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Abstract: In this work, we present a new generalization of the student’s t distribution. The new
distribution is obtained by the quotient of two independent random variables. This quotient consists
of a standard Normal distribution divided by the power of a chi square distribution divided by
its degrees of freedom. Thus, the new symmetric distribution has heavier tails than the student’s
t distribution and extensions of the slash distribution. We develop a procedure to use quantile
regression where the response variable or the residuals have high kurtosis. We give the density
function expressed by an integral, we obtain some important properties and some useful procedures
for making inference, such as moment and maximum likelihood estimators. By way of illustration, we
carry out two applications using real data, in the first we provide maximum likelihood estimates for
the parameters of the generalized student’s t distribution, student’s t, the extended slash distribution,
the modified slash distribution, the slash distribution generalized student’s t test, and the double
slash distribution, in the second we perform quantile regression to fit a model where the response
variable presents a high kurtosis.

Keywords: generalization of the student’s t distribution; student’s t distribution; slash distribution;
moments; maximum likelihood estimates

1. Introduction

The slash distribution is the result of the quotient of two independent random vari-
ables, one with a standard normal distribution and the other with a uniform distribution
on the interval (0, 1), with the following stochastic representation

Y = σ

(
X

U1/q

)
+ µ, (1)

where µ ∈ R is the location parameter and σ > 0 is the scale parameter and q is the
parameter related to kurtosis. Will be denoted by Y ∼ S(µ, σ, q) and its density function
has the following expression

fY(y) =
q2

q
2−1

√
π
∣∣∣ y−µ

σ

∣∣∣q+1

[
Γ
(

q + 1
2

)
− Γ

(
q + 1

2
,
(y− µ)2

2σ2

)]
, (2)

where Γ(a) =
∫ ∞

0 ta−1e−tdt is the gamma function and Γ(a, x) =
∫ ∞

x ta−1e−tdt is the
gamma function incomplete. This distribution presents heavier tails than the normal
distribution, that is, it has more kurtosis. Properties of this family are discussed in Rogers
and Tukey [1] and Mosteller and Tukey [2].

Maximum likelihood estimators for location and scale parameters are discussed
in Kafadar [3]. Wang and Genton [4] described multivariate symmetrical and skew-
multivariate extensions of the slash-distribution while Gómez et al. [5] (and Erratum in
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Gómez and Venegas, 2008) extend the slash distribution by introducing the slash-elliptical
family; asymmetric version of this family is discussed in work of Arslan [6]. Genc [7]
discussed a symmetric generalization of the slash distribution. More recently, Gómez et al.
[8] utilize the slash-elliptical family to extend the Birnbaum–Saunders distribution.

In (1), µ = 0 and σ = 1, we retrieve the standard slash distribution. What is more
q = 1 we obtain the canonical slash distribution. When q tends to infinity, the standard
normal distribution is recovered.

When U ∼ exp(2), in (1), the distribution obtained is called modified slash distribution
studied by Reyes et al. [9]. Whose function of density is given by

fX(x) =
2√
2π

∫ ∞

0
v

1
q e−

1
2 x2v

2
q −2v dv, q > 0, x ∈ R, (3)

and will be denoted by X ∼ MS(0, 1, q), where q is kurtosis parameter.
When U ∼ B(α, β) and q = 1, in (1), the distribution obtained is called extended slash

(ES) distribution studied by Rojas et al. [10]. Whose function of density is given by

fY(y; µ, σ, α, β) =
1

σB(α, β)

∫ 1

0
φ

((
y− µ

σ

)
t
)

tα(1− t)β−1 dt (4)

is denoted as Y ∼ ES(µ, σ, α, β) with µ ∈ R, σ, α, β > 0 and φ denotes the pdf of the
standard normal distribution (see Johnson et al. [11]) and B(·, ·) denotes the beta function.

We will say that X has a student’s t distribution with ν degrees of freedom and with
location parameter µ and scale parameter σ, which we will denote by X ∼ T(µ, σ, ν) and
you have a stochastic representation given by

X = σ W
(V/ν)1/2 + µ (5)

and continuous probability density function is given by

fX(x) =
Γ( ν+1

2 )

σΓ( ν
2 )
√

νπ

[
1 +

1
ν

(
x− µ

σ

)2
] ν+1

2

(6)

with support on (−∞; ∞).
The moment’s order r of the random variable X with student’s t distribution can be

explained by the function Gamma. If X ∼ T(0, 1, ν) then

µr = E[Xr] =
νr/2ar/22r/2Γ( ν−r

2 )

Γ( ν
2 )

, ν > r, (7)

where ar/2 =
∫ ∞
−∞ xrφ(x)dx for r even, then

E[X] = 0, ν > 1
V(X) = ν

ν−2 , ν > 2.
If Y ∼ T(µ, σ, ν) then

E(Yr) =
r
∑

k=0

(
r
k

)
σkµr−kµk.

Rui Li-Saralees Nadarajah [12] makes a review of all the generalizations of the stu-
dent’s t distribution published to date, where they show that the main motivation of these
extensions is to model heavy tails or data with high kurtosis.
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In the study of symmetric distributions with heavy tails El-Bassiouny et al. [13] present
the generalized student’s slash t distribution. We will say that X ∼ GLST(µ, σ, α, β, ν, q),
with parameter q > 0, has pdf given by

fX(x) =
qΓ
(

r+1
2

)
σ
√

πrΓ
( r

2
)

B(α, β)

∫ 1

0
wαq(1− wq)β−1

[
1 +

(
x− µ

σ

)
w2

r

]− r+1
2

dw, q > 0, x ∈ R, (8)

where q is kurtosis parameter and B(·, ·) denotes the beta function.
Another recent extension of the slash model was proposed by El-Morshedy, A. H. et al. [14].

These authors introduced the double slash (DSL) distribution with density function given by

fY(y) = q1q2

∫ 1

0

[∫ 1

0
φ

((
y− µ

σ

)
wt
)

tq1 dt
]

wq2 dw (9)

with µ ∈ R, σ, q1 and q2 > 0.
When U ∼ Ga(2β, β) and q = 1, in (1), the distribution generalized modified slash

distribution, denoted GMS(µ, σ, β), studied by Reyes, J., Barranco-Chamorro, I., and
Gómez, H. W. [15]. Whose function of density is given by

fY(y; µ, σ, β) =


1

σ
√

8π
if y = µ

2β/2
√

2π

σβ+1ββ+2

|y−µ|β+2 U
(

1 + β
2 , 3

2 , 2σ2β2

(y−µ)2

)
if y 6= µ,

(10)

where µ ∈ R, σ, β > 0 and

U(a, b, z) =
1

Γ(a)

∫ ∞

0
ta−1(1 + t)b−a−1e−ztdt, (11)

is the confluent hypergeometric function of the second kind. Details about this function
can be seen in Abramowitz and Stegun, p. 505.

With the motivation of finding a distribution that is a generalization of the student’s
t distribution and that presents heavier tails than the distributions found so far in the
literature, in this article, we introduce a new generalization of the student’s t distribution
(GT) whose stochastic representation is given by

Y = σ
W

(V/ν)1/q + µ, (12)

where W ∼ N(0, 1), V ∼ χ2
(ν) are independent with ν > 0 and q > 0 and we will denote it

as Y ∼ GT(µ, σ, ν, q).
The paper is organized as follows. In Section 2 the probability density function (pdf)

is given and some properties of the GT distribution are presented and shows that the
distribution student’s t is a particular case of the distribution GT. Additionally, moments
of order r are obtained, including the kurtosis coefficient. In Section 3 derivation of
the moment and maximum likelihood estimators are discussed. A simulation study is
presented to illustrate the behavior of the estimator of the parameters µ, σ, and q, for
ν = 8. Section 4 results of using the proposed model in two real applications are reported.
Section 5 presents quantile regression. Section 6 presents the main conclusions.

2. The Generalized Student’s t Distribution

We present the generalized student’s t distribution with heavier tails compared to
similar distributions. Initially we will present its density function.
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2.1. Density Function

We will use the stochastic representation

Y = σ W
(V/ν)1/q + µ, (13)

where W is distributed standard normal, V is distributed chi square, with ν degrees
of freedom, W and V are independent random variables, µ, σ are location and scale
parameters, respectively, ν degrees of freedom and q > 0 is the parameter related to the
distribution kurtosis.

We use the notation Y ∼ GT(µ, σ, ν, q), and for the standard case, we denote X ∼
GT(0, 1, ν, q).

Proposition 1. Let Y ∼ GT(µ, σ, ν, q). Then, the pdf of Y is given by

fY((y; µ, σ, ν, q) =


1

σ2(ν/2)ν1/qΓ(ν/2)
√

2π

∫ ∞
0 t

ν−2
2 + 1

q e−
1
2 [(

y−µ
σ )

2
(t/ν)2/q+t]dt y 6= µ

Γ( ν
2 +

1
q )

σ(ν/2)1/qΓ(ν/2)
√

2π
y = µ.

(14)

Proof. Since W and V are two independent random variables, such that W ∼ N(0, 1) and
V ∼ χ2

(ν), then the joint pdf of (Y, T) =
(

σW/(V/ν)1/q + µ, V
)

is

f(Y,T)(y, t, µ, σ, ν, q) =
1

σ2(ν/2)ν1/qΓ(ν/2)
√

2π
t

ν−2
2 + 1

q e−
1
2 [(

y−µ
σ )

2
(t/ν)2/q+t],

where y ∈ R and t > 0. By marginalizing the result follows immediately para y 6= µ. Doing
y = µ the other expression is obtained.

Corollary 1. If q = 1 in (14), then la fdp de Y is called the canonical generalized student’s t
distribution.

fY(y; µ, σ, ν, 1) =


( y−µ

σ )
−( ν

2 +2)2−3(1+ ν
4 )

σ
√

2π
U

[
1 + ν

4 , 3
2 , ν

( y−µ
σ )

2

]
y 6= µ

1
σ
√

2π
y = µ,

(15)

where U(a, b, x) = 1
Γ(a)

∫ ∞
0 e−xtta−1(1 + t)b−a−1 dt, it is called the second-class hypergeometric

confluent function.

Proof. If q = 1 in (14), then la fdp de Y is

fY(y; µ, σ, ν, 1) =

 1
σ2(ν/2)νΓ(ν/2)

√
2π

∫ ∞
0 t

ν
2 e−

1
2 [(

y−µ
σ )

2
(t/ν)2+t]dt y 6= µ

1
σ
√

2π
y = µ.

(16)

Making a = ν/2 and b =
( y−µ

σ )
2

ν2 and making the change of variables w = t
4a and

applying the result obtained in Reyes et al. [9]∫ ∞

0
tae−

(
x2
2 t2−2at

)
dt =

aΓ(a + 1)
2a/2x(a+2)

U
[

1 +
a
2

,
3
2

,
a2

x2

]
,

where x = 2
(

y−µ
σ

)
the result is obtained.

Figure 1 on the left shows the PDFs of the generalized student’s t distribution for
q = 1 compared to the Student’s t for ν = 5, the normal distribution, the generalized bar t
distribution and the double bar distribution. In which, it can be seen that as the variable
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tends to ∞ to the right (or to the left), the new model captures more data than the other
comparative distributions. Furthermore, it is observed that to the extent that q is smaller,
the distribution has greater kurtosis.
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Figure 1. Generalized student’s pdf with q = 1 (solid line), student’s for ν = 5 pdf (dotted line),
Normal pdf (dashed line), GSLT (dashed and dotted line) and DSL (thick dashed line) (left), and
tails comparison (right).

2.2. Tails Comparison of GT and Student’s t Distributions

In this part, we perform a comparison of the upper tails between the GT distribution
and student’s t distribution. For this, we consider the canonical version (q = 1) of GT dis-
tribution considering student’s t distribution with ν = 5 degrees of freedom. Table 1 shows
P(Y > y) for different values of y in the mentioned distributions. The GT distribution has
tails much heavier than the student’s t distribution.

Table 1. Tails comparison GT distributions and student’s t distribution.

Distribution P(Y > 3) P(Y > 4) P(Y > 5) P(Y > 10)

T(5) 0.0150 0.0052 0.0021 0.0001
GT(5) 0.0301 0.0103 0.0041 0.0002

Remark 1. Table 1 illustrates the fact that the generalized student’s t distributions have heavier
tails than the tails of the student’s t distribution.

2.3. Compared GT Quantiles with T Quantiles

Figure 2 shows the quantile function of the generalized student’s t distribution com-
pared to quantile function of student’s t for different values of q and ν = 5.

Proposition 2. Let Y ∼ GT(0, 1, ν, q). Then an approximation of quantile p of Y is

yp =


tp

2
( jp

ν

) q−2
2q

[
1 +

(
jp
ν

) q−2
q

]
q < 2

tp( jp
ν

) q−2
2q

q > 2,

where tp and jp denotes the quantiles p of student’s t and chi-square distribution whit ν degrees
of freedom.

Proof. Y = Z(
J
ν

) 1
q
= Z(

J
ν

) 1
2

(
J
ν

) 1
2(

J
ν

) 1
q
= T

(
J
ν

) 2−q
2q
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=⇒ yp ≈ tp

(
Jp
ν

) 2−q
2q .

Si q < 2 =⇒ yp ≈ tp

 ( Jp
ν

) 2−q
2q +

( Jp
ν

) q−2
2q

2

.

Si q > 2 =⇒ yp ≈
tp( Jp

ν

) q−2
2q

.

Figure 3 shows the quantiles of the generalized student’s t distribution compared to
quantile of proposition 2 for values q = 1 and ν = 5.
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Figure 2. Quantile function of the generalized student’s t distribution compared to quantile function
of the student’s t for ν = 5 for p = 0.975 (left) and p = 0.95 (right).
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Figure 3. Densidad de GT evaluate in quantile theoretical compared to quantile, proposition 2
(upper), and qqplot (under).

Properties:

1. If q = 2 then yp = tp;
2. if ν→ ∞ then yp = zp where zp is the quantile p of standard normal distribution.

In Table 2 we present quantiles generalized student’s t for n degrees of freedom and q = 1.
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Table 2. Table of quantiles generalized student’s t for ν degrees of freedom and q = 1.

ν GT0.60 GT0.70 GT0.80 GT0.90 GT0.95 GT0.975 GT0.99 GT0.995

1 0.330 0.727 1.419 3.467 7.798 17.074 47.159 100.682
2 0.289 0.620 1.091 2.052 3.371 5.252 9.096 13.578
3 0.277 0.587 1.002 1.749 2.628 3.710 5.583 7.453
4 0.271 0.571 0.960 1.619 2.334 3.149 4.442 5.631
5 0.267 0.562 0.936 1.546 2.176 2.861 3.891 4.791
6 0.265 0.556 0.920 1.499 2.078 2.687 3.569 4.314
7 0.263 0.551 0.909 1.467 2.011 2.570 3.358 4.006
8 0.262 0.548 0.900 1.443 1.962 2.486 3.209 3.792
9 0.261 0.545 0.894 1.425 1.925 2.422 3.098 3.634

10 0.260 0.543 0.889 1.410 1.896 2.373 3.012 3.513
11 0.260 0.542 0.884 1.398 1.872 2.333 2.944 3.418
12 0.259 0.540 0.881 1.389 1.853 2.300 2.888 3.340
13 0.259 0.539 0.878 1.380 1.836 2.273 2.842 3.276
14 0.258 0.538 0.875 1.373 1.823 2.250 2.803 3.221
15 0.258 0.537 0.873 1.367 1.811 2.230 2.769 3.175
16 0.258 0.536 0.871 1.362 1.800 2.213 2.740 3.135
17 0.257 0.536 0.870 1.357 1.791 2.197 2.715 3.100
18 0.257 0.535 0.868 1.353 1.783 2.184 2.692 3.070
20 0.257 0.534 0.865 1.346 1.769 2.161 2.655 3.018
21 0.257 0.534 0.864 1.343 1.763 2.152 2.639 2.996
22 0.256 0.533 0.863 1.340 1.758 2.143 2.624 2.976
23 0.256 0.533 0.862 1.338 1.753 2.135 2.611 2.958
24 0.256 0.532 0.861 1.335 1.748 2.127 2.599 2.942
25 0.256 0.532 0.861 1.333 1.744 2.121 2.588 2.927
26 0.256 0.532 0.860 1.331 1.740 2.114 2.577 2.913
27 0.256 0.532 0.859 1.329 1.737 2.109 2.568 2.900
28 0.256 0.531 0.859 1.328 1.734 2.103 2.559 2.888
29 0.256 0.531 0.858 1.326 1.730 2.098 2.551 2.877
30 0.256 0.531 0.858 1.325 1.728 2.094 2.544 2.867

2.4. Properties of the Generalized Student’s t Distribution

In this section, we present some properties of the generalized student’s t distribution.

Proposition 3. Let Y ∼ GT(µ, σ, ν, q) then

1. lim
q→∞

fY(y; µ, σ, ν, q) = 1
σ φ
(

y−µ
σ

)
.

2. If Y|V = v ∼ N(µ, v−2/qσ2) and V ∼ χ2
(ν) then Y ∼ GT(µ, σ, ν, q).

3. If Y ∼ GT(0, 1, ν, 2), then, Y ∼ t(ν).

Proof.

1. Making q tend to infinity in representation (13), the result is immediately obtained;

2. fY(y; µ, σ, ν, q) =
∫ ∞

0 φ(y; µ, v−1/qσ) fV(v) dv =
∫ ∞

0
v1/q

σ φ
(

y−µ

σv−1/q

)
fV(v) dv. where

fV es la fdp chi-square distribution with ν degrees of freedom. The result follows
using transformation t = v1/q and direct integral computations;

3. Making q = 2 we obtain the density student’s with ν degrees of freedom.

Remark 2. Proposition 3 shows first that the generalized student’s t distribution contains the
normal distribution as a special case (q→ ∞). Moreover, it also shows that the generalized student’s
t distribution is a scale mixture between the normal and the chi-square distribution with ν degrees of
freedom. The third property shows that for q = 2, the density function for the generalized student’s
t coincides with the density function of the student’s t distribution with ν degrees of freedom.
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2.5. Moments

In this subsection the moments of the generalized student’s t distribution are deduced.

Proposition 4. Let X ∼ GT(0, 1, ν, q) and Y ∼ GT(µ, σ, ν, q). Hence, for r = 1, 2, 3, .... and
q > 2r/ν, we have that

µ2r = E
(

X2r
)
=

ν
2r
q 22r q+1

q (2r)!Γ( ν
2 −

2r
q )

r!Γ(ν/2)
µ2r−1 = E

(
X2r−1

)
= 0

and

E(Yr) =
r
∑

k=0

(
r
k

)
σkµr−kµk.

Proof. Representation (13) with µ = 0 and σ = 1, and since W and V are independent, we
have that

µ2r = E(X2r) = E

((
W

(V/ν)1/q

)2r
)

= E
(

W2r
)

E
(
(V/ν)−2r/q

)
.

Moreover, since E
(
(V/ν)−2r/q

)
= ν2r/qE

(
V−2r/q

)
= ν2r/q2−2r/q Γ

(
ν
2−

2r
q

)
22r/qΓ(ν/2)

, q > 2r/ν

and E
(
W2r) = (2r)!

2rr! are even moments for the standard normal distribution, the second
result follows directly by applying the formula to the stochastic representation (13).

Corollary 2. Let Y ∼ GT(µ, σ, ν, q), and hence,

E(Y) = µ and Var(Y) =
2σ2ν2/q22 q+2

q Γ
(

ν
2 −

2
q

)
Γ(ν/2)

, q > 4/ν. (17)

Proposition 5. Let Y ∼ GT(µ, σ, ν, q), so that the coefficient of skewness and kurtosis are:

γ1 = 0 (18)

and

β2 =
3Γ(ν/2)Γ

(
ν
2 −

4
q

)
Γ2
(

ν
2 −

2
q

) , q > 8/ν. (19)

Proof. The standardized coefficient of skewness and kurtosis are

γ1 =
µ3 − 3µ1µ3 + 2µ3

1
(µ2 − µ2

1)
3/2

and

β2 =
µ4 − 4µ1µ3 + 6µ2

1µ2 − 3µ4
1

(µ2 − µ2
1)

2

and the result follows after replacing the even moments derived in Proposition 4.

Figure 4 shows the kurtosis the GT distribution compared with T distribution for
different values of q and ν = 8.

It can be seen that the generalized student’s distribution has a greater kurtosis than
the student’s distribution for q less than 2, then for data with high kurtosis, it would be
recommended to use the generalized student’s distribution.
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Figure 4. Kurtosis of the GT distribution compared with T distribution for ν = 8.

3. Inference
3.1. Moment Estimators

In the following proposition we present the moment estimators of µ, σ, and q for
ν = 8.

Proposition 6. Where Y1, . . . , Yn a random sample from the distribution of the random variable
Y ∼ GT(µ, σ, ν, q), so that the moment estimators of θ = (µ, σ, ν, q) for q > 1 are given by

µ̂M = Y, σ̂M =

 Γ(ν/2)S2

2ν2/q̂M 22 q+2
q Γ( ν

2−
2

q̂M
)

1/2

and γ2 =
3Γ(ν/2)Γ( ν

2−
4

q̂M
)

Γ2( ν
2−

2
q̂M

)
, ν > 8

q o ν > 8 and

q < 1

where Y, S and γ2 are the mean, standard deviation, and sample kurtosis coefficient.

Proof. Using (17) it follows that

µ = E(Y) and σ2 =
Γ(ν/2)Var(Y)

2ν2/q4
q+2

q Γ
(

ν
2 −

2
q

) (20)

replacing γ2 in (19) one obtains the numerical equation

γ2 =
3Γ(ν/2)Γ( ν

2 −
4

q̂M
)

Γ2( ν
2 −

2
q̂M

)
(21)

and solving (21) for q̂ and ν̂ one obtains q̂M and ν̂M. Further, replacing in (20) q by q̂M, ν by
ν̂M, E(Y) by Ȳ and Var(Y) by the sample variance S2, we obtain the moment estimators
(µ̂M, σ̂M, ν̂M, q̂M) for (µ, σ, ν, q).

3.2. Maximum Likelihood Estimation

Given a random sample Yi ∼ GT(µ, σ, ν, q), for i = 1, .., n, the log-likelihood function
can be written as
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l(µ, σ, ν, q) = −nlog(σ)− nν

2
log(2)− n

q
log(ν)− nlog(Γ(ν/2))− n

2
log(2π) +

n

∑
i=1

logG(yi) (22)

where G(yi) = G(yi; µ, σ, ν, q) =
∫ ∞

0 v
ν−2

2 + 1
q e−

1
2 [
(

yi−µ
σ

)2
( v

ν )
2
q +v]dv and hence the maximum

likelihood equations are given by

n

∑
i=1

G1(yi)

G(yi)
= 0 (23)

n

∑
i=1

G2(yi)

G(yi)
=

n
σ

(24)

n

∑
i=1

G3(yi)

G(yi)
=

nlog(2)
2

+
n
qν

+
nΨ(ν/2)

2
(25)

n

∑
i=1

G4(yi)

G(yi)
= −nlog(ν)

q2 (26)

where, G1(yi) = ∂
∂µ G(yi), G2(yi) = ∂

∂σ G(yi), G3(yi) = ∂
∂ν G(yi). G4(yi) = ∂

∂q G(yi). The
expressions for G1(yi), G2(yi), G3(yi) and G4(yi) should be given,

G1(yi) =
1

σ2ν
1
q

∫ ∞

0
(yi − µ)ti(ν)dv (27)

G2(yi) =
1

σ3ν
2
q

∫ ∞

0
(yi − µ)2ti(ν)dv (28)

G3(yi) =
1

qσ2ν

∫ ∞

0
[
v
ν

2/q
(yi − µ)2 + qσ2ν log(v)ti(ν)dv (29)

G4(yi) = − 1
σ2q2

∫ ∞

0
[σ2 log(v)− log(v/q)(v/q)2/q(yi − µ)2]ti(ν)dv, (30)

where ti(ν) = v
ν−2

2 + 1
q e−

1
2 [
(

yi−µ
σ

)2
( v

ν )
2
q +v].

Using numerical procedures Equations (27)–(30) can be solved.

Proposition 7. Let Y1, . . . , Yn a random sample from the distribution of random variable Y ∼
GT(µ, σ, ν, q). Then,

Y =

(
Ȳ− µ

S2/qσ1−2/q

)√
n ∼ GT(0, 1, ν, q) (31)

Proof. The random variable Z and T

Z =
Ȳ− µ

σ
√

n
∼ N(0, 1)

T =
(n− 1)S2

σ2 ∼ χ2
(n−1)

then
Y =

Z
(T/(n− 1))1/q ∼ GT(0, 1, ν, q)

replacing the result is obtained.
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Proposition 8. Let Y1, . . . , Yn a random sample from the distribution of random variable Y ∼
GT(µ, σ, ν, q). Then, a level (1− α) confidence interval for the population mean is

[Ȳ− t′1−α/2
S2/qσ1−2/q
√

n
, Ȳ + t′1−α/2

S2/qσ1−2/q
√

n
],

where t′1−α/2 is the percentile of order 1− α
2 of GT distribution.

Proof. The result is obtained from the previous proposition.

3.3. Simulation Study

To generate random numbers from the GT(µ, σ, 8, q) distribution we will use the
stochastic representation given in (13) and the following algorithm:

1. Simulate Z ∼ N(0, 1);
2. Simulate V ∼ χ2(ν);
3. Compute Y = σ Z

(V/ν)1/q + µ.

It then follows that Y ∼ GT(µ, σ, ν, q).
Table 3 shows the parameter estimates obtained by the maximum likelihood method

(MLE) through 1000 replicates of sizes 50, 100, 150, and 200 with their corresponding
standard errors, mean length of the interval, and empirical coverage.

Table 3. Simulation of 1000 iterations of the model GT(µ, σ, 8, q).

n µ σ q µ̂ sd(µ̂) ali(µ̂) c(µ̂) σ̂ sd(σ̂) ali(σ̂) c(σ̂) q̂ sd(q̂) ali(q̂) c(q̂)

50 0.5 1 1 0.4992 0.1665 0.6527 96.10 0.9958 0.1760 0.6899 94.80 1.1558 0.5080 1.9914 92.80
100 0.5018 0.1148 0.4502 94.50 1.0012 0.1237 0.4851 94.30 1.0961 0.3319 1.3009 94.20
150 0.5045 0.0965 0.3785 95.50 1.0016 0.0967 0.3791 95.20 1.0542 0.2576 1.0098 95.00
200 0.5003 0.0801 0.3138 95.80 1.0018 0.0822 0.3221 95.10 1.0442 0.1908 0.7481 94.70

50 1 1 1 1.0002 0.1649 0.6462 95.90 0.9963 0.1723 0.6756 94.90 1.1580 0.5084 1.9931 92.80
100 1.0007 0.1190 0.4664 95.10 1.0003 0.1277 0.5005 94.80 1.0948 0.3340 1.3094 94.10
150 1.0045 0.0966 0.3785 95.50 1.0016 0.0967 0.3790 95.20 1.0540 0.2575 1.0093 95.00
200 1.0003 0.0801 0.3138 95.80 1.0018 0.0822 0.3222 95.10 1.0442 0.1908 0.7479 94.70

50 1 2 1 0.9998 0.3311 1.2979 96.00 1.9893 0.3506 1.3743 94.90 1.1511 0.4939 1.9363 92.90
100 1.0037 0.2290 0.8978 94.60 2.0035 0.2467 0.9670 94.70 1.0964 0.3247 1.2729 93.80
150 1.0094 0.1929 0.7560 95.50 2.0043 0.1935 0.7584 94.90 1.0552 0.2548 0.9989 95.20
200 1.0004 0.1601 0.6276 95.80 2.0044 0.1639 0.6425 94.90 1.0445 0.1893 0.7420 94.70

50 1 3 1 0.9337 0.5396 2.1153 97.70 2.7991 0.8856 3.4714 93.60 1.0815 0.5529 2.1675 94.80
100 1.0042 0.3448 1.3516 94.70 3.0016 0.3818 1.4966 94.90 1.0970 0.3373 1.3222 94.10
150 1.0135 0.2893 1.1342 95.10 3.0082 0.2903 1.1381 95.10 1.0568 0.2563 1.0045 95.00
200 0.9997 0.2416 0.9472 95.70 3.0059 0.2630 1.0308 96.60 1.0456 0.1950 0.7643 95.20

50 0.5 0.5 1 0.5000 0.0825 0.3235 95.90 0.4986 0.0873 0.3422 94.70 1.1629 0.5318 2.0848 93.60
100 0.5003 0.0577 0.2261 94.70 0.5006 0.0620 0.2431 94.40 1.0954 0.3285 1.2878 94.10
150 0.5020 0.0482 0.1889 95.30 0.5007 0.0484 0.1899 94.80 1.0544 0.2573 1.0086 95.00
200 0.5000 0.0400 0.1567 96.00 0.5011 0.0412 0.1617 95.00 1.0445 0.1935 0.7585 94.60

50 1 0.5 1 1.0000 0.0825 0.3236 95.90 0.4987 0.0872 0.3420 94.70 1.1662 0.5413 2.1219 93.60
100 1.0004 0.0576 0.2260 94.60 0.5006 0.0620 0.2431 94.40 1.0960 0.3286 1.2880 94.10
150 1.0020 0.0482 0.1890 95.50 0.5008 0.0483 0.1895 94.70 1.0547 0.2572 1.0081 95.00
200 0.9999 0.0400 0.1567 95.90 0.5010 0.0414 0.1621 94.90 1.0461 0.1955 0.7663 94.70

50 1 0.5 0.5 1.0002 0.0695 0.2725 95.40 0.5045 0.1138 0.4462 94.70 0.5252 0.1355 0.5312 95.10
100 1.0005 0.0479 0.1879 94.00 0.5003 0.0798 0.3127 94.80 0.5131 0.0750 0.2941 94.80
150 1.0019 0.0389 0.1527 95.70 0.5022 0.0609 0.2388 94.10 0.5070 0.0587 0.2301 94.90
200 1.0003 0.0327 0.1281 95.20 0.5016 0.0544 0.2131 96.10 0.5070 0.0520 0.2038 94.60

50 0.5 0.5 0.5 0.5001 0.0695 0.2724 95.40 0.5040 0.1139 0.4467 94.70 0.5249 0.1355 0.5313 95.10
100 0.5007 0.0481 0.1885 94.20 0.5011 0.0800 0.3137 94.80 0.5135 0.0752 0.2949 94.80
150 0.5020 0.0390 0.1529 95.70 0.5021 0.0610 0.2393 94.20 0.5070 0.0587 0.2303 94.90
200 0.5001 0.0329 0.1290 95.10 0.5016 0.0544 0.2132 96.00 0.5073 0.0520 0.2038 94.60

sd corresponds to the standard deviation, average length of interval (ali) is the average length of the confidence
interval and c the empirical coverage of the respective EMV of the parameters, based on a 95% confidence interval.

4. Two Illustrative Datasets
Illustrative Datasets 1

We consider the data that were first presented in Jander [16], from an entomology
experiment. with respect to ants. A total of n = 730 ants were individually placed in the
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center of an arena. The measurements correspond to the initial direction in which they
moved relative to a visual stimulus in a 180 degree angle from zero direction, rounded to
the nearest 10 grades. Figure 5 depicts the histogram of these data, including estimated den-
sities under a T, ES, MS, SGT, DSL and GT model, using maximum likelihood. Figure 6
shows the qqplots for T, ES, MS and GT models. We use the AIC (Akaike Information
Criterion), which penalizes the maximized likelihood function by the excess of model
parameters (AIC = −2log(lik) + 2k, where k is the number of unknown parameters being
estimated, see Akaike [17]). Table 4 shows the descriptive statistics of the database, while
Table 5 presents the Kolmogorov -Smirnov (KSS) statistic, corresponding values for the
four given models, which also indicates that the best fit is presented by the GT model.
Table 6 shows a 95% confidence interval for the population mean using generalized Student’s
t-quantiles. Moreover, Figure 7 depicts the empirical cumulative distribution function (cdf)
and the estimated cdfs for T, ES, MS and GT models.

The estimators of moments for the dataset are:

µ̂M = 170.438;

σ̂M = 47.551;

ν̂M = 9.3458;

q̂M = 0.4868,

which will be used as starting points in obtaining the EMVs.

Table 4. Descriptive statistics the for dataset.

n X S
√

b1 b2

730 176.438 62.6434 −0.2057 4.6071

Table 5. Parameter estimates, AIC and KSS values for T, MS, ES, and GT models for the ants dataset.

Parameter T MS ES GT

µ 181.58 (1.265) 181.67 (1.217) 181.321 (0.094) 181.4824 (1.1466)
σ 26.142 (1.712) 16.7 (0.878) 1.336 (0.108) 33.4038 (1.5802)
ν 1.47 (0.134) 18.7203 (0.0029)
q 1.50 (0.034) 0.4085 (0.0013)
α 1.907 (0.094)
β 40.084 (4.719)

AIC 7928.448 7921.282 7914.642 7899.405

KSS 0.1174 0.0781 0.1000 0.0644

p-value 0.0005 0.0117 0.0007 0.4850

Figure 8 depicts the histogram of these data, including estimated densities under a
SGT, DSL and GT model, using maximum likelihood. We use the Akaike information
criterion (AIC) and Bayesian Information Criterion (BIC), see Schwarz [18], which is defined
as (BIC = −2log(lik) + klog(n), where k is the number of estimated parameters and n is the
sample size. Table 7 shows these results.

Table 6. The 95 percent confidence interval for the mean of dataset using T and GT quantiles T.

Distribution Lower Limit Upper Limit

T 170.5121 182.4633

GT 166.8242 186.1511
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Figure 5. Histogram (left) and Comparison the tails (right) for ants dataset. Overlaid on top is the
generalized student’s t density with parameters estimated via ML (solid line), the modified slash
density (dashed line),the extended slash density (dotted line), the student’s t density (dashed line).
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Figure 6. Q-q plots: student’s t (a), modified slash (b), extended slash (c), generalized student’s t (d).
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Figure 7. Empirical cdf with estimated T c.d.f. (yellow color),estimated MS cdf (red color), estimated
ES c.d.f. (green color), and estimated GT c.d.f. (blue color).

Table 7. Parameter estimates, AIC and BIC values for GSLT, DSL and GT models for the ants
dataset.

Parameter DSL GSLT GT

µ 181.6341 (1.2443) 180.0680 (0.0169) 181.4824 (1.1466)
σ 11.9447(1.10722) 2.5871 (0.0168) 33.4038 (1.5802)
ν 2.2523 (0.0168 18.7203 (0.0029)
q1 1.6916 (0.2390) 0.4774 (0.0069) 0.4085 (0.0013)
q2 1.6911 (0.2788) 0.4085 (0.0013)
α 12.9451 (0.0169)
β 28.0256 (0.0170)

AIC 7931.313 7915.774 7899.405

BIC 7949.745 7943.333 7902.14
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Figure 8. Histogram (left) and comparison the tails (right) for ants dataset. Overlaid on top is the
generalized student’s t density with parameters estimated via ML (solid line), the modified slash
density (dashed line), the extended slash density (dotted line),the student’s t density (dashed line).

5. Quantile Regression

The quantile regression is used when the study objective focuses on the estimation of
the different percentiles (such as the median) of a population of interest. An advantage
of using quantile regression to estimate the median, rather than ordinary least squares
regression current file (to estimate the mean), is that the quantile regression will be more



Symmetry 2021, 13, 2444 15 of 18

robust in the presence of outliers. Quantile regression can be seen as a natural analogue
in regression analysis when using different measures of central tendency and dispersion,
in order to obtain a more complete and robust analysis of the data. Another advantage of
this type of regression lies in the possibility of estimating any quantile, thus being able to
assess what happens with extreme values of the population.

5.1. Quantile Regression Uni-Dimensional

Translating this concept of quantile to the regression line, we obtain the linear quantile
regression.

If we assume that
Yi = β0,τ + β1,τXi + εi,τ,

∀iε(1, ..., n)with τε(0, 1) and that the conditional expected value is not necessarily zero, but the
τ-ésimo quantile of the error with respect to the regressive variable is zero (Qτ(εi,τ/X) = 0),
then the τ-ésimo quantile of Yi with respect to X can be written as

Qτ(Yi/X) = β0,τ + β1,τXi

The estimates of β0,τ y β1,τ are found by

β̂τ = arg min
βτε<2

(
∑

Yi≥A
τ|Yi − β0,τ − β1,τXi|+ ∑

Yi<A
(1− τ)|Yi − β0,τ − β1,τXi|

)
, (32)

being βτ = (β0,τ , β1,τ) y A = β0,τ + β1,τXi.
To estimate the parameters, the function described in the equation should be mini-

mized. For this, there is a way to approach the minimization problem as a linear program-
ming problem. This allows us to obtain the regression line for the value of a certain quantile.
Therefore, the first of the limitations will be solved raised at the end of the previous section,
for simple linear regression. Furthermore, since the quartiles have robust properties, it is
also possible to solve the second of the limitations that arose with the classical regression
line.

5.2. Quantile Regression Student’s t

In this case, in the regression equation

Yi = β0,τ + β1,τXi + εi,τ ,

∀iε(1, ..., n) the response variable Y ∼ T(µ, σ, ν), it is possible to generate random numbers
for the T(µ, σ, ν) distribution, which the parameters µ, σ and ν they are estimated using
maximum likelihood for the data. Then, one way to obtain the quantiles of Y is using the
stochastic representation.

1. Simulate W ∼ N(0, 1);
2. Simulate T ∼ χ2(ν);

3. Compute Y1 = σ
(

W
(T/ν)1/2

)
+ µ.

Using this new variable Y1 quantile regression is applied to the data (X, Y1).

5.3. Quantile Regression Slash Logistic

In this case, in the regression equation

Yi = β0,τ + β1,τXi + εi,τ ,

∀iε(1, ..., n) the response variable Y ∼ GSLOG(µ, σ, q), it is possible to generate random
numbers for the SLOG(µ, σ, q) distribution, which the parameters µ, σ, and q they are
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estimated using maximum likelihood for the data. Then, one way to obtain the quantiles
of Y is using the stochastic representation.

1. Simulate W ∼ U(0, 1);

2. Compute T = µ + σ log
(

W
1−W

)
;

3. Simulate U ∼ U(0, 1);
4. Compute Y2 = T

U1/q .

Using this new variable Y2 quantile regression is applied to the data (X, Y2).

5.4. Quantile Regression Generalized Student’s t

In this case, in the regression equation

Yi = β0,τ + β1,τXi + εi,τ ,

∀iε(1, ..., n) the response variable Y ∼ GT(µ, σ, ν, q), it is possible to generate random
numbers for the GT(µ, σ, ν, q) distribution, which the parameters µ, σ, ν, and q they are
estimated using maximum likelihood for the data. Then, one way to obtain the quantiles
of Y is using the stochastic representation given in (13)

1. Simulate W ∼ N(0, 1);
2. Simulate T ∼ χ2(ν);

3. Compute Y3 = σ
(

W
(T/ν)1/q

)
+ µ.

Using this new variable Y3 quantile regression is applied to the data (X, Y3).

5.5. Application 2

We consider now data concerning the body mass index and Lean Body Mass of 202
Australian athletes. The data are available for download at http://azzalini.stat.unipd.it/
SN/index.html (accessed on 15/10/2021). Table 8 shows statistics for these data for which
the maximum likelihood estimators of (β0, β1) and its corresponding coefficients AIC and
BIC fit models for data. are shown in Tables 9 and 10, respectively.

Table 8. Summary statistics for dataset of the body mass index and Lean Body Mass of 202 Aus-
tralian athletes.

Data n W SW
√

β1 β2

BMI 202 22.9264 2.8664 0.9395 5.1323

LBM 202 64.8767 13.0702 0.3558 2.7326

Table 9. Coefficients AIC and BIC fit models for dataset of the body mass index and Lean Body Mass
of 202 Australian athletes for quantile regression student’s t (T), quantile regression slash logistic
(SLOG) and quantile regression generalized student’s t (GT).

Coef. T SLOG GT

AIC 915.309 1252.004 904.573

BIC 925.234 1261.928 914.498

http://azzalini.stat.unipd.it/SN/index.html
http://azzalini.stat.unipd.it/SN/index.html
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Table 10. Parameter estimates and standard deviation values for quantile regression coefficients
50 student’s t (T) and generalized student’s t (GT) models for the dataset.

Distribution Coef. Est. SD t-Value P(>|t|)

T β0 17.5068 1.1938 14.6641 0.0000
β1 0.0742 0.0172 14.6641 0.0002

SLOG β0 8.7411 1.6237 5.3818 0.0000
β1 0.2795 0.0279 9.9866 0.0000

GT β0 17.1050 1.2414 13.7781 0.0000
β1 0.0802 0.0172 4.6665 0.0001

In Figure 9 the quantile regression of the data is shown using the T, SLOG and GT
models.
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Figure 9. Quantile regression for BMI and LBM data with student’s t distribution (left), slash logistic distribution (center)
and generalized student’s t distribution (right).

6. Discussion

We have introduced a new distribution called the generalized student’s t distribution
(GT). The main idea is to replace the exponent 1/2 of the chi-square distribution by a
exponent 1/q where q > 0 is the kurtosis parameter. We consider the density function of
the distribution and study some of its properties, as well as its moments. The parameter es-
timation was analyzed using the method of moments and maximum likelihood estimation.
We present two illustrations, in the first a set of real data are studied where we show that
the GT distribution fits the data better than the T, ES, MS, SGT, and DSL distributions. In
the other application, we use quantile regression to fit a linear model to a paired dataset
where the response variable shows high kurtosis where it is shown that the GT distribution
fits better than the T and SLOG distributions to model the residuals.
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