#
Probing the Nuclear Equation of State from the Existence of a ∼2.6 M_{⊙} Neutron Star: The GW190814 Puzzle

^{*}

^{†}

^{‡}

## Abstract

**:**

## 1. Introduction

## 2. The MDI-APR Model and the Rapidly Rotating Neutron Star

## 3. Speed of Sound Formalism and Stiffness of Equation of State

## 4. Tidal Deformability

## 5. Results and Discussion

#### 5.1. Slow/Rapid Rotation: Implications to Neutron Star Properties

#### 5.2. Tidal Effects and Speed of Sound: A Very Massive Neutron Star Hypothesis

#### 5.2.1. Isolated Non-Rotating Neutron Star

#### 5.2.2. A Very Massive Neutron Star Component

## 6. Concluding Remarks

## 7. Materials and Methods

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

EoS | Equation of state |

NS | Neutron star |

QCD | Quantum chromodynamics |

MDI | Momentum dependent interaction |

APR | Akmal, Pandharipande and Ravenhall |

SNM | Symmetric Nuclear Matter |

N.R. | Non-rotating configuration |

M.R. | Maximally-rotating configuration |

## References

- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. Lett.
**2020**, 896, L44. [Google Scholar] [CrossRef] - Datta, S.; Phukon, K.S.; Bose, S. Recognizing black holes in gravitational-wave observations: Telling apart impostors in mass-gap binaries. arXiv
**2020**, arXiv:gr-qc/2004.05974. [Google Scholar] - Alsing, J.; Silva, H.O.; Berti, E. Evidence for a maximum mass cut-off in the neutron star mass distribution and constraints on the equation of state. Mon. Not. R. Astron. Soc.
**2018**, 478, 1377–1391. [Google Scholar] [CrossRef][Green Version] - Farr, W.M.; Chatziioannou, K. A Population-Informed Mass Estimate for Pulsar J0740+6620. Res. Notes AAS
**2020**, 4, 65. [Google Scholar] [CrossRef] - Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. (The LIGO Scientific Collaboration and the Virgo Collaboration) GW170817: Measurements of Neutron Star Radii and Equation of State. Phys. Rev. Lett.
**2018**, 121, 161101. [Google Scholar] [CrossRef][Green Version] - Tsokaros, A.; Ruiz, M.; Shapiro, S.L. GW190814: Spin and equation of state of a neutron star companion. Astrophys. J.
**2020**, 905, 48. [Google Scholar] [CrossRef] - Huang, K.; Hu, J.; Zhang, Y.; Shen, H. The Possibility of the Secondary Object in GW190814 as a Neutron Star. Astrophys. J.
**2020**, 904, 39. [Google Scholar] [CrossRef] - Zevin, M.; Spera, M.; Berry, C.; Kalogera, V. Exploring the Lower Mass Gap and Unequal Mass Regime in Compact Binary Evolution. Astrophys. J. Lett.
**2020**, 899, L1. [Google Scholar] [CrossRef] - Fattoyev, F.J.; Horowitz, C.J.; Piekarewicz, J.; Reed, B. GW190814: Impact of a 2.6 solar mass neutron star on nucleonic equations of state. Phys. Rev. C
**2020**, 102, 065805. [Google Scholar] [CrossRef] - Essick, R.; Landry, P. Discriminating between Neutron Stars and Black Holes with Imperfect Knowledge of the Maximum Neutron Star Mass. Astrophys. J.
**2020**, 904, 80. [Google Scholar] [CrossRef] - Safarzadeh, M.; Loeb, A. Formation of Mass Gap Objects in Highly Asymmetric Mergers. Astrophys. J. Lett.
**2020**, 899, L15. [Google Scholar] [CrossRef] - Godzieba, D.A.; Radice, D.; Bernuzzi, S. On the maximum mass of neutron stars and GW190814. arXiv
**2020**, arXiv:astro-ph.HE/2007.10999. [Google Scholar] - Sedrakian, A.; Weber, F.; Li, J.J. Confronting GW190814 with hyperonization in dense matter and hypernuclear compact stars. Phys. Rev. D
**2020**, 102, 041301. [Google Scholar] [CrossRef] - Biswas, B.; Nandi, R.; Bose, S.; Stergioulas, N. GW190814: On the properties of the secondary component of the binary. arXiv
**2020**, arXiv:astro-ph.HE/2010.02090. [Google Scholar] - Zhang, N.B.; Li, B.A. GW190814’s Secondary Component with Mass 2.50–2.67 M
_{⊙}as a Superfast Pulsar. Astrophys. J.**2020**, 902, 38. [Google Scholar] [CrossRef] - Most, E.R.; Papenfort, L.J.; Weih, L.R.; Rezzolla, L. A lower bound on the maximum mass if the secondary in GW190814 was once a rapidly spinning neutron star. Mon. Not. R. Astron. Soc.
**2020**, 499, L82–L86. [Google Scholar] [CrossRef] - Tan, H.; Hostler-Noronha, J.; Yunes, N. Neutron Star Equation of State in light of GW190814. Phys. Rev. Lett.
**2020**, 125, 261104. [Google Scholar] [CrossRef] - Zhang, C.; Mann, R.B. Unified Interacting Quark Matter and its Astrophysical Implications. arXiv
**2020**, arXiv:astro-ph.HE/2009.07182. [Google Scholar] - Bombaci, I.; Drago, A.; Logoteta, D.; Pagliara, G.; Vidana, I. Was GW190814 a black hole–strange quark star system? arXiv
**2020**, arXiv:nucl-th/2010.01509. [Google Scholar] - Demircik, T.; Ecker, C.; Jarvinen, M. Rapidly Spinning Compact Stars with Deconfinement Phase Transition. arXiv
**2020**, arXiv:astro-ph.HE/2009.10731. [Google Scholar] - Cao, Z.; Chen, L.W.; Chu, P.C.; Zhou, Y. GW190814: Circumstantial Evidence for Up-Down Quark Star. arXiv
**2020**, arXiv:astro-ph.HE/2009.00942. [Google Scholar] - Dexheimer, V.; Gomes, R.O.; Klahn, T.; Han, S.; Salinas, M. GW190814 as a massive rapidly-rotating neutron star with exotic degrees of freedom. arXiv
**2020**, arXiv:astro-ph.HE/2007.08493. [Google Scholar] - Roupas, Z.; Panotopoulos, G.; Lopes, I. QCD color superconductivity in compact stars: Color-flavor locked quark star candidate for the gravitational-wave signal GW190814. arXiv
**2020**, arXiv:astro-ph.HE/2010.11020. [Google Scholar] - Rather, I.A.; Usmani, A.A.; Patra, S.K. Hadron-Quark phase transition in the context of GW190814. arXiv
**2020**, arXiv:nucl-th/2011.14077. [Google Scholar] - Moffat, J.W. Modified Gravity (MOG) and Heavy Neutron Star in Mass Gap. arXiv
**2020**, arXiv:gr-qc/2008.04404. [Google Scholar] - Astashenok, A.V.; Capozziello, S.; Odintsov, S.D.; Oikonomou, V.K. Extended gravity description for the GW190814 supermassive neutron star. Phys. Lett. B
**2020**, 811, 135910. [Google Scholar] [CrossRef] - Nunes, R.C.; Coelho, G.G.; Araujo, J.C.N. Weighing massive neutron star with screening gravity: A look on PSR J0740 + 6620 and GW190814 secondary component. Eur. Phys. J. C
**2020**, 80, 1115. [Google Scholar] [CrossRef] - Annala, E.; Gorda, T.; Kurkela, A.; Nättilä, J.; Vuorinen, A. Evidence for quark-matter cores in massive neutron stars. Nat. Phys.
**2020**, 16, 907–910. [Google Scholar] [CrossRef] - Bombaci, I. The Hyperon Puzzle in Neutron Stars. JPS Conf. Proc.
**2017**, 17, 101002. [Google Scholar] - Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs, and Neutron Stars; John Wiley and Sons: Hoboken, NJ, USA; New York, NY, USA, 1983. [Google Scholar]
- Glendenning, N.K. Compact Stars: Nuclear Physics, Particle Physics, and General Relativity; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Haensel, P.; Potekhin, A.Y.; Yakovlev, D.G. Neutron Stars 1: Equation of State and Structure; Springer: New York, NY, USA, 2007. [Google Scholar]
- Weinberg, S. Gravitational and Cosmology: Principle and Applications of the General Theory of Relativity; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Zel’dovich, Y.B.; Novikov, I.D. Stars and Relativity; Dover Publications, Inc.: New York, NY, USA, 1971. [Google Scholar]
- Koliogiannis, P.S.; Moustakidis, C.C. Effects of the equation of state on the bulk properties of maximally rotating neutron stars. Phys. Rev. C
**2020**, 101, 015805. [Google Scholar] [CrossRef][Green Version] - Prakash, M.; Bombaci, I.; Prakash, M.; Ellis, P.J.; Lattimer, J.M.; Knorren, R. Composition and structure of protoneutron stars. Phys. Rep.
**1997**, 280, 1. [Google Scholar] [CrossRef][Green Version] - Moustakidis, C.C. Effects of the nuclear equation of state on the r-mode instability and evolution of neutron stars. Phys. Rev. C
**2015**, 91, 035804. [Google Scholar] [CrossRef] - Gale, C.; Bertsch, G.; Das Gupta, S. Heavy-ion collision theory with momentum-dependent interactions. Phys. Rev. C
**1987**, 35, 1666. [Google Scholar] [CrossRef] [PubMed] - Gale, C.; Welke, G.M.; Prakash, M.; Lee, S.J.; Das Gupta, S. Transverse momenta, nuclear equation of state, and momentum-dependent interactions in heavy-ion collisions. Phys. Rev. C
**1990**, 41, 1545. [Google Scholar] [CrossRef] [PubMed] - Akmal, A.; Pandharipande, V.R.; Ravenhall, D.G. Equation of state of nucleon matter and neutron star structure. Phys. Rev. C
**1998**, 58, 1804. [Google Scholar] [CrossRef][Green Version] - Antoniadis, J.; Freire, P.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science
**2013**, 340, 1233232. [Google Scholar] [CrossRef][Green Version] - Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, M.E.; Dolch, T.; Ellis, J.A.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron.
**2020**, 4, 72. [Google Scholar] [CrossRef][Green Version] - Linares, M.; Shahbaz, T.; Casares, J. Peering into the Dark Side: Magnesium Lines Establish a Massive Neutron Star in PSR J2215+5135. Astrophys. J.
**2018**, 859, 54. [Google Scholar] [CrossRef] - Stergioulas, N. 1996. Available online: http://www.gravity.phys.uwm.edu/rns/ (accessed on 15 December 2020).
- Breu, C.; Rezzolla, L. Maximum mass, moment of inertia and compactness of relativistic stars. Mon. Not. R. Astron. Soc.
**2016**, 459, 646. [Google Scholar] [CrossRef][Green Version] - Margaritis, C.; Koliogiannis, P.S.; Moustakidis, C.C. Speed of sound constraints on maximally rotating neutron stars. Phys. Rev. D
**2020**, 101, 043023. [Google Scholar] [CrossRef][Green Version] - Rhoades, C.E.; Ruffini, R. Maximum Mass of a Neutron Star. Phys. Rev. Lett.
**1974**, 32, 324. [Google Scholar] [CrossRef][Green Version] - Kalogera, V.; Baym, G. The Maximum Mass of a Neutron Star. Astrophys. J.
**1996**, 470, L61. [Google Scholar] [CrossRef] - Koranda, S.; Stergioulas, N.; Friedman, J.L. Upper Limits Set by Causality on the Rotation and Mass of Uniformly Rotating Relativistic Stars. Astrophys. J.
**1997**, 488, 799. [Google Scholar] [CrossRef][Green Version] - Chamel, N.; Haensel, P.; Zdunik, J.L.; Fantina, A.F. On the maximum mass of neutron stars. Int. J. Mod. Phys. E
**2013**, 22, 1330018. [Google Scholar] [CrossRef][Green Version] - Podkowka, D.M.; Mendes, R.F.P.; Poisson, E. Trace of the energy-momentum tensor and macroscopic properties of neutron star. Phys. Rev. D
**2018**, 98, 064057. [Google Scholar] [CrossRef][Green Version] - Xia, C.; Zhu, Z.; Zhou, X.; Li, A. Sound velocity in dense stellar matter with strangeness and compact stars. arXiv
**2019**, arXiv:nucl-th/1906.00826. [Google Scholar] - Feynman, R.P.; Metropolis, N.; Teller, E. Equations of State of Elements Based on the Generalized Fermi-Thomas Theory. Phys. Rev.
**1949**, 75, 1561. [Google Scholar] [CrossRef] - Baym, G.; Pethik, C.; Sutherland, P. The Ground State of Matter at High Densities: Equation of State and Stellar Models. Astrophys. J.
**1971**, 170, 299. [Google Scholar] [CrossRef] - Tews, I.; Carlson, J.; Gandolfi, S.; Reddy, S. Constraining the Speed of Sound inside Neutron Stars with Chiral Effective Field Theory Interactions and Observations. Astrophys. J.
**2018**, 860, 149. [Google Scholar] [CrossRef] - Postnikov, S.; Prakash, M.; Lattimer, J.M. Tidal Love numbers of neutron and self-bound quark stars. Phys. Rev. D
**2010**, 82, 024016. [Google Scholar] [CrossRef][Green Version] - Baiotti, L. Gravitational waves from neutron star mergers and their relation to the nuclear equation of state. Prog. Part. Nucl. Phys.
**2019**, 109, 103714. [Google Scholar] [CrossRef][Green Version] - Flanagan, E.E.; Hinderer, T. Constraining neutron-star tidal Love numbers with gravitational-wave detectors. Phys. Rev. D
**2008**, 77, 021502(R). [Google Scholar] [CrossRef][Green Version] - Hinderer, T. Tidal Love Numbers of Neutron Stars. Astrophys. J.
**2008**, 677, 1216. [Google Scholar] [CrossRef] - Damour, T.; Nagar, A. Relativistic tidal properties of neutron stars. Phys. Rev. D
**2009**, 80, 084035. [Google Scholar] [CrossRef][Green Version] - Hinderer, T.; Lackey, B.D.; Lang, R.N.; Read, J.S. Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys.Rev. D
**2010**, 81, 123016. [Google Scholar] [CrossRef][Green Version] - Fattoyev, F.J.; Carvajal, J.; Newton, W.G.; Li, B.A. Constraining the high-density behavior of the nuclear symmetry energy with the tidal polarizability of neutron stars. Phys. Rev. C
**2013**, 87, 015806. [Google Scholar] [CrossRef][Green Version] - Lackey, B.D.; Wade, L. Reconstructing the neutron-star equation of state with gravitational-wave detectors from a realistic population of inspiralling binary neutron stars. Phys. Rev. D
**2015**, 91, 043002. [Google Scholar] [CrossRef][Green Version] - Takátsy, J.; Kovács, P. Comment on “Tidal Love numbers of neutron and self-bound quark stars”. Phys. Rev. D
**2020**, 102, 028501. [Google Scholar] [CrossRef] - Thorne, K.S. Tidal stabilization of rigidly rotating, fully relativistic neutron stars. Phys. Rev. D
**1998**, 58, 124031. [Google Scholar] [CrossRef][Green Version] - Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett.
**2017**, 119, 161101. [Google Scholar] [CrossRef][Green Version] - Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Properties of the Binary Neutron Star Merger GW170817. Phys. Rev. X
**2019**, 9, 011001. [Google Scholar] [CrossRef][Green Version] - Koliogiannis, P.S.; Moustakidis, C.C. Thermodynamical description of hot rapidly rotating neutron stars and neutron stars merger remnant. arXiv
**2020**, arXiv:astro-ph.HE/2007.10424. [Google Scholar] - Cook, G.B.; Shapiro, S.L.; Teukolsky, S.A. Rapidly Rotating Neutron Stars in General Relativity: Realistic Equations of State. Astrophys. J.
**1994**, 424, 823. [Google Scholar] [CrossRef] - Salgado, M.; Bonazzola, S.; Gourgoulhon, E.; Haensel, P. High precision rotating neutron star models 1: Analysis of neutron star properties. Astron. Astrophys.
**1994**, 291, 155. [Google Scholar] - Kanakis-Pegios, A.; Koliogiannis, P.S.; Moustakidis, C.C. Speed of sound constraints from tidal deformability of neutron stars. Phys. Rev. C
**2020**, 102, 055801. [Google Scholar] [CrossRef] - Zhao, T.; Lattimer, J.M. Tidal deformabilities and neutron star mergers. Phys. Rev. D
**2018**, 98, 063020. [Google Scholar] [CrossRef][Green Version] - De, S.; Finstad, D.; Lattimer, J.M.; Brown, D.A.; Berger, E.; Biwer, C.M. Tidal Deformabilities and Radii of Neutron Stars from the Observation of GW170817. Phys. Rev. Lett.
**2018**, 121, 091102. [Google Scholar] [CrossRef][Green Version] - Tsang, C.Y.; Tsang, M.B.; Danielewicz, P.; Fattoyev, F.J.; Lynch, W.G. Insights on Skyrme parameters from GW170817. Phys. Lett. B
**2019**, 796, 1. [Google Scholar] [CrossRef] - Wei, J.-B.; Lu, J.-J.; Burgio, G.F.; Li, Z.-H.; Schulze, H.-J. Are nuclear matter properties correlated to neutron star observables? Eur. Phys. J. A
**2020**, 56, 63. [Google Scholar] [CrossRef] - Raithel, C.A.; Özel, F.; Psaltis, D. Tidal Deformability from GW170817 as a Direct Probe of the Neutron Star Radius. Astrophys. J. Lett.
**2018**, 857, L23. [Google Scholar] [CrossRef] - Stergioulas, N.; Friedman, J.L. Comparing Models of Rapidly Rotating Relativistic Stars Constructed by Two Numerical Methods. Astrophys. J.
**1995**, 444, 306. [Google Scholar] [CrossRef] - Komatsu, H.; Eriguchi, Y.; Hachisu, I. Rapidly rotating general relativistic stars. I - Numerical method and its application to uniformly rotating polytropes. Mon. Not. R. Astron. Soc.
**1989**, 237, 355. [Google Scholar] [CrossRef] - Cook, G.B.; Shapiro, S.L.; Teukolsky, S.A. Rapidly Rotating Polytropes in General Relativity. Astrophys. J.
**1994**, 422, 227. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Pressure as a function of rest mass density and (

**b**) square speed of sound in units of speed of light as a function of the transition density, where p takes the values $[1.5,2,3,4,5]$, while the speed of sound is parametrized in the two limiting cases, ${({v}_{s}/c)}^{2}=1/3$ and ${({v}_{s}/c)}^{2}=1$. (

**c**) Pressure as a function of rest mass density and (

**d**) square speed of sound in units of speed of light as a function of the transition density, where p takes the values $[1.5,2]$, while the speed of sound is parametrized in the range ${({v}_{s}/c)}^{2}=[1/3,1]$ (As the speed of sound is getting higher values, the curves’ color lightens). The vertical lines display the transition cases, while the shaded regions show the credibility interval extracted from Ref. [5].

**Figure 2.**Gravitational mass as a function of Kerr parameter for the MDI-APR (MDI: momentum dependent interaction, APR: Akmal, Pandharipande and Ravenhall) equation of state (EoS). The solid lines from bottom to top represent the Equation (4) with ${M}_{\mathrm{TOV}}=2.08\phantom{\rule{3.33333pt}{0ex}}{M}_{\odot}$ and ${M}_{\mathrm{TOV}}=2.3\phantom{\rule{3.33333pt}{0ex}}{M}_{\odot}$. The mass range of the second component of GW190814 is noted with the horizontal shaded region, while with the vertical one (

**left**), the possible region of Kerr parameter $\mathcal{K}=[0.49,0.68]$ from Ref. [16] is shown. In addition, the region for the Kerr parameter ${\mathcal{K}}_{\mathrm{max}}=[0.67,0.69]$ from Ref. [35], if the low mass component was rotating at its mass-shedding limit, is presented with the vertical shaded region (

**right**). The markers point the maximum mass configuration at the mass-shedding limit.

**Figure 3.**(

**a**) Gravitational mass and (

**b**) Kerr parameter as a function of transition density at the maximum mass configuration for the two limiting speed of sound bounds. The data at the maximum mass configuration is presented with diamonds for the ${({v}_{s}/c)}^{2}=1/3$ bound and crosses for the ${({v}_{s}/c)}^{2}=1$ bound. The plus marker denotes the lower bound in the speed of sound, ${({v}_{s}/c)}^{2}=0.45$, assuming that the second component was a non-rotating neutron star (NS). The mass range of the second component of GW190814 is noted with the horizontal shaded region. (

**a**) The lighter shaded region marks the allowed range for the transition density at the maximally-rotating (M.R.) configuration, while the darker one, marks the allowed region at the non-rotating (N.R.) configuration. (

**b**) The darker shaded region marks the allowed range for the transition density at the maximally-rotating (M.R.).

**Figure 4.**Gravitational mass as a function of the central energy/baryon density at the maximum mass configuration both at non-rotating and maximally-rotating case. Circles correspond to 23 hadronic EoSs [35] at the non-rotating case (N.R.), squares to the corresponding maximally-rotating (M.R.) one, stars to data of Cook et al. [69], and triangles to data of Salgado et al. [70]. In addition, rhombus and pluses mark the non-rotating configuration at the two limiting values of the sound speed, while crosses and polygons marks the maximally-rotating one. The horizontal dashed lines correspond to the observed NS mass limits ($2.01\phantom{\rule{3.33333pt}{0ex}}{M}_{\odot}$ [41], $2.14\phantom{\rule{3.33333pt}{0ex}}{M}_{\odot}$ [42], and $2.27\phantom{\rule{3.33333pt}{0ex}}{M}_{\odot}$ [43]). Equation (22) is noted with the dashed-dotted line, while for comparison the Tolman VII analytical solution [35] is shown with the solid line. The mass range of the second component of GW190814 is noted with the horizontal shaded region.

**Figure 5.**Mass vs. radius for an isolated non-rotating NS, for each transition density ${n}_{\mathrm{tr}}$ and all speed of sound cases. The higher values of speed of sound correspond to lighter curves’ color. The purple horizontal line and region indicate the mass estimation of the massive compact object of Ref. [1]. The dashdot (dotted) curve corresponds to the MDI-APR (APR) EoS.

**Figure 6.**Dependence of a non-rotating NS’s maximum mass ${M}_{max}$ on the speed of sound values ${({v}_{s}/c)}^{2}$ for each transition density ${n}_{\mathrm{tr}}$ (in units of saturation density ${n}_{s}$). The red vertical shaded region corresponds to the ${n}_{\mathrm{tr}}=1.5{n}_{s}$ case, while the green one corresponds to the ${n}_{\mathrm{tr}}=2{n}_{s}$ case. The red (green) vertical line indicates the corresponding value of the speed of sound for a massive object with $M=2.59\phantom{\rule{0.277778em}{0ex}}{M}_{\odot}$.

**Figure 7.**Tidal parameters (

**a**) ${k}_{2}$ and (

**b**) $\lambda $ as a function of a NS’s mass. The purple vertical line and shaded region indicate the estimation of the recently observed massive compact object of Ref. [1]. The solid (dashed) curves correspond to the ${n}_{\mathrm{tr}}=1.5{n}_{s}$ (${n}_{\mathrm{tr}}=2{n}_{s}$) case. As the speed of sound is getting higher values, the curves’ color lightens.

**Figure 8.**The effective tidal deformability $\tilde{\mathsf{\Lambda}}$ as a function of (

**a**) the chirp mass ${\mathcal{M}}_{c}$ and (

**b**) binary mass ratio q, in the case of a very massive NS component, identical to Ref. [1]. As the speed of sound bound is getting higher, the color of EoSs lightens. The black dashed vertical line indicates (

**a**) the corresponding chirp mass ${\mathcal{M}}_{c}$ and (

**b**) mass ratio q, of a binary NS system with ${m}_{1}=2.59\phantom{\rule{0.277778em}{0ex}}{M}_{\odot}$ and ${m}_{2}=1.4\phantom{\rule{0.277778em}{0ex}}{M}_{\odot}$ respectively.

**Figure 9.**Effective tidal deformability $\tilde{\mathsf{\Lambda}}$ vs. radius ${R}_{1.4}$ of a ${m}_{2}=1.4\phantom{\rule{0.277778em}{0ex}}{M}_{\odot}$ NS. The heavier component of the system was taken to be ${m}_{1}=2.59\phantom{\rule{0.277778em}{0ex}}{M}_{\odot}$. The lighter colors correspond to higher values of speed of sound bounds. The grey lines indicate the expression of Equation (24). The black dotted vertical line shows the proposed upper limit of Ref. [76].

Speed of Sound Bounds | ${\mathit{\alpha}}_{1}$ | ${\mathit{\alpha}}_{2}$ | ${\mathit{\alpha}}_{3}$ | ${\mathit{\alpha}}_{4}$ | ||||
---|---|---|---|---|---|---|---|---|

N.R. | M.R. | N.R. | M.R. | N.R. | M.R. | N.R. | M.R. | |

c | 1.665 | 1.689 | 0.448 | 0.352 | – | 0.683 | – | 1.053 |

$c/\sqrt{3}$ | 1.751 | 2.069 | 0.964 | 0.883 | – | 0.645 | – | 1.348 |

${\mathit{n}}_{\mathbf{tr}}$ | ${\mathit{c}}_{1}$ | ${\mathit{c}}_{2}$ | ${\mathit{c}}_{3}$ | ${\mathit{c}}_{4}$ | ${({\mathit{v}}_{\mathit{s}}/\mathit{c})}_{\mathit{min}}^{2}$ | ${({\mathit{v}}_{\mathit{s}}/\mathit{c})}^{2}$ | ${({\mathit{v}}_{\mathit{s}}/\mathit{c})}_{\mathit{max}}^{2}$ |
---|---|---|---|---|---|---|---|

$1.5{n}_{s}$ | $-1.6033\times {10}^{3}$ | $-7.56\times {10}^{-4}$ | $-1.64\times {10}^{-1}$ | $1.6068\times {10}^{3}$ | 0.448 | 0.485 | 0.52 |

$2{n}_{s}$ | 5.5754 | 0.2742 | −0.6912 | −1.9280 | 0.597 | 0.659 | 0.72 |

${({\mathit{v}}_{\mathit{s}}/\mathit{c})}^{2}$ | ${\mathit{c}}_{5}$ (${\mathbf{km}}^{-1}$) | ${\mathit{c}}_{6}$ | $\tilde{\mathbf{\Lambda}}$ |
---|---|---|---|

$0.8$ | $4.1897\times {10}^{-9}$ | $9.3518$ | $109.536$ |

$0.9$ | $5.3213\times {10}^{-9}$ | $9.2652$ | $111.416$ |

1 | $6.1109\times {10}^{-9}$ | $9.2159$ | $112.729$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kanakis-Pegios, A.; Koliogiannis, P.S.; Moustakidis, C.C.
Probing the Nuclear Equation of State from the Existence of a ∼2.6 *M*_{⊙} Neutron Star: The GW190814 Puzzle. *Symmetry* **2021**, *13*, 183.
https://doi.org/10.3390/sym13020183

**AMA Style**

Kanakis-Pegios A, Koliogiannis PS, Moustakidis CC.
Probing the Nuclear Equation of State from the Existence of a ∼2.6 *M*_{⊙} Neutron Star: The GW190814 Puzzle. *Symmetry*. 2021; 13(2):183.
https://doi.org/10.3390/sym13020183

**Chicago/Turabian Style**

Kanakis-Pegios, Alkiviadis, Polychronis S. Koliogiannis, and Charalampos C. Moustakidis.
2021. "Probing the Nuclear Equation of State from the Existence of a ∼2.6 *M*_{⊙} Neutron Star: The GW190814 Puzzle" *Symmetry* 13, no. 2: 183.
https://doi.org/10.3390/sym13020183