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Abstract: Systems of coupled nonlinear PDEs are applied in many fields as suitable models for
many natural and physical phenomena. This makes them active and attractive subjects for both
theoretical and numerical investigations. In the present paper, a symmetric nonlinear Schrödinger
(NLS) system is considered for the existence of the steady state solutions by applying a minimizing
problem on some modified Nehari manifold. The nonlinear part is a mixture of cubic and superlinear
nonlinearities and cubic correlations. Some numerical simulations are also illustrated graphically to
confirm the theoretical results.

Keywords: steady states; variational methods; energy functional; existence of solutions; Nehari
manifold; NLS systems
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1. Introduction

The purpose of the present study is to investigate a system of nonlinear Schrödinger
(NLS) equations coupled by cubic and superlinear nonlinearities. We will focus mainly
on a theoretical study of the existence of steady state solutions, especially positive ones.
Consider for p ∈ R, the model function

g(u, v) = |u|p−1 + v2.

We aim to study the evolutive NLS system
iut + ∆u + g(u, v)u = 0,
ivt + ∆v + g(v, u)v = 0,
(u, v) = (u(x, t), v(x, t)) ∈ C2,

(1)

(x, t) ∈ RN × (t0,+∞), N ≥ 1, t0 ≥ 0, ut is the first order time-derivative of u, ∆ =
N

∑
i=1

∂2

∂x2
i

is the Laplace operator on RN .
Systems of coupled NLS equations have been tackled widely in the recent decades

from both theoretical and applied aspects. However, the majority are relatively simple
from the point of view of nonlinearities and/or coupling terms. It may be noticed that
numerical studies have focused on standing and solitary waves. See for instance [1–3].
Many techniques have been applied to investigate such systems such as Palais-Smale
notion. This later exhibits a bounded energy functional associated to the problem. Other
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methods have been applied such as Darboux transformation, least energy solutions, Fokas
method, Morse index, etc. The readers may refer to [3–15]).

Coupled nonlinear Schrödinger equations are related to theoretical and applied fields.
In hydrodynamics, NLS systems may be applied for waves propagation modeling. In [16]
for example, directional effects have been confirmed such as the overlapping group velocity
projection. In optics, short pulses propagation may be also governed by a system of NLS
equations. Indeed, it is noticed in [17] that a single-mode optical fiber may be bimodal
due to the birefringence. The original pulse may be subdivided into two possible pulses
according to the directions of polarization. The polarizations are next coupled via an NLS
system of the form (1). More backgrounds about these systems and their applications may
be found in [18–22].

In the present paper, we are interested in an NLS system where the components of the
solution are coupled by means of a mixture of nonlinear terms. Notice that the system in
our case has a variational form as the nonlinear parts may be seen as derivatives of some
functions of (u, v). Such systems which are special types of Hamiltonians are also related
to biology, especially population dynamics modeling.

It is worth to notice that the main difficulty for these problems is generally the lack
of Sobolev’s embeddings’ compactness. In the literature, to overcome this difficulty, re-
searchers converted the problem under investigation to a radial form. The obtained
function spaces, which are radially symmetric, possess compact embeddings. See [5,23–26].

In the next section, a full study of existence of steady state solutions to problem (1)
will be developed. The main tool is by applying the notion of Nehari manifolds, Ekeland’s
variational principle and Palais-Smale condition. These concepts will be recalled with some
details in Appendix A. Recall that a steady state solution of problem (1) is written as

W(x, t) = (eiω1tu(x), eiω2tv(x)),

where ω1, ω2 ∈ R. Remark that in this case, the couple (u, v) satisfies the time-independent
or stationary system {

∆u + (g(u, v)−ω1)u = 0,
∆v + (g(v, u)−ω2)v = 0,

(2)

x ∈ RN . This follows easily by substituting W in the system (1). Remark that a first
advantage from the pure mathematical point of view is that steady state solutions permit
to reduce the number of variables in the model. This permits in general to convert the
original problem to a PDE easy to handle, for example when considering radially symmetric
problems. In fact, symmetry notion has the principal role in the study of PDEs and coupled
PDEs. Many types of symmetries have been applied by researchers to reduce the difficulties
encountered. See for example [6,23,24,27–30].

In the following parts, we assume that the frequencies of the components u and v are
equal and thus denote ω1 = ω2 = ω > 0. We thus consider synchronous components u
and v forming a pair solution of the system

∆u + (g(u, v)−ω)u = 0,
∆v + (g(v, u)−ω)v = 0,
x ∈ RN .

(3)

A first question that may be asked is the following. Why ground state solutions are
important? These are in fact confirmed in many applied fields. In general, atoms and/or
molecules may occur in different situations such as excited and ground states. In atomic
physics, excited states are quantum states of an atom or a molecule with more energy than
the ground state. To understand these excited states we shall understand the fundamental
state or the zero-point energy for the whole system known as ground state. Indeed,
in quantum physics/mechanics, for a quantum mechanical system, the ground state posses
in fact the lowest energy. It is sometimes called the vacuum state.
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Steady state solutions may be also met in economic dynamics such as economies with
capital and depreciation. Recall that for a given level of investment, there are always three
logic possibilities. An investor may spend more than the depreciation of the capital stock,
less that the value of the depreciation of the capital stock, or equal. In the last situation
(equality), the investor will have the same amount of capital next period as it is done in the
present. This means that if the level of investment remains the same for next period as in
the present, the investor will just cover depreciation with no amount left over. The capital
stock will remain the same in the third period also. Continuing with this process, the level
of capital constitutes a steady state.

The main problem in studying physical systems is the existence and the multiplicity
of ground states. The third thermodynamics law states that an absolute zero-temperature
system is in a ground state. How many ground states exist? Mathematically speaking,
the existence of one ground state may be explained by the so-called degeneracy.

Motivated by the numerous experimental and theoretical examinations of multi con-
densates, multi-component optical fibres, coupled dynamic economic models, the coupled
systems of nonlinear PDEs such as (1) or other variants have constituted much motivations
and have been attracting the attention of researchers. In the next section, more discus-
sions on the importance of these systems will be exposed to reinforces the motivation of
considering the problem studied here and its relation to applied fields.

The organization of the present paper is described as follows. In Section 2, a review
on the physical framework of the problem investigated in the present paper is developed,
provided with a mathematical overview. Section 3 is devoted to our main results on steady
state solutions of problem (1). Nehari manifold concept, Ekeland’s variational principle
and Palais-Smale notion are applied to show the existence of positive solutions. Numerical
simulations of some cases are also illustrated in order to confirm the theoretical results.
Section 4 is a conclusion. An appendix is developed next to recall briefly some essential
concepts applied in our work such as the Ekeland’s variational principle, Palais-Smale
sequences and Nehari manifold notion.

2. NLS Systems Mathematical Physics Overview

The purpose of this section is to provide mathematical and physical overviews on
systems of coupled NLS equations such as the present problem as well as a general
framework. We will discuss relative applications, the nature of solutions, the mathematical
methods, and some other related concepts such as standing wave solutions, solitary wave
solutions, and steady states.

NLS systems are indeed met in many situations in physics, such as nonlinear optics in
modeling optical soliton propagation in fibres where the electric field propagates with at
least two polarized components [31]. Already in nonlinear optics, the components of the
solutions of the coupled NLS system are used to describe the components of a light beam
in refractive materials. In [32], two-dimensional photo-refractive screening solutions with
self-trapping have been experimentally observed.

NLS systems are also met in Bose-Einstein and spin Bose-Einstein condensates, waves
propagation, etc. See for example [33]. In Bose-Einstein many condensates, possible
mixtures of states occur. In [34], for example, triplet states in the magnetic insulator have
been investigated. Coupled NLS systems of equations have been also applied to study
matter waves in spinor Bose-Einstein condensate.

In some situations, NLS equations are coupled to other types to model more phe-
nomenon. In [35] for example, a Schrödinger-Newton system has been discussed for
understanding the concept of quantization of gravitational field.

In [36], the existence of solutions for a symmetric nonlinear multi-component
Schrödinger system has been investigated. Using radial symmetry, the problem is con-
verted into a generalized Ermakov-Pinney form. Positive periodic solutions have been next
investigated. In [37], a system of coupled cubic-cubic NLS equations has been considered
for homoclinic solutions. The authors discussed a specific physical application dealing
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with the possibility of coexistence of different condensates, which are spatially separated
and weakly coupled.

A similar study as our’s has been developed in [38] for ground state solutions of three-
dimensional coupled cubic nonlinear Schrödinger system. Existence of positive, radially
symmetric, ground state solutions has been studied. Besides, a local well-posedness
result is discussed by applying Strichartz estimates and the contraction mapping principle.
Ma and Zhao considered in [39] a multi-component nonlinear Schrödinger system for
existence and uniqueness of ground states in the whole space by applying Schwartz
symmetrization and the radial symmetry.

Belmonte-Beitia in [40] applied Lie symmetries for the existence of many types of
solutions such as bright-bright type, dark-dark type, and dark-bright solutions of multi-
component NLS systems. In [41], existence and nonexistence of solutions to a doubly
coupled multi-component system of NLS equations have been studied in symmetric and
non symmetric cases. In particular, the authors investigated the multiplicity and bifurcation
phenomena for positive solutions. See also [42,43].

In [44], analytical bright solutions of a coupled cubic-cubic NLS system have been
investigated via the symbolic computation procedure and Hirota method. The system is
applied for modeling collisions for simultaneous and parallel bright solitons in elastic and
inelastic cases. The same system has been applied also to describe pulse propagation in
optical fibres in [45] and soliton wavelength in [46,47]. Similar investigations have been
conducted in [48–52] for analytical periodic solutions and higher dimensions.

In [53], solutions of an analogue problem to (1) have been discussed in the one-
dimensional case with a nonlinear model function g(u, v) = |u|2 + |v|2. Asymptotic
behavior at time infinity has been investigated. These solutions constitute a class of time-
independent or steady state solutions corresponding to a pulsation ω = 0. The results join
in some sense those exposed in [54–56].

Solitary wave solutions have been also shown for other models such as [57] where
a nonlinear Klein-Gordon system has been considered in the case of electromagnetic and
electrostatic fields. substituting u(x, t) = u(x)eiwt in the evolutive equation, the function
u = u(x) has been shown to satisfy an equation of the form

∆u + |u|p−2u + (ω2 −m2
0)u = 0, (4)

where p, m are some fixed parameters. By replacing p with p + 1 and ω2 − m2
0 with ω,

and taking a single solution (u, u) of problem (2), we obtain a perturbation form of (4).
This also joins the famous Brezis-Nirenberg problem [58]. Similar studies to (4) and the
techniques applied may be found in [59–64].

Already related to NLS systems, existence and non-existence of solutions have been
investigated in [65]. Numerical solutions of a coupled NLS system on unbounded domains
have been investigated in [66] where the components of the solutions are physically due
to the wave amplitude considered in two polarizations. The cubic coupling parameter is
related to phase modulation. By applying the operator splitting technique, the authors
decomposed the problem into two decoupled linear Schrödinger equations and nonlinear
subproblems with a small time step.

In [67], the behavior of the solutions of a full-modulated nonlinearities’ NLS system
has been examined. The authors considered the system{

ut + m1uxx = (α + iβ)u + f1|u|2u + f2|u|4u + f3|v|2u + f4|u|2|v|2u,
vt + m2vxx = (γ + iδ)v + g1|v|2v + g2|v|4v + g3|u|2v + g4|u|2|v|2v,

(5)

where the components u and v are the complex envelopes relative to a co-moving electric
field. The quantities α and γ describe the trapping potentials. The parameters β and δ are
due to the amplifications. The functions f j and gj, j = 1, 1, 3, 4 describe the nonlinearities,
and m1 and m2 are dispersion parameters
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A symmetric system of NLS equations has been also considered in [68] to model
atmospheric gravity waves. Solutions have been investigated for the coupled NLS system{

iut + α1uxx + (σ1|u|2 + Γ1|v|2)u = 0,
ivt + iCvx + α2vxx + (Γ2|u|2 + σ2|v|2)v = 0.

(6)

Problem (6) above is converted to Boussinesq equation in some cases. See also [69] for
coupled Boussinesq systems.

In [70], a system of coupled NLS equations has been investigated such as{
iut + iux + uxx + u + v + σ1 f (u, v)u = 0,
ivt − ivx + vxx + u− v + σ2g(u, v)v = 0.

(7)

In (7), the functions f and g are real valued, smooth, nonlinear, and depend only on
(|u|2, |v|2). The parameters σ1, σ2 are fixed real numbers.

In [71], Nehari manifold approach has been applied to study the nonlinear elliptic
system

−∆pi ui = λiai(x)|ui|pi−2ui + (αi + 1)c(x)|ui|αi−1ui
̂|ui|αi+1, x ∈ Ω,

i = 1, 2, . . . , n,
u1 = u2 = . . . un = 0, x ∈ ∂Ω,

(8)

where Ω ⊂ RN is a bounded domain with a smooth boundary. ̂|ui|αi+1 = ∏
j 6=i
|uj|αj+1.

For s > 1, ∆s is the s-Laplace operator defined by ∆sZ = div(|∇Z|s−2∇Z). p1, p2, . . . , pn > 1.
The parameters λi and αi are positive real numbers, for all i = 1, 2, . . . , n. By applying the
Nehari manifold notion and the fibering maps concept, existence and multiplicity of the
solutions have been studied in the case of sign-changing weights. Notice that such a system
may be understood as a time-independent version of an NLS multi-component system.

In [72], ground state solutions of linearly and nonlinearly coupled NLS systems have
been investigated under suitable conditions such as spatially dependence of coefficients,
their mixed behavior, periodicity in some directions, and positive finite limits in other
directions. Positive ground state solutions have been confirmed for the problem{

−iut = ∆u− v1(x)u + µ1|v|2u + β|v|2u + γv,
−ivt = ∆v− v2(x)v + µ2|u|2v + β|u|2v + γu,

(9)

x ∈ RN , t > 0.
In [73], NLS and Heat equations have been combined into a coupled system. Expo-

nential stability has been investigated in a torus region by transforming the problem into
one-dimensional coupled system in polar coordinates.

Benrhouma in [74,75] applied a perturbation method, Nehari manifold concept, link-
ing theorem, and Ekeland’s variational principle for existence, uniqueness and positive
solutions of a type system such as{

−∆u + u = α
α+β w(x)|v|β|u|α−2u,

−∆v + v = β
α+β w(x)|u|α|v|β−2v

(10)

in RN . Notice that the solutions u and v may be seen as standing wave solutions of the
form (u, v)(x, t) = e−it(u(x), v(x)) for an associated NLS system to (10).

In [76], ground state solutions of a multi-component focusing NLS system have been
studied. Besides, a potential method has been applied for global existence and finite-
time blow-up.
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3. The Steady State Problem

To study existence of the solutions of problem (1) or its stationary version (3), we
propose to apply the Ekeland’s variational principle, Palais-Smale notion and Nehari
manifolds. We firstly introduce the functional framework. Consider the functional space

H = H1(RN)× H1(RN)

equipped with the inner product

< (u, v); (ϕ, ψ) >H=
∫
RN

(∇u∇ϕ + ωuϕ +∇v∇ψ + ωvψ)dx

and the norm

‖(u, v)‖H =
(
< (u, v); (u, v) >H

)1/2
.

In the rest of the paper, we assume that 1 ≤ N ≤ 4, 1 < p < ∞ for N ≤ 2, and 1 < p ≤
N + 2
N − 2

for N ≥ 3. The following lemma is easy to prove.

Lemma 1.
(

H, ‖(u, v)‖H

)
is a Hilbert space.

Definition 1. A pair w = (u, v) is called a weak solution of problem (3) if w ∈ H, and for all
(ϕ, ψ) ∈ C∞

c (RN)× C∞
c (RN),∫

RN
(∇u∇ϕ + ωuϕ +∇v∇ψ + ωvψ− f (u, v)ϕ− f (v, u)ψ)dx = 0

where
f (u, v) = (|u|p−1 + v2)u = g(u, v)u.

Generally, in PDEs, single and coupled, weak solutions are issued from variational
methods if the concerned problem possess the variational structure. The problem of exis-
tence of weak solutions becomes a problem of existence of critical points of a corresponding
energy functional.

In the present case, it is obvious that (0, 0) is a solution of (3). Therefore, we will be
interested for the rest of the paper in non-trivial solutions for problem (3) by applying
critical point theory and the Nehari manifold. Consider the functional

I(u, v) =
1
2
L(u, v)− 1

p + 1
Mp(u, v)− 1

2
N (u, v), (11)

where
L(u, v) =

∫
RN

(
|∇u|2 + |∇v|2 + ω(u2 + v2)

)
dx,

Mp(u, v) =
∫
RN

(
|u|p+1 + |v|p+1

)
dx

and
N (u, v) =

∫
RN

u2v2dx.

The following lemma holds.

Lemma 2. (i). The functional I is C1(H,R).
(ii). Let (u, v) be a critical point of I on H. Then (u, v) is a weak solution of (3).

(iii). The functional I is not bounded neither from above nor from below on H.
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Proof. Straightforward calculus yield that

L(u + ϕ, v + ψ) = L(u, v) + 2
∫
RN

(
∇u∇ϕ +∇v∇ψ + ω(uϕ + vψ)

)
dx + O(ϕ, ψ). (12)

Hence, L is differentiable and its differential is

L′(u, v)(ϕ, ψ) = 2
∫
RN

(
∇u∇ϕ +∇v∇ψ + ω(uϕ + vψ)

)
dx.

Next, we have

Mp(u + ϕ, v + ψ) =Mp(u, v) + (p + 1)
∫
RN

(
|u|p−1uϕ + |v|p−1vψ

)
dx + O(ϕ, ψ). (13)

Consequently,Mp is differentiable and its differential is

M′
p(u, v)(ϕ, ψ) = (p + 1)

∫
RN

(
|u|p−1uϕ + |v|p−1vψ

)
dx.

Similarly, we get

N (u + ϕ, v + ψ) = N (u, v) + 2
∫
RN

(uv2 ϕ + vu2ψ)dx + O(ϕ, ψ). (14)

Hence, N is differentiable and its differential is

N ′(u, v)(ϕ, ψ) = 2
∫
RN

(uv2 ϕ + vu2ψ)dx.

The quantity O(ϕ, ψ) in Equations (12)–(14) above is a function of (ϕ, ψ) such that

lim
(ϕ,ψ)→0

O(ϕ, ψ) = 0.

It follows that I is differentiable and its differential is

I′(u, v)(ϕ, ψ) = L′(u, v)(ϕ, ψ)−M′
p(u, v)(ϕ, ψ)−N ′(u, v)(ϕ, ψ)

=
∫
RN

(
∇u∇ϕ +∇v∇ψ + ω(uϕ + vψ)

)
dx

−
∫
RN

(
|u|p−1uϕ + |v|p−1vψ

)
dx

−
∫
RN

(uv2 ϕ + vu2ψ)dx.

To overcome the problem of the boundless of the functional I, we will apply the
Nehari manifold notion for the existence of a non-trivial positive solution of problem (3).
To do this, denote

NH =

{
(u, v) ∈ H \ {0} ,

〈
I′(u, v), (u, v)

〉
= 0

}
.

The following proposition holds.

Proposition 1. The Nehari manifold NH is not empty.

Proof. Let (u, v) ∈ H such that u > 0 and v > 0 on RN and consider for t ≥ 0,

Hu,v(t) = I(tu, tv) =
t2

2
L(u, v)− tp+1

p + 1
Mp(u, v)− t4

2
N (u, v).
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It is straightforward thatHu,v ∈ C2(R∗+,R), and that

H′u,v(t) = t
(
L(u, v)− tp−1Mp(u, v)− 2t2N (u, v)

)
.

Denote next,
Ku,v(t) = L(u, v)− tp−1Mp(u, v)− 2t2N (u, v).

It is clear that Ku,v is strictly decreasing on (0, ∞). Furthermore,

Ku,v(0) = L(u, v) > 0 and lim
t→+∞

Ku,v(t) = −∞.

Hence, there exists t0 > 0 such that

Ku,v(t0) = 0.

At this point t0, we get
H′u,v(t0) = 0.

On the other hand,
H′u,v(t0) =

〈
I′(t0u, t0v), (u, v)

〉
.

Hence, 〈
I′(t0u, t0v), (u, v)

〉
= 0.

Denote next ϕ = t0u and ψ = t0v. It is obvious that (ϕ, ψ) ∈ H \ {0}. Else, we have〈
I′(ϕ, ψ), (ϕ, ψ)

〉
= 0.

Consequently, (ϕ, ψ) ∈ NH.

Proposition 2. For any sequence (un, vn)n in NH, the following assertion holds.

(I(un, vn))n is bounded (in R) if and only if (un, vn)n is bounded in H.

Proof. We claim that

I(un, vn) ≥ max(
p− 1

2(p + 1)
,

1
4
)‖(un, vn)‖2

H , ∀(un, vn)m ⊂ NH. (15)

Indeed, recall that

I(un, vn) =
1
2
L(un, vn)−

1
p + 1

Mp(un, vn)−
1
2
N (un, vn), (16)

On the other hand, (un, vn)n ⊂ NH. Henceforth,

I′(un, vn)(un, vn) = L(un, vn)−Mp(un, vn)− 2N (un, vn) = 0.

Therefore,
Mp(un, vn) = L(un, vn)− 2N (un, vn). (17)

Combining Equations (16) and (17) we get

I(un, vn) =
p− 1

2(p + 1)
L(un, vn) +

3− p
2(p + 1)

N (un, vn). (18)

As a result, for p ≤ 3, we obtain

I(un, vn) ≥
p− 1

2(p + 1)
L(un, vn). (19)
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For p > 3, Equation (17) yields that

L(un, vn) =Mp(un, vn) + 2N (un, vn). (20)

Consequently,
L(un, vn) ≥ 2N (un, vn),

which yields that
3− p

2(p + 1)
N (un, vn) ≥

3− p
4(p + 1)

L(un, vn). (21)

Finally, by combining Equations (18) and (21) we obtain

I(un, vn) ≥
(

p− 1
2(p + 1)

+
3− p

4(p + 1)

)
L(un, vn) =

1
4
L(un, vn). (22)

The Equations (19) and (22) yield that

I(un, vn) ≥ max(
p− 1

2(p + 1)
,

1
4
)L(un, vn) , ∀(un, vn)m ⊂ NH. (23)

Observing that
L(un, vn) = ‖(un, vn)‖2

H , ∀(un, vn)m ⊂ NH,

the inequality (15) holds. Hence, the necessary condition follows. We next show the
sufficient one. Assume that the sequence (un, vN)n ⊂ NH is bounded in H. Equation (20)
written otherwise yields that

‖(un, vn)‖2
H =Mp(un, vn) + 2N (un, vn). (24)

Consequently, both (Mp(un, vn))n and (N (un, vn))n are bounded. Next, again Equation (16)
written otherwise yields that

I(un, vn) =
1
2
‖(un, vn)‖2

H −
1

p + 1
Mp(un, vn)−

1
2
N (un, vn). (25)

So, (I(un, vn))n is a linear combination of bounded sequences. Hence, it is also bounded.

We now state our main result on the existence of positive solutions for problem (3).

Theorem 1. Problem (3) has a non-trivial positive solution.

Proof. We proceed by steps. The following claims are true.

Claim 1. I0 = inf{I(u, v) , (u, v) ∈ NH} > 0.

Claim 2. There exists sequences (un, vn)n ⊂ NH and (an)n ⊂ R such that
I(un, vn)−→I0
and
I′(un, vn)− anF′(un, vn)−→0 in H′,

(26)

as n→ +∞, where H′ is the dual of H and where

F(u, v) =
〈

I′(u, v), (u, v)
〉

.

Claim 3. Any sequence satisfying (26) is a Palais-Smale sequence of I in H.
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Claim 4. There exists a sequence (un, vn)n ⊂ NH that is a Palais-Smale sequence of I in H.

Claim 5. There exists a pair (u, v) ∈ H satisfying

I(u, v) = I0 and I′(u, v) = 0. (27)

Claim 6. For (u, v) defined in Claim 5, the pair (|u|, |v|) is a positive solution of (3).

We now prove Claims 1–6.

Proof of Claim 1. Recall that from Equation (15) we obtain

I(un, vn) ≥ Cp‖(un, vn)‖2
H , ∀(un, vn)n ⊂ NH, (28)

where
Cp = max(

p− 1
2(p + 1)

,
1
4
).

Consequently, I0 ≥ 0. Assume next that I0 = 0. There exists a sequence (un, vn)n ⊂ NH
such that

I(un, vn)−→0 as n→ +∞.

Using again Equation (28), it follows that

xn = ‖(un, vn)‖H−→0 as n→ +∞.

Next, from (24) it follows that

x2
n =Mp(un, vn) + 2N (un, vn). (29)

From the Sobolev’s embeddings’ theorem, there exists a constant Cp,N > 0 such that

Mp(un, vn) ≤ Cp,N‖(un, vn)‖p+1
H . (30)

Similarly, there exists a constant CN > 0 such that

N (un, vn) ≤ CN‖(un, vn)‖4
H . (31)

As a result, by combining Equations (29)–(31), we get

x2
n ≤ Cp,N xp+1

n + CN x4
n. (32)

Or equivalently,
1 ≤ Cp,N xp−1

n + CN x2
n. (33)

We obtain a contradiction with the fact that xn−→0 as n→ +∞.

Proof of Claim 2. By definition of I0, we have

I0 = inf{I(u, v) ∈ H \ {0} , F(u, v) = 0}.

Hence, by applying Ekeland’s variational principle, it follows that there exists (un, vn)n ⊂
NH satisfying (26). Hence, Claim 2 holds.

Proof of Claim 3. Let (un, vn)n be satisfying Claim 2. It suffices to show that

anF′(un, vn)−→0 in H′ as n→ +∞. (34)
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Indeed, observing that
I(un, vn)−→I0 as n→ +∞, (35)

we deduce from Proposition 2 that (un, vn)n is bounded in H. Hence,〈
I′(un, vn), (un, vn)

〉
− an

〈
F′(un, vn), (un, vn)

〉
−→0 as n→ +∞. (36)

Observing that 〈
I′(un, vn), (un, vn)

〉
= 0, (37)

it follows that

an

〈
F′(un, vn), (un, vn)

〉
−→0 as n→ +∞. (38)

On the other hand, 〈
F′(un, vn), (un, vn)

〉
= (1− p)Mp(un, vn). (39)

So, it is bounded due to (24). Consequently, Equation (38) yields that

an−→0 as n→ +∞. (40)

Henceforth, (26) implies that

I′(un, vn)−→0 in H′ as n→ +∞. (41)

Proof of Claim 4. It follows from Claims 2 and 3 immediately.

Proof of Claim 5. We will prove that the sequence (un, vn)n of Claim 4 is convergent
in H to a pair (u, v) (up to a subsequence) satisfying (27). Indeed, from Proposition 2,
the sequence (un, vn)n is bounded in H. Hence, there exists a pair (u, v) ∈ H such that

un⇀u and vn⇀v as n→ +∞ (42)

in H1(RN). We shall show that

I(u, v) = I0 and I′(u, v) = 0. (43)

Let (ϕ, ψ) ∈ C∞
c (RN)× C∞

c (RN) be a test pair. It follows from (42) that

L′(un, vn)(ϕ, ψ)−→L′(u, v)(ϕ, ψ) as n→ +∞. (44)

Next, as (ϕ, ψ) ∈ C∞
c (RN)× C∞

c (RN), it results that for n→ +∞,

M′
p(un, vn)(ϕ, ψ)−→M′

p(u, v)(ϕ, ψ). (45)

Similarly, as n→ ∞, we get

N ′(un, vn)(ϕ, ψ)−→N ′(u, v)(ϕ, ψ). (46)

As a result, as n→ +∞, we obtain

0 =

〈
I′(un, vn), (ϕ, ψ)

〉
−→

〈
I′(u, v), (ϕ, ψ)

〉
. (47)
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Hence, the second part of (43) is proved. It remains to prove its first part. We already now,
up to a subsequence, that

‖(un, vn)‖H−→‖(u, v)‖H as n→ +∞. (48)

Since the functional I is continuous, we get the desired result.

Proof of Claim 6. It follows from the parity of the functionals I and F that

I(|u|, |v|) = I0 and F(|u|, |v|) = 0, (49)

which means that (|u|, |v|) ∈ NH. Therefore,

∃ a ∈ R , I′(|u|, |v|) = aF′(|u|, |v|). (50)

If we succeed in proving that a = 0, we get immediately I′(|u|, |v|) = 0, which means that
(|u|, |v|) is a solution of problem (3). Of course, it is positive. Now, by applying similar
techniques as for (17) and (39), we get〈

F′(|u|, |v|), (|u|, |v|)
〉
= (1− p)Mp(|u|, |v|). (51)

Consequently,
0 =

〈
I′(|u|, |v|), (|u|, |v|)

〉
= a(1− p)Mp(|u|, |v|). (52)

Hence, a = 0.

As Claims (1–6) are satisfied, a non-trivial positive solution is guaranteed for
problem (3).

To achieve our work, we discuss here-after some special cases that may be deduced
and/or related to it.

Notice from the parity of the nonlinear parts f1(u, v) = g(u, v)u and f2(u, v) =
f1(v, u) = g(v, u)v, that problem (1) presents symmetries according to the origin O and the
axis |u| = |v|. Such symmetries show that if (u, v) is a solution, then, the pair (±u,±v) is
also a solution. This fact affects any study on classification, behavior, and uniqueness of
the solutions of problem (3). Moreover, if we chose the two waves u and v with different
pulsations ω1 6= ω2, we get a non-symmetric problem and new difficulties may appear.
A similar but more general variant of problem (3) has been already investigated in [77] for
classification. The influence of the symmetry on the possibility of extending the obtained
results on half-spaces and finite intervals has been discussed.

In the present paper, we focused on the existence of non-trivial solutions of problem
(3) where both components u and v are simultaneously non-trivial (non identically zero).
However, it is natural to investigate the case of semi-trivial solutions, where one of the
pairs u or v is trivial. In this case, the system (3) becomes the single elliptic equation

∆u + (|u|p−1 −ω)u = 0.

The stationary case ω = 0 has been extensively studied, especially by Kajikyia [78–85].
The general case ω 6= 0 may be deduced also from [59,60,63,77,86].

Now in a final stage of our work, we propose to develop few numerical examples due
to problem (1). We recall, however, that a numerical study has been already developed
in [77,87]. We although provide here some numerical simulations to illustrate the theoretical
result obtained in the present paper. A nonstandard numerical method has been developed
in [77] to approximate the solutions of problem (1) in higher dimensions. Besides, in [87],
a classification of the steady state solutions of problem (3) has been developed with
numerical experimentations. The readers may be referred to [77,87] for more details. This
avoids to repeat the same developments and the redundancy. Besides, for convenience, we
presented here few cases different slightly from those provided in [77,87].
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To illustrate numerically and graphically the results of the present paper, we provided
in Figures 1–3 the graphs of some cases of solutions of problem (3). In Figure 1, the graph
illustrates the single non-trivial radial solution (u, u) for the cases u(0) = 2 and u(0) = 0.75
with ω = 2 and p = 1.5. The figure shows easily the positivity of the solution. In Figure 2,
a semi-trivial solution (u, 0) is represented for ω = 2 and p = 1.5 illustrating easily the
positivity of u. Finally, in Figure 3, we plotted a non-trivial solution (u, v) for ω = 4
and p = 2.5. We notice in this numerical example that the solution (u, v) has a limit (l, l)
where l is the unique positive zero of |x|p−1 + x2 − ω = 0. In the present case, we have
approximately l = 1.4819.

Figure 1. A positive single solution (u, u) for ω = 2 and p = 1.5.

Figure 2. A semi-trivial positive solution (u, 0) for ω = 2 and p = 1.5.
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Figure 3. A positive non-trivial solution (u, v) for ω = 4 and p = 2.5.

4. Conclusions

In the present work, existence of the solutions of a steady-state nonlinear Schrödinger
system is investigated, especially for positive solutions. The problem is considered in the
presence of mixed nonlinearities such as a cubic power law and a superlinear one with
a cubic correlation. The main tools used in the analysis are the Nehari manifold notion,
Ekeland’s variational principle, and Palais-Smale sequences. Numerical simulations have
been also provided in order to confirm the theoretical result. We showed a semi-trivial
solution with a positive non-trivial component, a positive identical components solution,
and a positive non-trivial and non-semi-trivial solution. We intend that the techniques
applied in the present paper may be extended with necessary modifications to other systems
with sublinear component |u|p−1u or general mixed nonlinear models on the form (|u|p−1±
|v|q−1)u on bounded and unbounded domains. Existence, uniqueness, classification, nodal
solutions, steady states, standing waves, radial, and non-radial solutions, numerical as
a well as invariant solutions relatively to some structures such as groups are interesting
extensions. For the moment, a full numerical study of problem (1) has been developed
in [77]. Besides, in [87], the authors developed a full classification of the solutions of
problem (1) for the one-dimensional case. We intend in the future to tackle the extensions
raised here.
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Appendix A

In this appendix, we review the main tools applied in our study, and which are useful
in similar problems. These tools may be resumed in Ekeland’s variational principle, Palais-
Smale sequences, and Nehari manifolds. Readers interested may refer to [4,88–94] and the
references therein.

In a majority of problems such as the present one, researchers always come back to the
notion of weak solutions. This necessitates to apply the so-called variational methods to
pass from the PDE to critical point theory, where the attention goes to the energy functionals.

In the study of problem (1) for example, we call strong solution any pair (u, v) that
satisfies it point-wise. This assumes for (u, v) to be at least C2(RN). By considering the
energy functional I(u, v) associated to (1) and defined in (11), a weak solution to problem
(1) will be any pair (u, v) satisfying I′(u, v)(ϕ, ψ) = 0 for all (ϕ, ψ) ∈ C∞(RN)× C∞(RN).
This apparently assumes for (u, v) to be at least C1(RN) and that (u, v) is a critical point of I.
The corresponding value c = I(u, v) is known as a critical value of I. The critical points of I
are the so-called weak solutions of (1). It is straightforward that strong solutions are weak.
However, the converse, which is always the problem to resolve in PDEs theory, is not true.
It needs extra assumptions on the nonlinear terms and the boundaries such as regularity
conditions. One of the famous methods to find critical values of the energy functionals
associated to PDEs is the Ekeland’s variational principle. We will recall it in a general form.
The authors may refer to the original works of Ekeland [89,90] for backgrounds

Ekeland’s variational principle. Let X be a Banach space, X∗ be its dual space and
I ∈ C1(X,R) be a functional on X. Denote finally c = inf

u∈X
I(u) > −∞. Then, there exists a

minimizing sequence {un}∞
1 ⊂ X such that

I(un)→ c and I′(un)→ 0 in X?. (A1)

It is easy to see that if X is an infinite dimensional space (which is the case for quasi all
variational problems issued from PDEs), a minimizing sequence in X may not converge.
In such situations, a compactness concept needs to be introduced such as the well known
Palais-Smale (PS) condition.

Definition A1. The functional I satisfies the Palais-Smale condition if for {un}∞
1 ⊂ X satisfying

(A1), there exists a subsequence {unk} ⊂ {un} and u0 ∈ X such that unk → u0 as k→ ∞. In this
case, the sequence {un} is called a PS sequence.

We notice from this definition and Ekeland’s variational principle that the inf of I in X
gives raise to a critical point u0. However, other types of critical points may be also found
such as local extrema and saddle points. In this case, other methods should be applied
such as minimax theory. The main result in this direction is the Mountain-Pass theorem
which will be recalled here-after.

Let X be a Banach space. Denote for ρ > 0, Bρ = {u ∈ X , ‖u‖X ≤ ρ} and Sρ =
∂Bρ = {u ∈ X , ‖u‖X = ρ}. Finally, for e ∈ X, denote Γe = {γ ∈ C([0, 1], X) , γ(0) =
0 and γ(1) = e}. The Mountain-Pass theorem is stated as follows [88].

Mountain-Pass Theorem. Let I ∈ C1(X,R) be a functional on X satisfying the PS condition
and assume that

i. I(0) = 0.

ii. there exists constants α, ρ > 0 such that I(u) ≥ α, ∀u ∈ Sρ.

iii. there exists e ∈ X \ Bp such that I(e) ≤ 0.

Then, I has a critical value c satisfying

c = inf
γ∈Γe

max
u∈γ([0,1])

I(u) ≥ α.
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In many situations of PDEs and/or systems of coupled PDEs (such as the present problem),
nonlinear parts and non-homogeneous terms necessitates to link critical values on the
entire space to restrictions on the so-called Nehari manifold

NH = {u ∈ X|{0} ; |I′(u)u = 0}.

In some situations of symmetries, we may expect multiple solutions by using a symmetric
version of variational methods.
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