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Abstract: A Distributed Denial of Service (DDoS) attack is a type of cybercrime that renders a target
service unavailable by overwhelming it with traffic from several sources (attack nodes). In this paper,
we focus on DDoS attacks on a computer network by spreading bots throughout the network. A
mathematical differential equation model is proposed to represent the dynamism of nodes at different
compartments of the model. The model considers two levels of security, with the assumption that
the recovered nodes do not return to the same security level. In previous models, the recovered
nodes are returned to be suspect on the same security level, which is an unrealistic assumption.
Moreover, it is assumed that the attacker can use the infected target nodes to attack again. With
such epidemic-like assumptions of infection, different cases are presented and discussed, and the
stability of the model is analyzed as well; reversing the symmetry transformation of attacking nodes
population is also proven. The proposed model has many parameters in order to precisely describe
the infection movement and propagation. Numerical simulation methods are used to solve the
developed system of equations using MATLAB, with the intention of finding the best counteraction
to control DDoS spread throughout a network.

Keywords: computer networks; differential equations; dynamic equilibrium; network servers; non-
linear dynamical systems; non-linear equations; numerical analysis; numerical simulation

1. Introduction

A Denial of Service attack (DoS attack) is a cyberattack in which the attacker attempts
to reduce the access or completely shut down the resources of either a machine or a network
and make them unavailable to their legitimate users [1]. The DoS attack has been known
to the scientific community since the early 1980s. In 1983, Gligor provided one of the first
descriptions of a DoS attack in an operating system [1].

A Distributed Denial of Service (DDoS) attack is a large-scale DoS attack in which the
attacking system consists of a large number of compromised computers that are targeting
the victim’s system. Usually, a DDoS attack consists of two stages; in the first stage, the
attacking system compromises a large number of vulnerable computers in order to use
them as a part of the attacking attempt during the second stage, wherein the victim’s
system is attacked.

A famous example was in July 2001, when more than 350,000 computers were infected
with the Code Red worm in less than 14 h. Then, the worm attempted to launch a DDoS
attack against the White House website. However, it was easy to disable the second stage
of the attack due to its features [2].

An example of a DoS attack is the SYN flood attack in which the attacker exploits part
of the Transmission Control Protocol (TCP), specifically, the handshake process. TCP is
a host-to-host communication protocol designed to send data packets over the Internet.
In this attack, the attacking system repeatedly sends SYN packets to the victim’s system
without responding to the SYN/ACK packets sent by the server. Thus, the connection
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remains in a half-open state, and due to a large number of connections, the victim’s system
cannot respond to any new connection. One of the early SYN flood attacks occurred in
September 1996, when an attacker shut down the New York City Internet service provider,
Panix, for almost a week [3]. In the first quarter of 2018, 57.3% of DDoS attacks were SYN
flood attacks [4].

Another protocol that can be misused to attack the victim’s system is the Internet
Control Message Protocol (ICMP). ICMP is a supporting protocol that is used to send error
messages and operational information. In the first quarter of 2018, 6.1% of DDoS attacks
were ICMP attacks [4]. An example of ICMP flooding attacks is the ping flooding attack,
which is one of the simplest DoS attacks. Ping is a computer network utility to test the
reachability of a host on a particular Internet Protocol (IP) address. In the ping flooding
attack, the attacking system repeatedly sends more ping packets than the victim’s system
can handle.

In general, DoS attacks can be categorized into two types: crash the service or flood
the service. In the “crash the service” attack, the attacking system aims to crash or freeze
the victim’s system by exploiting a software vulnerability it has. On the other hand, the
“flood the service” attack aims to flood the victim’s system with useless traffic in order to
overload the system and prevent the legitimate traffic from being served [5].

DDoS attacks can be very dangerous and may cause serious damage. In February 2000,
Yahoo, Buy.com, eBay, CNN.com, Amazon.com, Dell, ZDNet, E*Trade, and Excite were
targets of a 15-year-old Canadian nicknamed “Mafiaboy” [6,7]. The estimated damages of
the attack were $1.7 billion [8].

Another example is Dyn, an Internet performance management and web application
security company that was compromised in October 2016. During this time, their Managed
Domain Name System (DNS) infrastructure came under two DDoS attacks [9]. These
attacks were caused by up to 100,000 malicious endpoints in which a large amount of the
traffic originated from Mirai-based botnets [9]. Websites such as Twitter, Spotify, PayPal,
HSBC, BankWest, and Ticketmaster suffered from connectivity problems [10]. As a result,
8% of Dyn’s customers dropped the company as their DNS service provider [10].

The concept of symmetry is one of the important things that is closely related to
systems of differential equations in the theory of dynamical systems. This correlation was
discussed in [11–13]. According to [14], considering an autonomous dynamical system of
differential equation such as:

dω

dt
= F (ω), (1)

where ω ∈ Rn, and the transformation T : Rn → Rn is a reversing symmetry of (1) if:

d
dt
(T ω) = −F (T ω), (2)

In this case, system (2) is invariant with respect to the transformation (t, ω) →
(−t, T ), which holds in our attack population study and is described in the numerical
analysis section.

The problem of stability in dynamic systems is one of the fundamental problems in
various fields of science and modern technology [15,16]. Because of its importance, the
concept of symmetry and its impact on this work is referred to in the proposed study.

In this work, we use non-linear differential equation systems to describe and analyze
DDoS attacks on highly protected systems, such as main enterprise servers, and poorly
protected systems, such as normal users’ devices. We propose a new variable that illustrates
the degree of protection among those different system types in order to study the different
possible scenarios, which will lead to a more comprehensive description that covers the
impact of such attacks on targeted networks. We also prove that depending on backup
servers alone is not an efficient solution for this kind of attacks, but can actually complicate
the problem and waste resources. The research also describes the botnet and its effect on
the targeted devices, which is an important aspect of the work because we study both the
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attacking and the targeted societies. It is also significant to mention that our model is more
realistic than others because the recovered nodes will have high-level security after the
attack, which is an assumption that has usually been omitted in previous models. Moreover,
this dynamical system of equation is generally much faster than botnet simulation, although
the simulation is more accurate. Other techniques, such as machine learning, have been
used to learn the behavior of DDoS and botnet; however, they do not give the analytical
strength and dynamics of an equations model approach.

The rest of this paper is organized as follows: Background and relevant literature are
presented in Section 2. The model formulation, design, and basic properties are introduced
in Section 3. Section 4 presents the numerical analysis and discussion to approximate the
solution and show the stability and comparison. Finally, Section 5 concludes the paper.

2. Background

DDoS, or Distributed Denial of Service, is a common cyberattack technique that
hackers favor since it is not easy to counter, allows the attacker to remain undetected, and
has a low attack cost [17]. In a typical Denial of Service (DoS) attack, attackers attempt
to block one or more servers on the network from serving legitimate users. This type of
assault is known as Distributed Denial of Service (DDoS) since it originates from multiple
sources [18,19]. Attackers can infect a node by injecting a kind of Trojan horse, for example,
in a variety of ways, including embedding it in free games or media downloads, or by
attaching it to emails. The attacker then uses the injected code to interact with an external
entity, which starts a massive attack on the victim’s nodes, preventing them from working
and providing the necessary services correctly [20].

In DDoS, it is critical to look into the propagation characteristics of infection. Suspi-
cious objects can easily spread throughout a network, posing a major security risk. Because
the network infrastructure must be resistant to these attacks, the isolation of infected nodes
is essential for avoiding the spread of the infection. Infected nodes are disconnected from
the rest of the network until they can be recovered. So far, the containment strategy’s
intervention has resulted in significant modifications in infection solutions, which have
been fine tuned to protect systems from DDoS attacks. To comprehend and analyze these
attacks, mathematical models have been developed [21]. Because infection via malicious
objects is analogous to real diseases, the epidemic model has proven to be a valuable tool
for understanding how they propagate throughout a computer network [22,23]. Epidemio-
logical models are essentially dynamic since they divide the entire population of nodes
into multiple compartments, such as infected, susceptible, or recovered [24]. Differential
equations can describe the movement of a node from one compartment to another. This
system is then examined to see whether or not stability has been achieved. Another advan-
tage of such models is the inclusion of an epidemic threshold, which aids in determining
whether the epidemic will persist or go away [25].

Several researchers have utilized mathematical techniques to create a model of the
DDoS attack that can be investigated and analyzed. Mishra et al. [26] created a model to
simulate a cyberattack on an IoT network based primarily on the Mirai botnet malware.
They looked at the model’s equilibrium and stability and ran numerical simulations of
several scenarios. The model was created to analyze a DDoS attack spread on a targeted
network using a previously constructed IoT botnet and to explain the wireless transmission
of attacks in a network that could create a zombie army. Zhang [27] used a game theory-
based DDoS attack model to address some of the flaws in earlier assumptions, such as the
idea that defenders will utilize a fixed-probability defending technique or that they will not
adopt defense tactics because of defensive costs. Zhang [27] developed two smooth logistic
functions to represent the defender’s defense strategy options under various cost–benefit
scenarios in order to investigate the impact of defense strategy decisions on the dynamic
behavior of DDoS attacks. They also used the theory of differential stability to find the
attack threshold, which determines the conditions for a successful attack, and to prove the
attack equilibrium and the attack-free equilibrium.
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3. Model Formulation and Basic Properties

The model is designed by splitting the total network into attack and target populations
at time t. The attack population has the following two compartments: a percentage of the
susceptible, denoted by Sa(t), and a percentage of the infectious, denoted by Ia(t). Hence,
the total percentage of this population is Sa(t) + Ia(t) = 1.

On the other hand, we assumed that the target population was divided into two
sub-populations, which are:

(i) Low-security population, which has the following three compartments: a percentage
of the susceptible, denoted by Sl(t), a percentage of the infectious, denoted by Il(t),
and a percentage of the recovered, denoted by Rl(t);

(ii) High-security population, which has the following three compartments: a percentage
of the susceptible, denoted by Sh(t), a percentage of the infectious, denoted by Ih(t),
and a percentage of the recovered, denoted by Rh(t).

Therefore, the total percentage of this population is Sl(t) + Il(t) + Rl(t) + Sh(t) +
Ih(t) + Rh(t) = 1.

The equations of the model are obtained as follows: Nodes are recruited into the attack
population at a rate µ. Susceptible nodes of the attack population may be infected with
infectious nodes at rate βI, in which β is the effective contact rate. The attack population
is decreased by natural death, µ, and the recovery rate of target population nodes that
become suspicious again is ξ. Thus, the changing rate of the attack population for both
susceptible and infected nodes are given, respectively, by the following:

dSa

dt
= µ− βSa Ia − µSa + ξ Ia, (3)

dIa

dt
= βSa Ia − (ξ + µ)Ia.

Lemma 1. The transformation T : Rn → Rn is a reversing symmetry for an invariable attack
population, without disconnected nodes.

Proof. µ = 0 since the population is invariable, and all nodes are connected for the run
time of the DDoS attack. Now, by letting (t, x) → (−t, T x) for x = (Sa, Ia), where
T (Sa, Ia) = (Ia, Sa), then the proof of the lemma can clearly be concluded.

Target susceptible nodes may be infected at rate λ:

λ = β[Ia + η(Ih + Il)], (4)

where η is the modification parameter which accounts for the attack transmission of
the infected target nodes for the assumed reduction (in the Il and Ih compartments).
Furthermore, the infected nodes are recovered at a rate γl , and the recovered nodes are
fortified at a rate ξl in order to become suspect at a high-security level.

Thus, the changing rate of the low-security population of the susceptible, infected,
and recovered nodes are given, respectively, by the following:

dSl
dt

= −λSl ,

dIl
dt

= λSl − γl Il , (5)

dRl
dt

= γl Il − ξl Rl .

It is further assumed that the high-security level is imperfect, so that the high-security
susceptible nodes may be infected at a reduced rate (1− ε)λ, in which ε represents the
firewall efficiency.
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Additionally, the infected nodes are recovered at a rate γh, then these recovered nodes
may be infected again at a rate ξh.

Thus, the changing rate of the low-security population of the susceptible, infected,
and recovered nodes are given, respectively, by the following equations:

dSh
dt

= −λ(1− ε)Sh + ξhRh + ξl Rl ,

dIh
dt

= λ(1− ε)Sh − γh Ih,

dRh
dt

= γh Ih − ξhRh.

Combining the aforementioned derivations and assumptions, the model of the DDoS
attack on a computer network is expressed in the following equations, model (6), with a
schematic presentation in Figure 1, and a description of the parameters in Table 1.

dSa

dt
= µ− βSa Ia − µSa + ξ Ia,

dIa

dt
= βSa Ia − (ξ + µ)Ia,

dSl
dt

= −λSl ,

dIl
dt

= λSl − γl Il , (6)

dRl
dt

= γl Il − ξl Rl ,

dSh
dt

= −λ(1− ε)Sh + ξhRh + ξl Rl ,

dIh
dt

= λ(1− ε)Sh − γh Ih,

dRh
dt

= γh Ih − ξhRh.
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Figure 1. Schematic presentation of target and attacks populations of DDoS.

Combining the aforementioned derivations and assumptions, the model of the DDoS
attack on a computer network is expressed in the following equations, model (4), with a
schematic presentation in Figure 1, and parameters description in Table 1.

dSa

dt
= µ− βSa Ia − µSa + ξ Ia,

dIa

dt
= βSa Ia − (ξ + µ)Ia,
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dt

= −λSl ,

dIl
dt

= λSl − γl Il , (4)

dRl
dt

= γl Il − ξl Rl ,

dSh
dt

= −λ(1− ε)Sh + ξhRh + ξl Rl ,

dIh
dt

= λ(1− ε)Sh − γh Ih,

dRh
dt

= γh Ih − ξhRh.

Figure 1. Schematic presentation of the target and attack populations of DDoS.
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Table 1. Description of the system’s parameters (6).

Parameter Description

µ recruitment rate
η modification parameter that accounts for the attack

transmission of the infected target nodes for the assumed
reduction (in the Il , Ih compartments)

β effective contact rate
βh effective contact rate of the high-security population
βl effective contact rate of the low-security population
γh rate of recovered high-security infected nodes
γl rate of recovered low-security infected nodes
ξ recovery rate of target population nodes that become suspicious again
ξh rate of recovered high-security nodes that become infected again
ξl rate of recovered low-security nodes that become infected again
ε rate of firewall efficiency

The threshold valueR0 can be defined as the average number of secondary infection
nodes that a single infectious node can produce in a totally susceptible population. We first
obtain the basic reproduction number separately for each population. The value ofR0 for
the target high-security population, denoted by R0h, is defined as follows:

R0h =
β(1− ε)

γh
,

and for the target low-security population, we have:

R0l =
β

γl
,

and for the attack population, we have:

R0a =
β

ξ + µ
,

By combining these values, we can get a single threshold value as in the host–vector
models in epidemiology with the use of the notation in [28]. The non-negative matrix,
F , of the new infection terms, and the V -matrix of the transition terms associated with
model (6) are given, respectively, by the following equations:

F =


λ(1− ε)Sh

λSl

βSa Ia

 and V =


γh Ih

γl Il

(ξ + µ)Ia

,

the corresponding derivative of the two vector-valued functions, F and V , are the following:

F =


−β (ε− 1) −βη (ε− 1) −βη (ε− 1)

β βη βη

0 0 β


and V =


γh 0 0

0 γl 0

0 0 µ + ξ


It then follows that the control reproduction number [29], denoted by ρ(FV−1),

in which
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FV−1 =



β(1−ε)
γh

βη(1−ε)
γl

βη(1−ε)
µ+ξ

β
γh

βη
γl

βη
µ+ξ

0 0 β
µ+ξ


,

ρ is defined as the spectral radius (maximum eigenvalue) of FV−1, is given by

R0 = ρ(FV−1) = max{ β

µ + ξ
,

β(1− ε)

γh
+

β

γl
}

= max{R0a, R0h + R0l}.

In the next subsection, the stability of the DDoS model is introduced. Moreover, it is
shown that the threshold value R0a alone can completely determine the overall dynamics
of the model (6), and there is no need to consider the value ofR0. On the other hand, if we
have a perfect security level (ε = 1), then the attack effect will disappear with time.

3.1. Local Stability of Infection-Free Equilibrium

In this subsection, we will investigate the stability of the proposed model (6). Further-
more, we will analyze the effect of the firewall efficiency at the high-security level ε. The
free infection point of model (6) is as follows:

P0 = (S0
a , I0

a , S0
l , I0

l , R0
l , S0

h, I0
h , R0

h) = (S0
a , 0, S0

l , 0, 0, S0
h, 0, 0),

in which S0
a = 1 and S0

l + S0
h = 1. The variables (Sa, Ia, Sl , Il , Rl , Sh, Ih, Rh) of model (6)

are non-negative with time. In other words, the solutions of the model (6) system with
positive initial data will remain positive at time t. This finding is shown in Theorem 1.

Theorem 1. The closed set D = {x = (Sa, Ia, Sl , Il , Rl , Sh, Ih, Rh) ∈ R8
+ : xi ≥ 0, Sa + Ia ≤

1 and Sl + Il + Rl + Sh + Ih + Rh ≤ 1} is positive invariant.
The proposed model (see Figure 1), given by model (6), is locally asymptotically stable (LAS)

at the infection-free equilibrium P0 ifR0 ≤ 1, and unstable ifR0 > 1.

The existence of endemic equilibria (that is, equilibria where the infected compart-
ments of the model are non-zero) of model (6) is established. Let
P∗ = (S∗a , I∗a , S∗l , I∗l , R∗l , S∗h , I∗h , R∗h) represent any arbitrary endemic equilibrium point of
model (6). To simplify the proposed model, we can solve the system of the attack population
by solving the first and second equations in model (6) and get the following:

dIa
dt = β(1− Ia)Ia − (ξ + µ)Ia and Sa = 1− Ia.

Hence, the solution is as follows:

Ia =
(ξ + µ− β) exp[(ξ + µ− β)(t− Ia(0))]

β exp[(ξ + µ− β)(t− Ia(0))] + 1
, (7)

Sa = 1− (ξ + µ− β) exp[(ξ + µ− β)(t− Ia(0))]
β exp[(ξ + µ− β)(t− Ia(0))] + 1

,

Since the formula we get is explicit, we can easily study the stability of the attack
population by taking the limit of (7):

lim
t→∞

(ξ + µ− β) exp[(ξ + µ− β)(t− Ia(0))]
β exp[(ξ + µ− β)(t− Ia(0))] + 1

=
β− ξ − µ

β
(8)

= I∗, (9)
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if ξ + µ− β < 0.

Furthermore, let

λ∗ = β(I∗a + η(I∗h + I∗l )). (10)

WhenR0 > 1, then for a long time t (as t goes to infinity), the low-security population
will be S∗l = I∗l = R∗l = 0 (at endemic equilibria P∗), because the attack consumes all
devices in the low-security population. On the other hand, the high-security population at
the steady state of the system is the following:

I∗h = ξh(1−ε)λ∗
λ∗(1−ε)(γh+ξh)+ξhγh

,

substitute model (6) in order to get:

λ∗ = β

(
I∗a +

ηξh(1− ε)λ∗

λ∗(1− ε)(γh + ξh) + ξhγh

)
, (11)

rewrite (11) as the following:

aλ∗2 + bλ∗ + c = 0, (12)

in order to get:

(1− ε)(γh + ξh)λ
∗2 − [−ξhγh + βI∗a (γh + ξh)(1− ε) + ηβξh(1− ε)]λ∗ − βξhγh I∗a = 0,

(1− ε)(γh + ξh)λ
∗2 − [−ξhγh + [(β− ξ − µ)(γh + ξh) + ηβξh](1− ε)]λ∗ − βξhγh

(
1− 1

R0a

)
= 0, (13)

Based on (13), we can obtain the result in Theorem 2.

Theorem 2. Model (6) has

• a unique endemic equilibrium if c < 0⇔ R0a > 1;
• a unique endemic equilibrium if (b < 0 and c = 0) or b2 − 4ac = 0;
• two endemic equilibria if c > 0, b < 0 and b2 − 4ac > 0;
• no endemic equilibrium otherwise.

Case 1 shows that the model has a unique endemic equilibrium whenever R0a > 1.
While Case 3 shows that backward bifurcation is possible when

Rc
0 = 1− [−ξhγh + βI∗a (γh + ξh)(1− ε) + ηβξh(1− ε)]2

4(1− ε)(γh + ξh)βξhγh(1/R0h)
,

Backward bifurcation is where locally asymptotically stable infection-free equilibrium
and locally asymptotically stable endemic equilibrium co-exist.

3.2. No High-Security Level

In this subsection, we will analyze the proposed model when ε = 0 (if there is no
high-security level, the firewall efficiency drops). In this case, the recovered nodes return
to be infected again. But when ε 6= 0, the recovered nodes in the low-security level return
to the S compartment in the high-security level.

If ε = 0, we can conclude about parameters in the high-security population: the
parameters in the target population are equal, i.e., ξl = ξh and γl = γh, which means that
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the attack is equally effective on both low and high populations. The system of the target
population becomes:

dSt

dt
= −λSt + ξtRt,

dIt

dt
= λSt − γt It,

dRt

dt
= γt It − ξtRt,

(14)

in which λ = β(Ia + η It), St = Sl + Sh, It = Il + Ih, and Rt = Rl + Rh. In addition, the
system of the attack population is still the same:

dSa

dt
= µ− βSa Ia − µSa + ξ Ia,

dIa

dt
= βSa Ia − (ξ + µ)Ia.

The system is infection-free (weak attack) at P0 = (1, 0, 1, 0, 0). The system is infected
(successful attack) at the steady state, since Rt = 1− St − It and from the second equation
of (system (14)):

St =
γt It

β(I∗ + η It)
, (15)

substitute Equation (15) in the first equation of (14) to get the value of It, which is the
positive solution of the following quadratic equation:

−βη(γt + ξt)I2
t − (βη + γtξt + βI∗a − ξtβ)It + ξtβI∗a = 0 (16)

Clearly, there is a unique positive solution for Equation (16) when I∗a 6= 0 (infected so-
lution), then I0

t is the positive solution of Equation (16). Therefore, P∗ = (S∗a , I∗a , S∗t , I∗t , R∗t )
is the infected solution. It can be noticed that from Equation (16), if I∗a = 0, then I∗t = 0.
Thus, the reproduction number is as follows:

R0 = max
{

β
γt

, β
ξ+µ

}
where β

γt
= R0t and β

ξ+µ = R0a.

Theorem 3. The infection-free equilibrium P0 of system (17) is locally asymptotically stable in D
ifR0 < 1 and is unstable ifR0 > 1.

J(P0) =

−ξt −ξt − β η −β
0 β η − γt β
0 0 β− µ− ξ

, (17)

in which J is the Jacobian matrix. The characteristic equation for this matrix is given
as follows:

(ν + ξt)(ν− β η + γt)(ν− β + µ + ξ) = 0

The roots of the characteristic equation are the eigenvalues of Equation (17), in which
ν1 = −ξt, ν2 = β η − γt, and ν3 = β− (µ + ξ). The second and third eigenvalues become
negative when the following conditions are met: β η − γt < 0 and β− (µ + ξ) < 0, which
are equivalent to both R0t < 1 and R0a < 1, implyR0 < 1.

Theorem 4. The infection-free equilibrium P∗ of system (18) is locally asymptotically stable if
R0 > 1.

J(P∗) =

−β(I∗ + η I∗t )− ξt −βη − ξt −βS∗t
β(I∗ + η I∗t ) βηS∗ − γt βS∗t

0 0 −2βI∗a + β− (ξ + µ)

, (18)
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One of the eigenvalues is −2βI∗a + β− (ξ + µ), which is reduced to become −(β−
(ξ + µ)) < 0, and is equivalent to R0a > 1. The other two eigenvalues are the roots of the
characteristic equation of (17):

ν2 + [β(I∗a + η I∗t )− βηS∗t + γt]ν + β(I∗a + η I∗t )(−βηS∗t + γt) + β(β + ξt)(I∗a + η I∗t ) = 0. (19)

To get the negative sum and the positive product of the roots in Equation (19), the

following condition must be met: −βηS∗a + γt < 0, so, 1 <
βηS∗a

γt
< R0t.

Hence, the endemic equilibrium P∗ is locally asymptotically stable ifR0 > 1.

Theorem 5. The positive equilibrium point P∗ = (S∗t , I∗t , R∗t ) is globally asymptotically stable
wheneverR0 > 1.

Proof.

L(St, It) = St − S∗t ln St + It − I∗t ln It

∂L
∂t

= S′t −
S∗t
St

S′t + I′t −
I∗t
It

I′t

= −λSt + ξtRt −
S∗t
St

(−λSt + ξtRt)

+ λSt − γt It −
I∗t
It
(λSt − γt It)

= ξtRt + λS∗t − ξtRt
S∗t
St
− γt It −

I∗t
It

λSt − γt I∗t

= ξtRt

(
1− S∗t

St

)
+ λS∗t

(
1− I∗t

It

)
+ γt I∗t

(
−1− It

I∗t

)
.

Let Γ(Rt, λ) = max{ξtRt, λS∗t , γt I∗t }, x =
S∗t
St

and y =
I∗t
It

∂L
∂t

= Γ(1− S∗t
St

+ 1− I∗t
It
− 1− It

t I∗
)

= Γ
(

2− y− 1
y

)
+ Γ(−1− x). (20)

Since the arithmetic mean is not less than the geometric mean, then 2− x− 1
x ≤ 0,

and the equality holds if and only if x = 1→ It = I∗t . The time derivative of the Lyapunov
function is negative from Equation (20). Thus, it follows from La Salle’s Invariance Principle
that the steady-state point P∗ is globally asymptotically stable [30].

If we ignore the effect of the target population that attacks used, i.e., η = 0, then in
this case λ = βIa, substitute in (14); the obtained system will have the same result as that
which Bimal et al. achieved [22], and the attack population will still be the same as in (3).

dSt

dt
= −βIaSt + ξtRt,

dIt

dt
= βIaSt − γt It, (21)

dRt

dt
= γt It − ξtRt,

System (21) admits the trivial infection-free equilibrium P0 = (S0
t = 1, I0

t = 0, R0
t = 0).

Moreover, it has a unique endemic equilibrium with positive components:
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S∗t = γξt
γξt+(γ+ξt)(β−ξ−µ)

, I∗t = ξt(
ξtγ

β−ξ−µ

)
+(ξt+γ)

, R∗t = 1− ((Il + Ih)
∗
t + (Sl + Sh)

∗
t .

and the basic reproduction numberR0 for the target population is as follows:

R0t =
β

γ
,

and for the attacking population, it is the following:

R0a =
β

ξ + µ
,

therefore,R0|ε=0, η=0 = max{ β
µ+ξ , β

γ} = max{R0a, R0t}, if γ ≥ ξ + µ, thenR0 = R0a. The
following theorems were proven by Bimal et al. [22]. These results show the local and
global stability of Equation (21).

Theorem 6. The infection-free equilibrium P0 of system (21) is locally asymptotically stable in D
if R0a < 1 and is unstable if R0a > 1 [22].

From theorem 6, one can see that the trajectories of Equation (21) are converging to
point P0, which means that the system is locally asymptotically stable at P0. In this case,
the attack will disappear in the long run.

Theorem 7. The endemic equilibrium P∗ is locally asymptotically stable in the interior of D if
R0a > 1 [22].

Theorem 8. The unique endemic equilibrium point P∗ is globally asymptotically stable in the
interior of D ifR0 > 1 [22].

Theorems 7 and 8 show the local and global stability, respectively. In this case, the
trajectories converge at P∗ so that the attack will remain effective in the long run. For more
details, the model was completely analyzed in [22].

We conclude from this study that relying on backup servers alone, without protection
from this type of attack, does not provide a solution. If the attack continues for a long time,
all backup servers will go down. This is demonstrated by the assumption that the number
of disabled devices due to the attack is I′(t) > M, for a non-zero M, at time t.

Hence, the number of needed backup servers in time T (period of attack) will be
Nbackup =

∫ T
0 I′(t)dt. For a long time (T goes to infinity), the value of Nbackup > T×M will

go to infinity.

3.3. Perfect High-Security Level

In this subsection, we will analyze the proposed model in a perfect high-security level
(ε = 1) in which no attack can pass the firewall. In this case, the recovered nodes from
the low-security level become suspected and will not be attacked again. If ε = 1, then for
the zero initial conditions (Ih(0)) at high population, we can set ξh = 0 and γh = 0. We
will prove that in this case, there is no epidemic solution, and the attack will disappear.
Here, there is a unique equilibrium point which is P0. Therefore, the proposed system (6) is
converted to the following:



Symmetry 2021, 13, 2443 12 of 16

dSh
dt

= ξl Rl ,

dSl
dt

= −λSl ,

dIl
dt

= λSl − γl Il , (22)

dRl
dt

= γl Il − ξl Rl ,

dSa

dt
= µ− βSa Ia − µS + ξ Ia,

dIa

dt
= βSa Ia − (ξ + µ)Ia.

in which Ih(0) = 0. The basic reproduction numberR0 is computed as follows:

R0|ε=1 = max{R0a, R0l} = max
{

β
µ+ξ , β

γl

}
.

If there is a non-zero initial condition (I(0) 6= 0), then γh 6= 0. Hence,
dIh
dt

= −γh Ih,

which implies Ih(t) = I(0) × exp(−γt), and I(t) −→ 0 as t −→ ∞. Moreover, for the

recovered nodes of the high-security level Rh,
dRh
dt

= c× exp(−γt)− ξhRh with c = γh I(0)

is solved to find Rh = Rh(0) e−ξh t +
c

ξh − γ
e−γ t. Therefore, Rh(t) −→ 0 as t −→ ∞. The

following theorem summarizes these results and computations:

Theorem 9. If ε = 1, then for all values of R0 with P0 = (S0, I0, S0
l , I0

l , R0
l , S0

h, I0
h , R0

h) =
(1, 0, S0

l , 0, 0, S0
h, 0, 0) is globally asymptotically stable in the interior of D, in which S0

l + S0
h = 1.

In Figure 2, different values for the threshold number are chosen to explain the
stability of system (6). It can be noticed how λ, which is the percentage of infected nodes
as a function of time t, converge to λ∗ or λ0 depending on the value of R0. In words, if
R0 > 1, then the values of λ converge to λ∗ with time t, and ifR0 < 1 then the values of λ
converge to λ0 with time t. The values of the used parameters are as follows:

(β, ε, η, γl , γh, ξl , ξ, ξh, µ) = (0.315, 1, 1, 0.029, 0.052, 0.85, 0.103, 0.302, 0.013)

with R0a = 2.7099, and we set

(β, ε, η, γl , γh, ξl , ξ, ξh, µ) = (0.15, 1, 1, 0.0292, 0.283, 0.38, 0.1031, 0.302, 0.081)

then R0a = 0.8134.
In the next section, different examples and experiments are proposed to solve sys-

tem (6) and to show the stability.

0 50 100 150

time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0
=0

=0.198

Figure 2. Simulations of the proposed model (6), showing the percentage of infected nodes as a
function of time.
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4. Numerical Analysis and Discussion

In this section, different examples and experiments are proposed to solve system (6).
Furthermore, numerical techniques are used to approximate the solution. These examples
illustrate the stability as well, and reversing symmetry transformation is shown.

Example 1. Solve system (6), in which the values of the parameters are the following:
(β, ε, η, γl , γh, ξl , ξ, ξh, µ) = (0.015, 0.61, 1, 0.029, 0.028, 0.05, 0.103, 0.302, 0.013) with initial
conditions (S(0), I(0), Sl(0), Il(0), Rl(0), Sh(0), Ih(0), Rh(0)) = (0.875, 0.125, 0.375, 0.125,
0, 0.375, 0.125, 0), R0a = 0.129, and R0t = 0.7204.

Since R0a, R0t < 0 then R0 < 1. Therefore, it can be concluded that the sys-
tem will be infection-free with time. Hence, the trajectories of the solution converge
to P0 = (1, 0, 0.3, 0, 0, 0.7, 0, 0), as shown in Figure 3. Moreover, we notice that the at-
tack node population is invariant with respect to the reversing symmetry transformation
described in Lemma 1 for a small value of µ.
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Figure 3. The solution of system (6) when the parameters are set, as in Example 1.

Example 2. Solve system (6), in which the values of the parameters are chosen as:
(β, ε, η, γl , γh, ξl , ξ, ξh, µ) = (0.34, 0.61, 1, 0.0102, 0.0102, 0.051, 0.068, 0.302, 0.0201) with
initial conditions (S(0), I(0), Sl(0), Il(0), Rl(0), Sh(0), Ih(0), Rh(0)) = (0.875, 0.125, 0.375,
0.125, 0, 0.375, 0.125, 0), R0a = 3.9, and R0t = 46.7117.

It can be concluded that the system is epidemic sinceR0 > 1. Since R0a, R0t > 1, then
R0 > 1. Therefore, the system will be infected, and the trajectories of the solution converge
to P∗, as illustrated in Figure 4.

Example 3. In this example, the solution of system (6) solved with perfect high and low-security lev-
els. (β, η, γl , γh, ξl , ξ, ξh, µ) = (0.15, 1, 0.0292, 0.0283, 0.051, 0.1031, 0.302, 0.01314) with
initial conditions (S(0), I(0), Sl(0), Il(0), Rl(0), Sh(0), Ih(0), Rh(0)) = (0.875, 0.125, 0.375,
0.125, 0, 0.375, 0.125, 0).

Example 3 shows the efficiency of ε when we have a perfect high-security level. In
Figure 5, class 1 ((1a), (1b), and (1c)) represent the solution when ε = 0, and class 2 ((2a),
(2b), and (2c)) represent the solution when ε = 1. By comparing these two classes, it can
be concluded that figures (1a) and (1b) and figures (2a) and (2b) are the same, but the
difference between the two experiments is at the last stage when ε = 1 (high-security), in
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which the system is converted from epidemic to almost infection-free. Additionally, the
attack node is invariant with respect to the reversing symmetry map for small death rate.

Example 4. Solve system (6) for different values of η (η = 0, η = 0.5), with parameters
(β, ε, γl , γh, ξl , ξ, ξh, µ) = (0.831, 00.61, 0.0102, 0.0102, 0.3, 0.6851, 0.3, 0.5201) with initial
conditions (S(0), I(0), Sl(0), Il(0), Rl(0), Sh(0), Ih(0), Rh(0)) = (0.875, 0.125, 0.375, 0.125,
0, 0.375, 0.125, 0).

In Figure 6, the first class ((1a), (1b), and (1c)) represents the solution of system (6)
when η = 0.5, i.e., when the attacker exploited the infected target devices to attack other
nodes. This effect is represented by η. Figures (2a), (2b), and (2c) in the second class
represent the system when η = 0, i.e., when the attacker could not use the target infected
devices to increase the effect of the attack. Therefore, it can be noticed that in the first class,
the attack remains in the system since R0t > 1 despite R0a < 1. However, in the second
class, the attack disappears because of η = 0. The result of Lemma 1 can also be noticed in
the attack node population (1a) and (2a).
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Figure 4. The infected solution of system (6), when the parameters are set as in Example 2.
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Figure 5. Class 1: the solutions of system (6), when ε = 0. Class 2: the solutions of system (6),
when ε = 1, in which the values of the parameters are set as in Example 3. Sub-figures (1a,2a)
simulate an attack population, and sub-figures (1b,2b), (1c,2c) simulate the target population with
both low-security level and high-security level, respectively.
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Figure 6. Class 1: the solutions of system (6), when η = 0.5. Class 2: the solutions of system (6),
when η = 0, in which the values of the parameters are set as in Example 4. Sub-figures (1a,2a)
simulate an attack population, and sub-figures (1b,2b), (1c,2c) simulate the target population with
both low-security level and high-security level, respectively.

5. Conclusions

In this paper, we proposed a mathematical model to describe DDoS attacks. One of
the most significant features of this model is considering a high-security level for the target
population in which the recovered nodes upgrade their defense level to a higher level. In
previous models, the recovered nodes did not have any upgrade on their defense level,
which is an unrealistic assumption. Therefore, we set ε to represent the firewall efficiency
after recovering. Furthermore, the modification parameter η was set to account for the
attack transmission of the infected target nodes (in the Il and Ih compartments). Moreover,
we analyzed the proposed model for certain cases. The threshold value (R0) was found,
and the stability was discussed. The reversing symmetry transformation T of the attack
population was described. Finally, different examples were presented to illustrate the
validity of the proposed model (6).
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