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Abstract: Recently, Kim-Kim (J. Math. Anal. Appl. (2021), Vol. 493(1), 124521) introduced the
λ-Sheffer sequence and the degenerate Sheffer sequence. In addition, Kim et al. (arXiv:2011.08535v1
17 November 2020) studied the degenerate derangement polynomials and numbers, and investigated
some properties of those polynomials without using degenerate umbral calculus. In this paper, the y
the degenerate derangement polynomials of order s (s ∈ N) and give a combinatorial meaning about
higher order derangement numbers. In addition, the author gives some interesting identities related
to the degenerate derangement polynomials of order s and special polynomials and numbers by using
degenerate Sheffer sequences, and at the same time derive the inversion formulas of these identities.
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nomials; Lah–Bell numbers and polynomials; the degenerate Sheffer sequence; the degenerate
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1. Introduction

Beginning with Carlitz’s degenerate Bernoulli polynomial and degenerate Euler poly-
nomial [1], many scholars in the field of mathematics have been working on degenerate
versions of special polynomials and numbers which include the degenerate Stirling num-
bers of the first and second kinds, the degenerate Bernstein polynomials, the degenerate
Bell numbers and polynomials, the degenerate gamma function, the degenerate gamma
random variables, degenerate coloring and so on [2–17]. They have been studied by vari-
ous ways like combinatorial methods, umbral calculus techniques, generating functions,
differential equations and probability theory, etc. We can find the motivation to study
degenerate polynomials and numbers in the following real world examples. Suppose the
probability of a baseball player getting a hit in a match is p. We wonder if the probability
that the player will succeed in the 6th trial after failing 4 times in 5 trials is still p. We can
see cases where the probability is less than p because of the psychological burden that the
player must succeed in the 6th trial.

In particular, the umbral calculus, based on the modern idea of linear functions, linear
operators and adjoints, began to build a rigorous foundation by Rota in the 1970s, primarily
as symbolic techniques for the manipulation of numerical and polynomial sequences [18].
One of the important tools in the study of degenerate polynomials and numbers is the
umbral calculus [16–21]. Kim Kim recently introduced the degenerate umbral calculus [15].
Furthermore, Kim et al. [13] studied the degenerate derangement polynomials of order
s (s ∈ N) and numbers, investigate some properties of those polynomials without using
degenerate umbral calculus. Motivated by Kim et al.’s work, the author considers the
degenerate derangement polynomials of order s (s ∈ N) and give an example of the
derangement number of order s in real-life. In addition, the author gives their connections
with the degenerate derangement polynomials of order s and the well-known special
polynomials and numbers.

First, we provide the definitions and properties required for this paper. Let n objects
be labelled 1, 2, . . . , n. An arrangement or permutation in which object i is not placed in the
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i-th place for any i is called a derangement. The number of derangements of an n-element
set is called the nth derangement number and denoted by dn. The nth derangement number
is given by [13,22–24]

dn = n!
n

∑
k=0

(−1)k

k!
.

We note that the generating function of the nth derangement number is given
by [12,13,25]

1
1− t

e−t =

(
∞

∑
k=0

(−1)k

k!
tk

)(
∞

∑
m=0

tm

)

=
∞

∑
n=0

(
n!

n

∑
k=0

(−1)k

k!

)
tn

n!
=

∞

∑
n=0

dn
tn

n!
.

(1)

From (1), Kim et al. naturally considered the derangement polynomials and degener-
ate derangement polynomials, respectively, which are given by [13,24]

1
1− t

e−1ext =
∞

∑
n=0

dn(x)
tn

n!
, (2)

and

1
1− t

e−1
λ (t)ex

λ(t) =
∞

∑
n=0

dn,λ(x)
tn

n!
. (3)

When x = 0, dn(0) = dn, n ≥ 0 is the n-th derangement numbers.
When x = 0, dn,λ(0) := dn,λ is called the degenerate derangement numbers and

d0,λ = 1.
For any nonzero λ ∈ R, the degenerate exponential function is defined by [1,3–13]

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = (1 + λt)

1
λ .

By Taylor expansion, we get

ex
λ(t) =

∞

∑
n=0

(x)n,λ
tn

n!
, (4)

where (x)0,λ = 1, (x)n,λ = x(x− λ)(x− 2λ) · · · (x− (n− 1)λ), (n ≥ 1).
It was known [25] that

(1− t)−m =
∞

∑
l=0

(
−m

l

)
(−1)ltl =

∞

∑
l=0

< m >l
tl

l!
. (5)

where < x >0= 1, < x >n= x(x + 1)(x + 2) · · · (x + n− 1), (n ≥ 1).
For n ≥ 0, it is well known that the Stirling numbers of the first and second kind,

respectively, are given by [1,4–7]

1
k!
(log(1 + t))k =

∞

∑
n=k

S1(n, k)
tn

n!
, (6)

and

1
k!
(et − 1)k =

∞

∑
n=k

S2(n, k)
tn

n!
, (7)



Symmetry 2021, 13, 176 3 of 16

where (x)0 = 1, (x)n = x(x− 1) . . . (x− n + 1), (n ≥ 1).
Moreover, the degenerate Stirling numbers of the first and second kind, respectively,

are given by [4–7]

1
k!
(

logλ(1 + t)
)k

=
∞

∑
n=k

S1,λ(n, k)
tn

n!
, (k ≥ 0), (8)

and

1
k!
(
eλ(t)− 1

)k
=

∞

∑
n=k

S2,λ(n, k)
tn

n!
, (k ≥ 0). (9)

Let C be the complex number field and let F be the set of all power series in the
variable t over C with

F =

{
f (t) =

∞

∑
k=0

ak
tk

k!

∣∣∣∣ ak ∈ C
}

.

Let P = C[x] and P∗ be the vector space all linear functional on P.

Pn = { P(x) ∈ C[x] | degP(x) ≤ n}, (n ≥ 0).

Then Pn is an (n + 1)-dimensional vector space over C.
Recently, Kim-Kim [15] considered λ-linear functional and λ-differential operator

as follows:

For f (t) =
∞

∑
k=0

ak
tk

k!
∈ F and a fixed nonzero real number λ, each λ gives rise to

the linear functional 〈 f (t) | ·〉λ on P, called λ-linear functional given by f (t), which is
defined by

〈 f (t) | (x)n,λ〉λ = an, for all n ≥ 0. (10)

For λ = 0, we observe that the linear functional 〈 f (t) | ·〉0 agrees with the one in
〈 f (t) | xn〉 = ak, (k ≥ 0).

From 〈 f (t)g(t) | (x)n,λ〉λ = 〈 f (t) | (g(t))λ(x)n,λ〉λ and (10), we note that

〈tk | (x)n,λ〉λ = 〈1 | (tk)λ(x)n,λ〉λ = 〈1 | (n)k(x)n−k,λ〉λ = n!δn,k, (11)

for all n, k ≥ 0, where δn,k is the Kronecker’s symbol.
From (11), for each λ ∈ R, and each nonnegative integer k, the differential operator on

P is given by [15]

(tk)λ(x)n,λ =

{
(n)k(x)n−k,λ, if k ≤ n,

0 if k ≥ n.
(12)

and for any power series f (t) =
∞

∑
k=0

ak
tk

k!
∈ F , ( f (t))λ(x)n,λ =

n

∑
k=0

(
n
k

)
ak(x)n−k,λ, (n ≥ 0).

The order o( f (t)) of a power series f (t)( 6= 0) is the smallest integer k for which the
coefficient of tk does not vanish. The series f (t) is called invertible if o( f (t)) = 0. f (t)
is called a delta series if o( f (t)) = 1 and it has a compositional inverse f (t) of f (t) with
f ( f (t)) = f ( f (t)) = t.

Let f (t) and g(t) be a delta series and an invertible series, respectively, and sn,λ(x) be
a degenerate polynomial of a degree n. Then there exists a unique sequences sn,λ(x) such
that the orthogonality conditions [15]〈

g(t)
(

f (t)
)k | sn,λ(x)〉λ = n!δn,k, (n, k ≥ 0). (13)
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The sequences sn,λ(x) are called the λ-Sheffer sequences for (g(t), f (t)), which are
denoted by sn,λ(x) ∼ (g(t), f (t))λ.

The sequence sn,λ(x) ∼ (g(t), f (t))λ if and only if

1
g
(

f (t)
) ex

λ

(
f (t)

)
=

∞

∑
k=0

sk,λ(x)
k!

tk (n, k ≥ 0). (14)

Assume that for each λ ∈ R∗ of the set of nonzero real numbers, sn,λ(x) is λ-Sheffer
for (gλ(t), fλ(t)). Assume also that limλ→0 fλ(t) = f (t) and limλ→0 gλ(t) = g(t), for some
delta series f (t) and an invertible series g(t). Then limλ→0 f λ(t) = f (t), where is the
compositional inverse of f (t) with f ( f (t)) = f ( f (t)) = t. Let limλ→0 sk,λ(x) = sk(x).

In this case, Kim-Kim called that the family {sn,λ(x)}λ∈R−{0} of λ-Sheffer sequences
sn,λ are the degenerate (Sheffer) sequences for the Sheffer polynomial sn(x).

Let sn,λ(x) ∼ (g(t), f (t))λ and rn,λ(x) ∼ (h(t), g(t))λ, (n ≥ 0). Then

sn,λ(x) =
n

∑
k=0

µn,krk,λ(x), (n ≥ 0),

where µn,k =
1
k!

〈
h( f (t))
g( f (t))

(
l( f (t))

)k | (x)n,λ

〉
λ

, (n, k ≥ 0).

(15)

2. Degenerate Derangement Polynomials Order s Arising from Degenerate
Sheffer Sequences

In this section, we consider the degenerate derangement polynomials of order s,
and give a combinatorial meaning of these numbers and noble identities related to these
polynomials and the well-known special polynomials and numbers arising from degenerate
Sheffer sequences.

From (3), naturally, we can consider the degenerate derangement polynomials of order
s (c.f. [13]) which is given by

1
(1− t)s e−s

λ (t)ex
λ(t) =

∞

∑
n=0

d(s)n,λ(x)
tn

n!
. (16)

When x = 0, d(s)n,λ(0) := d(s)n,λ is called the degenerate derangement numbers of order s

and d(s)0,λ = 1. When s = 1, d(1)n,λ(x) = dn,λ(x), and limλ→0 dn,λ(0) = dn, n ≥ 0.
From (16), we get

d(s)n,λ(x) = n!
n

∑
l=0

(x− s)l,λ

l!
. (17)

It is known (see [15]) that for f (t), g(t) ∈ F ,

〈
f (t)g(t)

∣∣∣∣(x)n,λ
〉

λ
=

n

∑
k=0

(
n
k

)〈
f (t)

∣∣∣∣(x)k,λ
〉

λ

〈
g(t)

∣∣∣∣(x)n−k,λ
〉

λ
. (18)

From (18), by the mathematical induction, for f1(t), f2(t), · · · , fm(t) ∈ F , we get

〈
f1(t) f2(t) · · · fm(t)

∣∣∣∣(x)n,λ
〉

λ
=

n

∑
i1+···+im=n

(
n

i1 i2 · · · im

)〈
f1(t)

∣∣∣∣(x)i1,λ
〉

λ
· · ·
〈

fm(t)
∣∣∣∣(x)im ,λ

〉
λ

, (19)

where(
n

i1 i2 · · · im

)
=

(
n
i1

)(
n− i1

i2

)
· · ·
(

n− i1 − i2 · · · − im−1

im

)
=

n!
i1!i2! · · · im!

.
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Therefore, from (19), we get〈(
1

(1− t)
e−1

λ (t)
)s ∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
i1+···+ir=n

(
n

i1 i2 · · · is

)〈
1

(1− t)
e−1

λ (t)
∣∣∣∣(x)i1,λ

〉
λ

· · ·
〈

1
(1− t)

e−1
λ (t)

∣∣∣∣(x)is ,λ

〉
λ

=
n

∑
i1+···+ir=n

(
n

i1 i2 · · · is

)
di1,λdi2,λ · · · dis ,λ.

(20)

From (20), we have

d(s)n,λ =
n

∑
i1+···+ir=n

(
n

i1 i2 · · · is

)
di1,λdi2,λ · · · dis ,λ. (21)

From (21), when λ → 0, we can give a combinatorial meaning about derangement
numbers of order s in real-life.

Example 1. Suppose n players play a card game randomly divided into s rooms. In addition,
assume everyone wears a hat and hangs it on the entrance wall when entering a room. If all the
lights suddenly turn out during the game, how many ways no one takes his hat when everyone
comes out at same time?

2.1. Connection with the Degenerate Lah–Bell Polynomials

The unsigned Lah number L(n, k) counts the number of ways of all distributions of
n balls, labelled 1, 2, · · · , n, among k unlabelled, contents-ordered boxes, with no box left
empty and have an explicit formula [26,27]

L(n, k) =
(

n− 1
k− 1

)
n!
k!

. (22)

From (22), the generating function of L(n, k) is given by [6,23]

1
k!

(
t

1− t

)k

=
∞

∑
n=k

L(n, k)
tn

n!
, (k ≥ 0). (23)

From (23), Kim-Kim naturally introduced the Lah–Bell polynomials and the degener-
ate Lah–Bell polynomials, respectively, which are given by [26,27]

ex
(

1
1−t−1

)
=

∞

∑
n=0

BL
n(x)

tn

n!
, (n, k ≥ 0).

and

ex
λ

(
1

1− t
− 1
)
=

∞

∑
n=0

BL
n,λ(x)

tn

n!
, (n, k ≥ 0). (24)

When x = 1, BL
n = BL

n(1) are called the Lah–Bell numbers.
When x = 1, BL

n,λ := BL
n,λ(1) are called the n-th degenerate Lah–Bell numbers.

When λ→ 0, limλ→0 BL
n,λ = BL

n are the n-th Lah–Bell numbers.

Theorem 1. For n ∈ N∪ {0} and s ∈ N, we have

d(s)n,λ(x) =
n

∑
k=0

( n

∑
l=k

L(l, k)(−1)l−kd(s)n−l,λ

)
BL

k,λ(x). (25)
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As the inversion formula of (25), we have

BL
n,λ(x) =

n

∑
k=0

( n

∑
l=k

n−l

∑
m=0

s

∑
j=0

(
n
l

)
L(l, k)

(
n− l

m

)(
s
j

)
2s−j(−1)j < j >n−l−m BL

m,λ(s)
)

d(s)k,λ(x). (26)

Proof. From (14), (16) and (24), we consider the following two Sheffer sequence as follows:

d(s)n,λ(x) ∼
(
(1− t)ses

λ(t), t
)

λ
and BL

n,λ(x) ∼
(

1,
t

1 + t

)
λ

. (27)

From (15), (16), (23) and (27), we have

d(s)n,λ(x) =
n

∑
k=0

µn,kBL
k,λ(x). (28)

where

µn,k =
1
k!

〈
(1− t)−se−s

λ (t)
(

t
1 + t

)k ∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
l=k

L(l, k)(−1)l−k
〈
(1− t)−se−s

λ (t)
∣∣∣∣ (x)n−l,λ

〉
λ

=
n

∑
l=k

L(l, k)(−1)l−kd(s)n−l,λ.

(29)

Therefore, from (28) and (29) we have the identity (25).
To find the inversion formula of (25), from (15) and (27), we have

BL
n,λ(x) =

n

∑
k=0

µ̃n,kd(s)k,λ(x), (30)

where, by using (5), (23) and (24)

µ̃n,k =
1
k!

〈(
1− 2t
1− t

)s

es
λ

(
t

1− t

) (
t

1− t

)k ∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
l=k

(
n
l

)
L(l, k)

〈(
1− 2t
1− t

)s

es
λ

(
t

1− t

) ∣∣∣∣ (x)n−l,λ

〉
λ

=
n

∑
l=k

(
n
l

)
L(l, k)

n−l

∑
m=0

(
n− l

m

)
BL

m,λ(s)
〈(

2− 1
1− t

)s ∣∣∣∣ (x)n−l−m,λ

〉
λ

=
n

∑
l=k

(
n
l

)
L(l, k)

n−l

∑
m=0

(
n− l

m

)
BL

m,λ(s)
s

∑
j=0

(
s
j

)
2s−j(−1)j < j >n−l−m .

(31)

Therefore, from (30) and (31), we have the identity (26).

2.2. Connection with the Degenerate r-Extended Lah–Bell Polynomials

The r-Lah number Lr(n, k) counts the number of partitions of a set with n + r elements
into k + r ordered blocks such that r distinguished elements have to be in distinct ordered
blocks and an explicit formula of Lr(n, k) (see [8,24,26,28–30]) given by

Lr(n, k) =
(

n + 2r− 1
k + 2r− 1

)
n!
k!

(k ≥ 0). (32)
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From (32), we have the generating function of Lr(n, k) given by [28–30]

1
k!

(
1

1− t

)2r( t
1− t

)k

=
∞

∑
n=k

Lr(n, k)
tn

n!
, (k ≥ 0). (33)

Recently, Kim-Kim introduced the r-extended Lah–Bell polynomials, respectively,
as follows [30]: (

1
1− t

)2r

ex
(

1
1−t−1

)
=

∞

∑
n=k

BL
r,n(x)

tn

n!
, (k ≥ 0). (34)

When x = 1, BL
n = BL

n(1) and BL
r,n = BL

r,n(1) are called the Lah–Bell numbers and
r-extended Lah–Bell numbers respectively.

From (34), naturally, KL defined a degenerate r-extended Lah–Bell polynomials [31] by(
1

1− t

)2r

ex
λ

(
1

1− t
− 1
)
=

∞

∑
n=0

BL
r,n,λ(x)

tn

n!
. (35)

When x = 1, BL
r,n,λ := BL

r,n,λ(1) is called the n-th degenerate r-extended Lah–Bell number.
As λ→ 0, limλ→0 BL

r,n,λ = BL
r,n is the n-th r-extended Lah–Bell number.

Theorem 2. For n ∈ N∪ {0} and r, s ∈ N, we have

d(s)n,λ(x) =
n

∑
k=0

( n

∑
l=k

Lr(l, k)(−1)l−k d(s)n−l,λ

)
BL

r,k,λ(x). (36)

As the inversion formula of (36), we have

BL
r,n,λ(x) =

n

∑
k=0

( n

∑
l=k

n−l

∑
m=0

s

∑
j=0

(
n
l

)(
n− l

m

)(
s
j

)
2s−j(−1)j < j >n−l−m Lr(l, k)BL

m,λ(s)
)

d(s)k,λ(x). (37)

Proof. From (14), (16) (35), we consider the following two degenerate Sheffer sequences.

d(s)n,λ(x) ∼
(
(1− t)ses

λ(t), t
)

λ
and BL

r,n,λ(x) ∼
((

1
1 + t

)2r

,
t

1 + t

)
λ

. (38)

From (15), (16), (33) and (38), we have

d(s)n,λ(x) =
n

∑
k=0

µn,kBL
r,k,λ(x), (39)

where

µn,k =
1
k!

〈
(1− t)−se−s

λ (t)
(

1
1 + t

)2r( t
1 + t

)k ∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
l=k

Lr(l, k)(−1)l−k
〈
(1− t)−se−s

λ (t)
∣∣∣∣ (x)n−l,λ

〉
λ

=
n

∑
l=k

Lr(l, k)(−1)l−k d(s)n−l,λ.

(40)

Therefore, from (39) and (40), we have the identity (36).
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To find the inversion formula of (36), from (15) and (38), we have

BL
r,n,λ(x) =

n

∑
k=0

µ̃n,kd(s)k,λ(x). (41)

where, by using (5), (24) and (34)

µ̃n,k =
1
k!

〈(
1− 2t
1− t

)s

es
λ

(
t

1− t

)(
1

1− t

)2r( t
1− t

)k ∣∣∣∣ (x)n,λ(x)
〉

λ

=
n

∑
l=k

(
n
l

)
Lr(l, k)

〈(
1− 2t
1− t

)s

es
λ

(
t

1− t

) ∣∣∣∣ (x)n−l,λ

〉
λ

=
n

∑
l=k

(
n
l

)
Lr(l, k)

n−l

∑
m=0

(
n− l

m

)
BL

m,λ(s)
〈(

2− 1
1− t

)s ∣∣∣∣ (x)n−l−m,λ

〉
λ

=
n

∑
l=k

(
n
l

)
Lr(l, k)

n−l

∑
m=0

(
n− l

m

)
BL

m,λ(s)
s

∑
j=0

(
s
j

)
2s−j(−1)j < j >n−l−m .

(42)

Therefore, from (41) and (42) we have the identity (37).

2.3. Connection with the Degenerate Bernoulli Polynomials of Higher Order r

The degenerate Bernoulli polynomials of order r are given by the generating
function [1,6,21] to be (

t
eλ(t)− 1

)r

ex
λ(t) =

∞

∑
n=0

β
(r)
n,λ(x)

tn

n!
. (43)

We note that β
(r)
n,λ = β

(r)
n,λ(0) are called the degenerate Bernoulli numbers of order r.

From (20), we observe that〈(
t

eλ(t)− 1

)r ∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
i1+···+ir=n

(
n

i1i2 · · · ir

)〈
t

eλ(t)− 1

∣∣∣∣(x)i1,λ

〉
λ

· · ·
〈

t
eλ(t)− 1

∣∣∣∣(x)ir ,λ

〉
λ

=
n

∑
i1+···+ir=n

(
n

i1i2 · · · ir

)
βi1,λβi2,λ · · · βir ,λ.

(44)

Theorem 3. For n ∈ N∪ {0} and r, s ∈ N, we have

d(s)n,λ(x) =
r−1

∑
k=0

(
1
k!

n

∑
l=0

k

∑
m=0

n−l

∑
j=0

(r− k)!l!
(l + r− k)!

(
n
l

) (
k
m

)
(−1)k−m

(
n− l

j

)
(m)j,λ

S2,λ(l + r− k, r− k)d(s)n−l−j,λ

)
β
(r)
k,λ(x) +

n

∑
k=r

(
n!

k!(n− k + r)!

r

∑
l=0

n−k+r

∑
j=0

(
r
l

)
(−1)r−l(l)j,λ

(
n− k + r

j

)
d(s)n−k+r−j,λ

)
β
(r)
k,λ(x).

(45)
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In particular, when s = 1, as the inversion formula of (45), we have

β
(r)
n,λ(x) =

n

∑
k=0

( n−k

∑
m=0

n!
k!m!(n− k−m)!

(1)m,λ(1−m + m2λ)

×
n−k−m

∑
i1+···+ir=n−k−m

(
n− k−m
i1i2 · · · ir

)
βi1,λβi2,λ · · · βir ,λ

)
dk,λ(x).

(46)

Proof. From (14), (16) and (43), we consider the following two degenerate Sheffer sequences.

d(s)n,λ(x) ∼
(
(1− t)ses

λ(t), t
)

λ
and β

(r)
n,λ(x) ∼

((
eλ(t)− 1

t

)r

, t
)

λ

. (47)

From (15) and (47), we have

d(s)n,λ(x) =
n

∑
k=0

µn,kβ
(r)
k,λ(x), (48)

where

µn,k =
1
k!

〈(
eλ(t)− 1

t

)r( 1
1− t

e−1
λ (t)

)s

tk
∣∣∣∣ (x)n,λ

〉
λ

. (49)

For r > n, from (9), we note that

1
(r− k)!

(eλ(t)− 1)r−k =
∞

∑
l=r−k

S2,λ(l, r− k)
tl

l!
=

∞

∑
l=0

S2,λ(l + r− k, r− k)
tl+r−k!

(l + r− k)!
. (50)

Now, by using (4), (16) and (50), we have

µn,k =
1
k!

〈(
eλ(t)− 1

t

)r( 1
1− t

e−1
λ (t)

)s

tk
∣∣∣∣ (x)n,λ

〉
λ

=
1
k!

〈(
1

1− t
e−1

λ (t)
)s

(eλ(t)− 1)k(eλ(t)− 1)r−k t−(r−k)
∣∣∣∣ (x)n,λ

〉
λ

=
1
k!

n

∑
l=0

(r− k)!
(l + r− k)!

S2,λ(l + r− k, r− k)
〈(

1
1− t

e−1
λ (t)

)s(
eλ(t)− 1)ktl

∣∣∣∣ (x)n,λ

〉
λ

=
1
k!

n

∑
l=0

(r− k)!
(l + r− k)!

S2,λ(l + r− k, r− k)
(

n
l

)
l!
〈(

1
1− t

e−1
λ (t)

)s(
eλ(t)− 1)k

∣∣∣∣ (x)n−l,λ

〉
λ

=
1
k!

n

∑
l=0

(r− k)!
(l + r− k)!

S2,λ(l + r− k, r− k)
(

n
l

)
l!

k

∑
m=0

(
k
m

)
(−1)k−m

×
〈(

1
1− t

e−1
λ (t)

)s

em
λ (t)

∣∣∣∣ (x)n−l,λ

〉
λ

=
1
k!

n

∑
l=0

(r− k)!
(l + r− k)!

S2,λ(l + r− k, r− k)
(

n
l

)
l!

k

∑
m=0

(
k
m

)
(−1)k−m

n−l

∑
j=0

(
n− l

j

)
(m)j,λd(s)n−l−j,λ.

(51)

For r > n and 0 ≤ k < r, we have the same result when r > n.
For r ≤ k, we note that k− r ≥ 0 and n− k + r ≥ 0. Thus, we have
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µn,k =
1
k!

〈(
eλ(t)− 1

t

)r( 1
1− t

e−1
λ (t)

)s

tk
∣∣∣∣ (x)n,λ

〉
λ

=
1
k!

〈(
1

1− t
e−1

λ (t)
)s(

eλ(t)− 1)rtk−r
∣∣∣∣ (x)n,λ

〉
λ

=
1
k!

(
n

k− r

)
(k− r)!

〈(
1

1− t
e−1

λ (t)
)s(

eλ(t)− 1)r
∣∣∣∣ (x)n−k+r,λ

〉
λ

=
n!

k!(n− k + r)!

r

∑
l=0

(
r
l

)
(−1)r−l

〈(
1

1− t
e−1

λ (t)
)s

el
λ(t)

∣∣∣∣ (x)n−k+r,λ

〉
λ

=
n!

k!(n− k + r)!

r

∑
l=0

(
r
l

)
(−1)r−l

n−k+r

∑
j=0

(l)j,λ

(
n− k + r

j

)
d(s)n−k+r−j,λ.

(52)

Therefore, from (48), (49), (51) and (52), we have the identity (45).
In particular, when s = 1, to find the inversion formula of (45), from (4), (15), (44)

and (47), we have

β
(r)
n,λ(x) =

n

∑
k=0

µ̃n,kd(s)k,λ(x), (53)

where

µ̃n,k =
1
k!

〈
(1− t)eλ(t)

(
t

eλ(t)− 1

)r
tk
∣∣∣∣ (x)n,λ

〉
λ

=

(
n
k

){〈
eλ(t)

(
t

eλ(t)− 1

)r ∣∣∣∣ (x)n−k,λ

〉
λ

−
〈

teλ(t)
(

t
eλ(t)− 1

)r ∣∣∣∣ (x)n−k,λ

〉
λ

}
=

(
n
k

){n−k

∑
m=0

(
n− k

m

)
(1)m,λ −

n−k

∑
m=1

(
n− k

m

)
m(1)m−1,λ

}〈(
t

eλ(t)− 1

)r ∣∣∣∣ (x)n−k−m,λ

〉
λ

=

(
n
k

){n−k

∑
m=0

(
n− k

m

)
(1)m,λ −

n−k

∑
m=0

(
n− k

m

)
m(1)m−1,λ

}

×
n−k−m

∑
i1+···+ir=n−k−m

(
n

i1i2 · · · ir

)
βi1,λβi2,λ · · · βir ,λ

=

(
n
k

) n−k

∑
m=0

(
n− k

m

)
(1)m,λ(1−m + m2λ)

n−k−m

∑
i1+···+ir=n−k−m

(
n− k−m
i1i2 · · · ir

)
βi1,λβi2,λ · · · βir ,λ.

(54)

Therefore, from (53) and (54), we have the identity (46).

2.4. Connection with the Degenerate Frobenius–Euler Polynomials of Order r

Kim et al. introduced the degenerate Frobenius–Euler polynomials of order r [20]
defined by (

1− u
eλ(t)− u

)r

ex
λ(t) =

∞

∑
n=0

h(r)n,λ(x|u) tn

n!
, (u 6= 1, u ∈ C, k ≥ 0). (55)

When x = 0, h(r)n,λ(u) = h(r)n,λ(0|u) are called the degenerate Frobenius–Euler numbers
of order r.

When x = 0 and r = 1, hn,λ(u) = hn,λ(0|u) are called the degenerate Frobenius–
Euler numbers.

When u = −1, the degenerate Euler polynomials of order r respectively are given by
the generating function [1,21] to be(

2
eλ(t) + 1

)r

ex
λ(t) =

∞

∑
n=0

E(r)
n,λ(x)

tn

n!
. (56)
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We note that E(r)
n,λ = E(r)

n,λ(0) (n ≥ 0), are called the degenerate Euler numbers of
order r.

When x = 0 and r = 1, En,λ = En,λ(0) are called the degenerate Euler numbers.
From (20), in the same way as (44), we have〈(

1− u
eλ(t)− u

)r ∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
i1+···+ir=n

(
n

i1i2 · · · ir

)
hi1,λ(u)hi2,λ(u) · · · hir ,λ(u), (57)

and 〈(
2

eλ(t)− 1

)r ∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
i1+···+ir=n

(
n

i1i2 · · · ir

)
Ei1,λEi2,λ · · · Eir ,λ. (58)

Theorem 4. For n ∈ N∪ {0}, r, s ∈ N we have

d(s)n,λ(x) =
1

(1− u)r

n

∑
k=0

( n−k

∑
l=0

r

∑
j=0

(
n
k

)(
n− k

l

)(
r
j

)
(−u)r−j(j)n−l,λd(s)l,λ

)
h(r)k,λ(x|u). (59)

In particular, when s = 1, as the inversion formula of (59), we have

h(r)n,λ(x|u) =
n

∑
k=0

( n−k

∑
m=0

n!
k!m!(n− k−m)!

(1)m,λ(1−m + m2λ)

×
n−k−m

∑
i1+···+ir=n−k−m

(
n− k−m
i1i2 · · · ir

)
hi1,λ(u)hi2,λ(u) · · · hir ,λ(u)

)
dk,λ(x).

(60)

Proof. From (15), (16) and (55), we consider the following two degenerate Sheffer sequences.

d(s)n,λ(x) ∼
(
(1− t)ses

λ(t), t
)

λ
and h(r)n,λ(x|u) ∼

((
eλ(t)− u

1− u

)r

, t
)

λ

. (61)

By using (4), (15), (16) and (61), we have

d(s)n,λ(x) =
n

∑
k=0

µn,kh(r)k,λ(x|u), (62)

where

µn,k =
1
k!

〈(
1

1− t
e−1

λ (t)
)s( eλ(t)− u

1− u

)r

tk
∣∣∣∣ (x)n,λ

〉
λ

=

(
n
k

)〈(
1

1− t
e−1

λ (t)
)s( eλ(t)− u

1− u

)r ∣∣∣∣ (x)n−k,λ

〉
λ

=
1

(1− u)r

(
n
k

) n−k

∑
l=0

(
n− k

l

)
d(s)l,λ

〈
(eλ(t)− u)r

∣∣∣∣ (x)n−l,λ

〉
λ

=
1

(1− u)r

(
n
k

) n−k

∑
l=0

(
n− k

l

)
d(s)l,λ

r

∑
j=0

(
r
j

)
(−u)r−j(j)n−l,λ.

(63)

Therefore, from (62) and (63), we get the identity (59).
In particular, when s = 1, to find the inversion formula of (59), by (4), (13), (15)

and (61),
We have

h(r)n,λ(x|u) =
n

∑
k=0

µ̃n,kd(s)k,λ(x). (64)
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where,

µ̃n,k =
1
k!

〈
(1− t)eλ(t)

(
1− u

eλ(t)− u

)r

tk
∣∣∣∣ (x)n,λ

〉
λ

=

(
n
k

){〈
eλ(t)

(
1− u

eλ(t)− u

)r ∣∣∣∣ (x)n−k,λ

〉
λ

−
〈

teλ(t)
(

t
eλ(t)− 1

)r ∣∣∣∣ (x)n−k,λ

〉
λ

}

=

(
n
k

){n−k

∑
m=0

(
n− k

m

)
(1)m,λ −

n−k

∑
m=1

(
n− k

m

)
m(1)m−1,λ

}〈(
1− u

eλ(t)− u

)r ∣∣∣∣ (x)n−k−m,λ

〉
λ

=

(
n
k

){n−k

∑
m=0

(
n− k

m

)
(1)m,λ −

n−k

∑
m=0

(
n− k

m

)
m(1)m−1,λ

}

×
n−k−m

∑
i1+···+ir=n−k−m

(
n− k−m
i1i2 · · · ir

)
hi1 ,λ(u)hi2 ,λ(u) · · · hir ,λ(u).

(65)

Therefore, from (64) and (65), we have the identity (60).

When u = −1 in Theorem 3, we have the following corollary.

Corollary 1. For n ∈ N∪ {0} and r, s ∈ N, we have

d(s)n,λ(x) =
1
2r

n

∑
k=0

( n−k

∑
l=0

r

∑
j=0

(
n
k

)(
n− k

l

)(
r
j

)
(j)n−l,λd(s)l,λ

)
E(r)

k,λ(x). (66)

In particular, when s = 1, the inversion formula of (66), we have

E(r)
n,λ(x) =

n

∑
k=0

( n−k

∑
m=0

n!
k!m!(n− k−m)!

(1)m,λ(1−m + m2λ)

×
n−k−m

∑
i1+···+ir=n−k−m

(
n− k−m
i1i2 · · · ir

)
Ei1,λEi2,λ · · · Eir ,λ

)
dk,λ(x).

2.5. Connection with the Degenerate Daehee Polynomials of Order r

The degenerate Daehee polynomials of order r [11] is defined by(
logλ(1 + t)

t

)r

(1 + t)x =
∞

∑
n=0

D(r)
n,λ(x)

tn

n!
. (67)

where logλ(1 + t) = 1
λ ((1 + t)λ − 1) and logλ(eλ(t)) = eλ(logλ(t)) = t. When x = 0, D(r)

n,λ

= D(r)
n,λ(0) are called the degenerate Daehee numbers of order r.

Theorem 5. For n ∈ N∪ {0} and r, s ∈ N, we have

d(s)n,λ(x) =
n

∑
k=0

( n

∑
l=0

n−l

∑
m=k

(
n− l

m

)
r!n!

(l + r)!(n− l)!
S2,λ(l + r, r) S2,λ(m, k)d(s)n−l−m,λ

)
D(r)

k,λ(x). (68)

As the inversion formula of (68), we have

D(r)
n,λ(x) =

n

∑
k=0

( n

∑
l=0

n−l

∑
m=0

s

∑
j=0

n−l−m

∑
i=0

s

∑
v=0

(
n
l

)(
n− l

m

)(
s
j

)(
n− l −m

i

)

×
(

s
v

)
j!(n− l −m− i)!S1,λ(l, k)D(r)

n,λS1,λ(i, j)δn−l−m−i,v

)
d(s)k,λ(x).

(69)

Proof. From (14), (16) and (67), we consider the following two degenerate Sheffer sequences.
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d(s)n,λ(x) ∼
(
(1− t)ses

λ(t), t
)

λ
and D(r)

n,λ(x) ∼
((

eλ(t)− 1
t

)r

, eλ(t)− 1
)

λ

. (70)

In addition, from (9), we note that

1
r!
(eλ(t)− 1)r =

∞

∑
l=r

S2,λ(l, r)
tl

l!
=

∞

∑
l=0

S2,λ(l + r, r)
tl+r!

(l + r)!
. (71)

Thus from (15), (16), (70) and (71), we have

d(s)n,λ(x) =
n

∑
k=0

µn,kD(r)
k,λ(x). (72)

where

µn,k =
1
k!

〈(
1

1− t
e−1

λ (t)
)s( eλ(t)− 1

t

)r(
eλ(t)− 1

)k
∣∣∣∣ (x)n,λ

〉
λ

=
r!
k!

n

∑
l=0

S2,λ(l + r, r)
1

(l + r)!

〈(
1

1− t
e−1

λ (t)
)s(

eλ(t)− 1
)ktl

∣∣∣∣ (x)n,λ

〉
λ

=
r!
k!

n

∑
l=0

S2,λ(l + r, r)
1

(l + r)!

(
n
l

)
l!
〈(

1
1− t

e−1
λ (t)

)s(
eλ(t)− 1

)k
∣∣∣∣ (x)n−l,λ

〉
λ

=
n

∑
l=0

S2,λ(l + r, r)
r!n!

(l + r)!(n− l)!

n−l

∑
m=k

S2,λ(m, k)
(

n− l
m

)
d(s)n−l−m,λ.

(73)

Therefore, from (72) and (73), we get the identity (68).
To find the inversion formula of (68), from (8), (13), (15) and (67) we have

D(r)
k,λ(x) =

n

∑
k=0

µ̃n,kd(s)k,λ(x). (74)

where,

µ̃n,k =
1
k!

〈
(1 + t)s(1 + logλ(1 + t))s

(
logλ(1 + t)

t

)r(
logλ(1 + t)

)k
∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
l=0

S1,λ(l, k)
(

n
l

)〈
(1 + t)s

(
logλ(1 + t) + 1

)s( logλ(1 + t)
t

)r ∣∣∣∣ (x)n−l,λ

〉
λ

=
n

∑
l=0

(
n
l

)
S1,λ(l, k)

n−l

∑
m=0

D(r)
n,λ

(
n− l

m

)〈
(1 + t)s

(
log(1 + t) + 1

)s∣∣∣∣(x)n−l−m,λ

〉
λ

=
n

∑
l=0

(
n
l

)
S1,λ(l, k)

n−l

∑
m=0

D(r)
n,λ

(
n− l

m

) s

∑
j=0

(
s
j

)〈
(1 + t)s

(
logλ(1 + t)

)j∣∣∣∣(x)n−l−m,λ

〉
λ

=
n

∑
l=0

(
n
l

)
S1,λ(l, k)

n−l

∑
m=0

D(r)
n,λ

(
n− l

m

) s

∑
j=0

(
s
j

)
j!

×
n−l−m

∑
i=0

S1,λ(i, j)
(

n− l −m
i

) s

∑
v=0

(
s
v

)〈
tv
∣∣∣∣(x)n−l−m−i,λ

〉
λ

=
n

∑
l=0

(
n
l

)
S1,λ(l, k)

n−l

∑
m=0

D(r)
n,λ

(
n− l

m

) s

∑
j=0

(
s
j

)
j!

×
n−l−m

∑
i=0

S1,λ(i, j)
(

n− l −m
i

) s

∑
v=0

(
s
v

)
(n− l −m− i)!δn−l−m−i,v.

(75)
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2.6. Connection with the Degenerate Bell Polynomials

The Bell polynomials are defined by the generating function [4–6]

ex(et−1) =
∞

∑
n=0

Beln(x)
tn

n!
.

Kim-Kim introduced the degenerate Bell polynomial [4] given by

ex
λ(eλ(t)− 1) =

∞

∑
l=0

Bell,λ(x)
tl

l!
. (76)

Theorem 6. For n ∈ N∪ {0} and r, s ∈ N, we have

d(s)n,λ(x) =
n

∑
k=0

( n

∑
l=k

S1,λ(l, k)
(

n
l

)
d(s)n−l,λ

)
Belk,λ(x) (77)

As the inversion formula of (77), we have

Beln,λ(x) =
n

∑
k=0

(
−

n

∑
l=k

(
n
l

)
S2,λ(l, k)

n−l

∑
j=0

(
n− l

j

)
(s)j,λBeln−l−j,λ(s)

)
d(s)k,λ(x). (78)

Proof. From (14), (16) and (76), we consider two degenerate Sheffer sequences as follows:

d(s)n,λ(x) ∼
(
(1− t)ses

λ(t), t
)

λ
and Beln,λ(x) ∼ (1, logλ(1 + t))λ. (79)

By using (8),(15), (16), (30) and (79), we have

d(s)n,λ(x) =
n

∑
k=0

µn,kBelk,λ(x), (80)

where

µn,k =
1
k!

〈
(1− t)−se−s

λ (t)(logλ(1 + t))k
∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
l=k

S1,λ(l, k)
(

n
l

)〈
(1− t)−se−s

λ (t)
∣∣∣∣ (x)n−l,λ

〉
λ

=
n

∑
l=k

S1,λ(l, k)
(

n
l

)
d(s)n−l,λ.

(81)

Therefore from (80) and (81), we get the identity (77).
To find inversion formula of (77), from (15) and (79) we have

Beln,λ(x) =
n

∑
k=0

µ̃n,kd(s)k,λ(x). (82)

Thus, by using (4), (9) and (76), we have

µ̃n,k =
1
k!

〈
− es

λ(t)eλ(es
λ(t)− 1)(eλ(t)− 1)k

∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
l=k

(
n
l

)
S2,λ(l, k)

〈
− es

λ(t)e
s
λ(eλ(t)− 1)

∣∣∣∣ (x)n−l,λ

〉
λ

= −
n

∑
l=k

(
n
l

)
S2,λ(l, k)

n−l

∑
j=0

(
n− l

j

)
(s)j,λ

〈
eλ(eλ(t)− 1)

∣∣∣∣(x)n−l−j,λ

〉
λ

= −
n

∑
l=k

(
n
l

)
S2,λ(l, k)

n−l

∑
j=0

(
n− l

j

)
(s)j,λBeln−l−j,λ(s).

(83)
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Therefore, from (82) and (83), we have the identity (78).

2.7. Connection with the Falling Factorial Polynomials

Theorem 7. For n ∈ N∪ {0}, r, s ∈ N we have

d(s)n,λ(x) =
n

∑
k=0

( n

∑
l=k

S2,λ(l, k)
(

n
l

)
dn−l,λ

)
(x)n, (n ≥ 0). (84)

Proof. Since ex
λ(log(1 + t)) = (1 + t)x =

∞

∑
n=0

(x)n
tn

n!
, we have (x)n ∼ (1, eλ(t)− 1)λ. We

consider the two degenerate Sheffer sequences as follows:

d(s)n,λ(x) ∼
(
(1− t)eλ(t), t

)
λ

and (x)n ∼ (1, eλ(t)− 1)λ. (85)

Thus, from (9), (15), (16) and (85), we have

d(s)n,λ(x) =
n

∑
k=0

µn,k(x)k, (n ≥ 0), (86)

where

µn,k =
1
k!

〈
(1− t)−se−s

λ (t)
(

eλ(t)− 1
)k ∣∣∣∣ (x)n,λ

〉
λ

=
n

∑
l=k

S2,λ(l, k)
(

n
l

)〈
(1− t)−se−s

λ (t)
∣∣∣∣ (x)n−l,λ

〉
λ

=
n

∑
l=k

S2,λ(l, k)
(

n
l

)
d(s)n−l,λ.

(87)

Therefore, from (86) and (87), we have the identity (85).

3. Conclusions

In this paper, the author considered the degenerate derangement polynomials of order
s (s ∈ N) and expressed the degenerate derangement numbers order s as the product of s
degenerate derangement numbers (see (21)). Thus the author gave a combinatorial meaning
about higher order derangement numbers. The author represented various expressions
for the degenerate degenerate derangement polynomials of order s in terms of quite a few
well-known special polynomials and numbers by using the degenerate Sheffer sequences.
Here is the special polynomials and numbers: the Lah numbers and the degenerate Lah
polynomials; the r-Lah numbers and the degenerate r- Lah polynomials; the degenerate
Bernoulli polynomials of order r and the product of r degenerate Bernoulli numbers; the
degenerate Frobenius–Euler polynomials of order r; the Stirling numbers of the first and
second kind, and the degenerate Deahee polynomials of order r; the Stirling numbers of
the first and second kind, and the degenerate Bell polynomials; the Stirling numbers of the
second kind and the falling factorial.

The study of the degenerate version of the well-known special polynomials and num-
bers is applied to characterize properties in various fields of mathematics (see [2–14,31]). As
one of our future projects, the author would like to continue to study degenerate versions
of certain special polynomials and numbers.
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