce a systematic shift of the critical point location in
the odd-even system with respect to the one characterizing the even-even core.

Finally, in Section 5, we reviewed our systematic studies for the case of a single-j
fermion coupled to a bosonic core that performs different transitions: from spherical to
γ-unstable shape, from spherical to axially deformed (prolate and oblate) shapes, and
from prolate to oblate shape passing through the γ-unstable shape. As a specific test case,
we took into account a single-j fermion with angular momentum j = 9/2 coupled to a
bosonic core with small number of bosons (NB = 5). When the bosonic system exhibits a
second-order phase transition moving from spherical and γ-unstable shapes, the fermionic
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states with lower K = 1/2, 3/2, 5/2 values show oblate shapes, while the K = 7/2, 9/2
states prefer prolate ones. However, when the even-even system performs the transition
from spherical to prolate shape for the bosonic core, the fermionic states with smaller K’s
always favor prolate shapes, and the states with K = 7/2, 9/2 are oblate up to a certain
point beyond the critical point for the bosonic system, but then these states also jump to
the prolate side, showing first-order phase transitions. When the bosonic core moves from
spherical shape to oblate shape, states with the lower K = 1/2, 3/2, 5/2 show first-order
phase transitions, jumping to oblate at some value of the control parameter x beyond the
bosonic critical point. States with higher K = 7/2, 9/2 always favor oblate shapes. For this
transitional path, we also presented the results for different single-j values from 3/2 to 13/2
to show that their behavior is similar, and we can thus take just one (say the j = 9/2) as a
representative for any of them. Finally, the results of our last work on the prolate to oblate
phase transition in Bose-Fermi systems show quite interesting and unexpected behavior.
Two states in the odd-even system move slowly from the prolate to the oblate shape by
venturing into the triaxial region, also showing a γ-softness behavior in the middle, while
the other three states show sudden jumps from prolate to oblate shapes.

Evidence of quantum phase transitions in odd systems were reported in recent
works [27–34]. The experimental evidence for transition from spherical to the γ-unstable shapes
in odd-mass 127−137Ba and 101−109Rh, and 123−135Xe nuclei was presented in Refs. [27,28,32]
and analyzed by calculating their nuclear properties, such as B(E2) values and two-neutron
separation energies, within the IBFM model for the UBF(5)–OBF(6) transition along the iso-
topic chain. The signatures of the quantum shape phase transition in odd-mass 129−137Ba,
129−137La, 127−135Xe, and 127−135Cs nuclei in the A ≈ 130 mass region were studied by tak-
ing into account their bosonic cores 128−136Ba for 129−137Ba, 129−137La, and 126−134Xe [30,31].
These cores empirically exhibit a transition from nearly spherical to γ-soft shape. The cal-
culations of the low-energy states and the electromagnetic transition rates of given γ-soft
odd-mass nuclei provide a reasonable agreement with the experimental data along the isotopic
chain [30,31]. A microscopic description of the quantum shape phase transition was performed
for the the axially-deformed odd-mass 147−155Sm and 147−155Eu nuclei [29] by taking into
consideration their common bosonic cores 148−154Eu that show the transition from spherical
to axially-deformed shape. Another description along the same transition path was carried
out for odd-mass 149−155Eu isotopes and their even-even neighbors, 148−154Sm and 150−156Gd
nuclei [33]. In this study, the energy surfaces were presented for even-even nuclei, later the en-
ergy spectra of odd-mass 149−155Eu isotopes were analyzed and their two-neutron separation
energies, isotope shifts, quadrupole moments, and E2 reduced transition matrix elements were
calculated along the isotopic chain and the results show good agreement with experimental
data [33]. The prolate to oblate shape phase transition was studied in neutron-rich odd-mass
185−193Os, 185−195Ir, and 185−199Pt nuclei in the A ≈ 190 mass region to see the effect of the
odd particle [34]. Their even-even neighboring nuclei 186−200Pt and 186−194Os were also taken
into account and their energy surfaces were plotted as a function deformation parameters (β,
γ) exhibiting good examples for the transition from prolate to oblate shape and also including
γ-soft shape. Spectroscopic properties of given odd-mass Os, Ir, and Pt nuclei were calcu-
lated within the effective IBFM Hamiltonian based on the nuclear energy density functional
theory [45]. More recently, a description of the quantum shape phase transition has been
simultaneously performed in the even-even 94−102Zr and the odd-even 95−103Zr nuclei [46].
Their spectroscopic properties, related to the quantum shape phase transitions, are calculated
within the IBFM model, and the results are in good agreement with the experimental data.
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(TÜBİTAK), under the project number 119T127. M.B. thanks to Scientific Research Projects Coordina-
tion Unit of Kırıkkale University for the supports of travel expenses to join scientific meetings held
at Padova University in 2018 and 2019, under project numbers 2016/001-351 and 2019/040. This



Symmetry 2021, 13, 215 25 of 26

work has been also partially supported by the Consejería de Economía, Conocimiento, Empresas
y Universidad de la Junta de Andalucía (Spain) under Group FQM-160, by the Spanish Ministerio
de Ciencia e Innovación, ref. FIS2017-88410-P and PID2019-104002GB-C22, and by the European
Commission, ref. H2020-INFRAIA-2014-2015 (ENSAR 2).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data related to this work are available on request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Iachello, F. Dynamic Symmetries at the critical point. Phys. Rev. Lett. 2000, 85, 3580–3583. [CrossRef]
2. Bohr, A.; Mottelson, B. Nuclear Structure; Benjamin: Reading, MA, USA, 1975; Volume 2.
3. Iachello, F. Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Phys. Rev. Lett.

2001, 87, 052502. [CrossRef] [PubMed]
4. Iachello, F.; Arima, A. The Interacting Boson Model; Cambridge University: New York, NY, USA, 1987.
5. Casten, R.F. Shape phase transitions and critical-point phenomena in atomic nuclei. Nat. Phys. 2006, 2, 811–820. [CrossRef]
6. Casten, R.F.; Mc Cutchan, E.A. Quantum phase transitions and structural evolution in nuclei. J. Phys. G Nucl. Part. Phys. 2007, 34,

R285–R320. [CrossRef]
7. Casten, R.F. Quantum phase transitions and structural evolution in nuclei. Prog. Part. Nucl. Phys. 2009, 62, 183–209. [CrossRef]
8. Cejnar, P.; Jolie, J. Quantum phase transitions in the interacting boson model. Prog. Part. Nucl. Phys. 2009, 62, 210–256. [CrossRef]
9. Cejnar, P.; Jolie, J.; Casten R.F. Quantum phase transitions in the shapes of atomic nuclei. Rev. Mod. Phys. 2010, 82, 2155–2212.

[CrossRef]
10. Iachello, F. Dynamic supersymmetries of differential equations with applications to nuclear spectroscopy. Phys. Rev. Lett. 2005, 95,

052503. [CrossRef]
11. Alonso, C.E.; Arias, J.M.; Vitturi, A. Critical-point symmetries in Boson-Fermion systems: The case of shape transitions in odd

nuclei in a multiorbit model. Phys. Rev. Lett. 2007, 98, 052501. [CrossRef]
12. Iachello, F.; Van Isacker, P. The Interacting Boson-Fermion Model; Cambridge University: New York, NY, USA, 1991.
13. Alonso, C.E.; Arias, J.M.; Fortunato, L.; Vitturi, A. Phase transitions in the interacting boson fermion model: The γ-unstable case.

Phys. Rev. C 2005, 72, 061302. [CrossRef]
14. Alonso, C.E.; Arias, J.M.; Vitturi, A. Shape phase transition in odd nuclei in a multi-j model: The UB(6)

⊗
UF(12) case. Phys.

Rev. C 2007, 75, 064316. [CrossRef]
15. Alonso, C.E.; Arias, J.M.; Fortunato, L.; Vitturi, A. UBF(5) to SUBF(3) shape phase transition in odd nuclei for j = 1/2, 3/2, and

5/2 orbits: The role of the odd particle at the critical point. Phys. Rev. C 2009, 79, 014306. [CrossRef]
16. Böyükata, M.; Alonso, C.E.; Arias, J.M.; Fortunato, L.; Vitturi, A. Shape phase transition in odd-even nuclei: From spherical to

deformed γ-unstable shapes. Phys. Rev. C 2010, 82, 014317. [CrossRef]
17. Fortunato, L.; Alonso, C.E.; Arias, J.M.; Böyükata, M.; Vitturi, A. Odd nuclei and shape phase transitions: The role of the unpaired

fermion. Int. J. Mod. Phys. E 2011, 20, 207–212. [CrossRef]
18. Böyükata, M.; Alonso, C.E.; Arias, J.M.; Fortunato, L.; Vitturi, A. Quantum shape phase transitions from spherical to deformed

for Bose-Fermi systems: The effect of the odd particle around the critical point. EPJ Web. Conf. 2014, 66, 02014. [CrossRef]
19. Böyükata, M.; Alonso, C.E.; Arias, J.M.; Fortunato, L.; Vitturi, A. Quantum phase transitions in odd-A nuclei: The effect of the

odd particle from spherical to oblate shapes. J. Phys. Conf. Ser. 2015, 580, 012047. [CrossRef]
20. Böyükata, M.; Alonso, C.E.; Arias, J.M.; Fortunato, L.; Vitturi, A. Unexpected transitional paths in the prolate to oblate shape

phase transitions for Bose-Fermi systems. Eur. Phys. J. A 2021, 57, 1–10. [CrossRef]
21. Jolie, J.; Heinze, S.; Van Isacker, P.; Casten, R.F. Shape phase transitions in odd-mass nuclei using a supersymmetric approach.

Phys. Rev. C 2004, 70, 011305. [CrossRef]
22. Petrellis, D.; Leviatan, A.; Iachello, F. Quantum phase transitions in Bose-Fermi systems. Ann. Phys. 2011, 326, 926–957. [CrossRef]
23. Iachello, F.; Leviatan, A.; Petrellis, D. Effect of a fermion on quantum phase transitions in bosonic systems. Phys. Lett. B 2011, 705,

379–382. [CrossRef]
24. Zhang, Y.; Pan, F.; Liu, Y.X.; Luo, Y.A.; Draayer, J.P. Simple description of odd-A nuclei around the critical point of the spherical to

axially deformed shape phase transition. Phys. Rev. C 2011, 84, 034306. [CrossRef]
25. Zhang, Y.; Pan, F.; Liu, Y.X.; Luo, Y.A.; Draayer, J.P. The shape phase transition and phase coexistence in odd Sm nuclei. Phys. Rev.

C 2013, 88, 014304. [CrossRef]
26. Zhang, Y.; Bao, L.N.; Guan, X.; Pan, F.; Draayer, J.P. The ground state phase transition in odd-A and odd-odd nuclei around

N = 90. Phys. Rev. C 2013, 88, 064305. [CrossRef]
27. Jafarizadeh, M.A.; Ghapanvari, M.; Fouladi, N. Algebraic solutions for UBF(5)–OBF(6) quantum phase transition in odd-mass-

number nuclei. Phys. Rev. C 2015, 92, 054306. [CrossRef]

http://doi.org/10.1103/PhysRevLett.85.3580
http://dx.doi.org/10.1103/PhysRevLett.87.052502
http://www.ncbi.nlm.nih.gov/pubmed/11497764
http://dx.doi.org/10.1038/nphys451
http://dx.doi.org/10.1088/0954-3899/34/7/R01
http://dx.doi.org/10.1016/j.ppnp.2008.06.002
http://dx.doi.org/10.1016/j.ppnp.2008.08.001
http://dx.doi.org/10.1103/RevModPhys.82.2155
http://dx.doi.org/10.1103/PhysRevLett.95.052503
http://dx.doi.org/10.1103/PhysRevLett.98.052501
http://dx.doi.org/10.1103/PhysRevC.72.061302
http://dx.doi.org/10.1103/PhysRevC.75.064316
http://dx.doi.org/10.1103/PhysRevC.79.014306
http://dx.doi.org/10.1103/PhysRevC.82.014317
http://dx.doi.org/10.1142/S0218301311017533
http://dx.doi.org/10.1051/epjconf/20146602014
http://dx.doi.org/10.1088/1742-6596/580/1/012047
http://dx.doi.org/10.1140/epja/s10050-020-00308-4
http://dx.doi.org/10.1103/PhysRevC.70.011305
http://dx.doi.org/10.1016/j.aop.2010.12.001
http://dx.doi.org/10.1016/j.physletb.2011.10.024
http://dx.doi.org/10.1103/PhysRevC.84.034306
http://dx.doi.org/10.1103/PhysRevC.88.014304
http://dx.doi.org/10.1103/PhysRevC.88.064305
http://dx.doi.org/10.1103/PhysRevC.92.054306


Symmetry 2021, 13, 215 26 of 26

28. Jafarizadeh, M.A.; Fouladi, N.; Ghapanvari, M.H.; Fathi, H. Simultaneous description of low-lying positive and negative parity
states in spd, sdf and spdf interacting boson model. Int. J. Mod. Phys. E 2016, 25, 1650048. [CrossRef]

29. Nomura, K.; Niksic, T.; Vretenar, D. Signatures of shape phase transitions in odd-mass nuclei. Phys. Rev. C 2016, 94, 064310.
[CrossRef]

30. Nomura, K.; Niksic, T.; Vretenar, D. Shape-phase transitions in odd-mass γ-soft nuclei with mass A ≈ 130. Phys. Rev. C 2017, 96,
014304. [CrossRef]

31. Nomura, K.; Rodríguez-Guzmán, R.; Robledo, L.M. Shape transitions in odd-mass γ-soft nuclei within the interacting boson-
fermion model based on the Gogny energy density functional. Phys. Rev. C 2017, 96, 064316. [CrossRef]

32. Ghapanvari, M.; Ghorashi, A.H.; Ranjbar, Z.; Jafarizadeh, M.A. High-spin level structure and Ground-state phase transition in
the odd-mass 103−109Rh isotopes in the framework of exactly solvable sdg interacting boson-fermion model. Nucl. Phys. A 2018,
971, 51–70. [CrossRef]

33. Quan, S.; Li, Z.P.; Vretenar, D.; Meng, J. Nuclear quantum shape-phase transitions in odd-mass systems. Phys. Rev. C 2018, 97,
031301. [CrossRef]

34. Nomura, K.; Rodríguez-Guzmán, R.; Robledo, L.M. Prolate-to-oblate shape phase transitions in neutron-rich odd-mass nuclei.
Phys. Rev. C 2018, 97, 064314. [CrossRef]

35. Yu, X.R.; Hu, J.; Li, X.X.; An, S.Y.; Zhang, Y. Effects of single particle on shape phase transitions and phase coexistence in odd-even
nuclei. Chin. Phys. C 2018, 42, 034103. [CrossRef]

36. Zhang, Y.; Dong, W.; Jiang, H. Shape phase transition and shape coexistence in the Bose-Fermi system. EPJ Web. Conf. 2018,
178, 05004. [CrossRef]

37. Ginocchio, J.N.; Kirson, M.W. An intrinsic state for the interacting boson model and its relationship to the Bohr-Motelson model.
Nucl. Phys. A 1980, 350, 31–60. [CrossRef]

38. Ginocchio, J.N.; Kirson, M.W. Relationship between the Bohr collective Hamiltonian and the interacting-boson model. Phys. Rev.
Lett. 1980, 44, 1744–1747. [CrossRef]

39. Dieperink, A.E.L.; Scholten, O.; Iachello, F. Classical limit of the interacting-boson model. Phys. Rev. Lett. 1980, 44, 1747–1750.
[CrossRef]

40. Leviatan, A. A geometric interpretion for the interacting-boson-fermion model. Phys. Lett. B 1988, 209, 415–419. [CrossRef]
41. Leviatan, A.; Shao, B. Deformed single-particle levels in the boson-fermion model. Phys. Rev. Lett. 1989, 63, 2204–2207. [CrossRef]
42. Alonso, C.E.; Arias, J.M.; Iachello, F.; Vitturi, A. Intrinsic frame description of interacting boson-fermion systems. Nucl. Phys. A

1992, 539, 59 –74. [CrossRef]
43. Bayman, B.F.; Silverberg, L. On the coupling of a j = 3/2 particle to nuclear quadrupole surface oscillations. Nucl. Phys. A 1960,

16, 625–644. [CrossRef]
44. Rowe, D.J. Quasidynamical symmetry in an interacting boson model phase transition. Phys. Rev. Lett. 2004, 93, 122502. [CrossRef]

[PubMed]
45. Nomura, K.; Niksic, T.; Vretenar, D. Beyond mean-field boson-fermion model for odd-mass nuclei. Phys. Rev. C 2016, 93, 054305.

[CrossRef]
46. Nomura, K.; Niksic, T.; Vretenar, D. Shape phase transitions in odd-A Zr isotopes. Phys. Rev. C 2020, 102, 034315. [CrossRef]

http://dx.doi.org/10.1142/S0218301316500488
http://dx.doi.org/10.1103/PhysRevC.94.064310
http://dx.doi.org/10.1103/PhysRevC.96.014304
http://dx.doi.org/10.1103/PhysRevC.96.064316
http://dx.doi.org/10.1016/j.nuclphysa.2018.01.009
http://dx.doi.org/10.1103/PhysRevC.97.031301
http://dx.doi.org/10.1103/PhysRevC.97.064314
http://dx.doi.org/10.1088/1674-1137/42/3/034103
http://dx.doi.org/10.1051/epjconf/201817805004
http://dx.doi.org/10.1016/0375-9474(80)90387-5
http://dx.doi.org/10.1103/PhysRevLett.44.1744
http://dx.doi.org/10.1103/PhysRevLett.44.1747
http://dx.doi.org/10.1016/0370-2693(88)91165-3
http://dx.doi.org/10.1103/PhysRevLett.63.2204
http://dx.doi.org/10.1016/0375-9474(92)90235-C
http://dx.doi.org/10.1016/S0029-5582(60)81020-6
http://dx.doi.org/10.1103/PhysRevLett.93.122502
http://www.ncbi.nlm.nih.gov/pubmed/15447257
http://dx.doi.org/10.1103/PhysRevC.93.054305
http://dx.doi.org/10.1103/PhysRevC.102.034315

	Introduction
	Methods: The IBFM Hamiltonian and the Intrinsic Frame Formalism
	The E(5/4) and E(5/12) Critical Points of the Boson-Fermion System
	The E(5/4) Critical Point of the Boson-Fermion System
	The E(5/12) Critical Point of the Boson-Fermion System

	UBF(5) to SUBF(3) Shape Phase Transition in Odd Nuclei for Multi-j Orbits (j=1/2,3/2,5/2): The Role of the Odd Particle at the Critical Point
	Quantum Shape Phase Transition in Bose-Fermi Systems for a Single-j Orbit: The Effect of the Coupled Fermion
	Quantum Phase Transition in Bose-Fermi Systems for a Single-j Orbit: From Spherical to -Unstable Shapes
	Quantum Phase Transition in Bose-Fermi Systems for a Single-j Orbit: From Spherical to Prolate Shapes
	Quantum Phase Transition in Bose-Fermi System for a Single-j Orbit: From Spherical to Oblate Shapes
	Quantum Phase Transition in Bose-Fermi System for a Single-j Orbit: From Prolate to Oblate Shapes

	Summary and Conclusions
	References

