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Abstract: This work mainly focuses on the continuity and analyticity for the generalized Benjamin–
Ono (g-BO) equation. From the local well-posedness results for g-BO equation, we know that its
solutions depend continuously on their initial data. In the present paper, we further show that such
dependence is not uniformly continuous in Sobolev spaces Hs(R) with s > 3/2. We also provide
more information about the stability of the data-solution map, i.e., the solution map for g-BO equation
is Hölder continuous in Hr-topology for all 0 ≤ r < s with exponent α depending on s and r. Finally,
applying the generalized Ovsyannikov type theorem and the basic properties of Sobolev–Gevrey
spaces, we prove the Gevrey regularity and analyticity for the g-BO equation. In addition, by the
symmetry of the spatial variable, we obtain a lower bound of the lifespan and the continuity of the
data-to-solution map.

Keywords: generalized Benjamin–Ono equation; non-uniform dependence; Hölder continuous;
symmetry; analyticity; Gevrey regularity
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1. Introduction
In this paper, we study the Cauchy problem for the generalized Benjamin–Ono equation{

∂tu +H∂2
xu + uk∂xu = 0, t > 0, x ∈ R,

u(x, 0) = u0(x), t = 0, x ∈ R,
(1)

whereH is the spatial symmetrical Hilbert transform

H( f )(x) =
1
π

p.v.
∫
R

f (y)
x− y

dy.

The Benjamin–Ono equation (k = 1) was derived by Benjamin [1], and later Ono [2].
This equation can be see as a model to describe the wave motion at the interface of a
two-layer fluid system of incompressible inviscid fluids, in which a heterogeneous layer is
situated above or underneath an infinitely-deep layer of homogeneous fluid. The function
u(x, t) denotes the deviation of the interface from its resting position at the point x in the
direction of propagation at time t. It is assumed that the deviation of the interface makes
no significance in the direction orthogonal to x.

For the variables that are nondimensional, the Benjamin–Ono equation has been
normalized to reach the tidy form (1). From the last century in 1960s, the Benjamin equation
was of high concern, particularly because it is completely integrable, defines Hamiltonian
systems, possesses infinite conserved quantities and has multi-soliton solutions, cf. [1–4].

The Cauchy problem for the Benjamin–Ono equation was studied extensively. The
local well-posedness and global well-posedness for initial data in the classical Sobolev
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spaces Hs(R) were investigated, cf. [5–11]. More precisely, the local well-posedness for
initial data u0 ∈ Hs(R) with s > 3

2 was shown in [7], and the globally well-posed in Hs(R)
for s ≥ 3

2 was also obtained in [10]. By the half Strichartz estimates for linear problems
with variable coefficients, Koch and Tzvetkov [9] obtained the local well-posedness when
s > 5

4 .
Subsequently, Kenig and Koenig [8] extended this result to s > 9

8 . Tao [11] obtained
global well-posedness in Hs(R) for s ≥ 1 by a gauge transformation as for the derivative
Schrödinger equation. Recently, the Benjamin–Ono equation was proved to be local well-
posedness in Hs(R) with s > 1

4 in [5] and global well-posedness in Hs(R) with s ≥ 0
in [6].

More interestingly, based on the well-posedness results, Koch and Tzvetkov [12]
showed that the solution mapping was not even locally uniformly continuous in Hs(R)
for s > 0. Fonseca and Ponce [13] established persistence properties and proved some
unique continuation properties of the solution flow in the weighted Sobolev spaces
Zs,r = Hs(R) ∩ L2(|x|2rdx).

For k ≥ 2, the g-BO equation presents the interesting fact that the dispersive effect is
described by a nonlocal operator and is weaker than that exhibited by the generalized KdV
equation. In addition, it possesses three conservation laws,

I(u) =
∫
R

u(t, x)dx, M(u) =
∫
R

u2(t, x)dx

and

E(u) =
∫
R

(
1
2
|D1/2

x u(t, x)|2 − ck|u(t, x)|k+2
)

dx,

where Dx = (−∂2
x)

1/2. The local well-posedness of the g-BO equation was also known
in [14,15], and the global result was proven by Molinet and Ribaud [16]. In a sharp contrast
with the case k = 1, the best known results about the g-BO equation with small initial data
were obtained by using contraction methods [14].

More precisely, Kenig et al. [14] proved that the locally and globally well-posed for the
solution of g-BO equation in different Hs(R). Molinet and Ribaud [15] further studied these
results for g-BO equation with small initial data. Recently, using the frequency-uniform
decomposition method, the global well-posedness of solution for the Cauchy problem of
the g-BO with the small rough data in certain modulation spaces Ms

2,1(R) was investigated
in [17].

Motivated by the results mentioned above, the goals of this paper are to study the
continuity and analyticity for the generalized Benjamin–Ono Equation (1). From the local
well-posedness results [14–16], we know that the solutions of g-BO Equation (1) contin-
uously rely on their initial data in Sobolev spaces—that is, if, for a given u0 ∈ Hs(R)
with s > 3/2, there exists a T = T(‖u0‖Hs) such that, for any sequence un

0 ∈ Hs and
‖un

0 − u0‖Hs → 0 (n → ∞), the corresponding solutions un(t) of g-BO satisfy
‖un(t)− u(t)‖Hs → 0 (n→ ∞) for 0 ≤ t < T.

In the present paper, we show that such dependence is not uniformly continu-
ous in Hs(R) with s > 3

2 . The uniformly continuous of the data-to-solution map
means that: ∀un

1 (0), un
2 (0) ∈ Hs be the sequences of initial data for the Equation (1), if

limn→∞ ||un
1 (0) − un

2 (0)||Hs → 0, then the correspond sequences of solution un
1 (t),

un
2 (t) ∈ C([0, T]; Hs(R)) for the initial-value problem (1) satisfy limn→∞ ||un

1 (t)− un
2 (t)||Hs → 0

for t ∈ [0, T). By the technique of approximate solutions [12], we find two suitable se-
quences of solutions u1,λ(t) and u−1,λ(t) to g-BO Equation (1) in C([0, T]; Hs(R)) such that

‖u1,λ(t)‖Hs(R) + ‖u−1,λ(t)‖Hs(R) . 1, lim
λ→∞

‖u1,λ(0)− u−1,λ(0)‖Hs(R) = 0;

however, the following inequality holds

lim inf
λ→∞

‖u1,λ(t)− u−1,λ(t)‖Hs(R) & lim inf
λ→∞

∣∣∣sin λ1/kt
∣∣∣, 0 < t ≤ T,

which implies lim infλ→∞ ‖u1,λ(t)− u−1,λ(t)‖Hs(R) 6= 0 at any time.
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In [12], Koch and Tzvetkov prove that the flow map of the Benjamin–Ono equation
cannot be uniformly continuous on bounded sets of Hs(R) for s > 0. We compare with
the Benjamin–Ono equation, and the g-BO equation has a higher order nonlinear term
uk∂xu. If taking the similarly approximate solutions as Koch and Tzvetkov [12], we cannot
successively estimate the error in suitable Sobolev norm, instead we must select a more
complicated form of the low and high frequency parts for the approximate solutions (see
(13) and (15)).

Motivated by the results obtained in [18–21], we use the interpolation properties of
the Sobolev spaces and commutator estimates to present that the data-to-solution map as
continuous but not uniformly continuous in Sobolev spaces Hs(R) with s > 3

2 . Our results
extend the work of Koch and Tzvetkov [12] to more general equations with higher-order
nonlinearities. Our main result is stated as follows:

Theorem 1. If the initial data u0 ∈ Hs(R) with s > 3
2 , then the data-to-solution map u0 → u(t)

for the g-BO Equation (1) is not uniformly continuous from any bounded subset of Hs(R) into
C([0, T]; Hs(R))× C([0, T]; Hs−1(R)).

Theorem 1 shows that the data-solution map depends on the initial data being con-
tinuous but not uniformly continuous. Our next result will provide information about
the stability of the data-solution map. Our next result establishes the stability of the data-
solution map, i.e., the solution map for g-BO equation is Hölder continuous in Hσ-topology.

Theorem 2. Let s > 3
2 and 0 ≤ r < s. Then, the data-to-solution map for the g-BO Equation (1) is

Hölder continuous in Hs(R) equipped with Hr(R)-norm. In particular, the solutions u(t), v(t) to
the g-BO Equation (1) corresponding to the initial data u0, v0 in the ball B(0, ρ) = {ψ ∈ Hs(R) :
‖ψ‖Hs(R) ≤ ρ} of Hs(R) satisfy the following inequality

‖u(t)− v(t)‖Hr(R) ≤ C‖u0 − v0‖α
Hr(R),

where the parameter α is given by

α =


1, (s, r) ∈ A1

.
= {(s, r) : s > 3

2 , 0 ≤ r ≤ s− 1, r + s ≥ 2};
2(s−1)

s−r , (s, r) ∈ A2
.
= {(s, r) : 2 > s > 3

2 , 0 ≤ r < 2− s};
s− r, (s, r) ∈ A3

.
= {(s, r) : s > 3

2 , s− 1 < r < s}.
(2)

The lifespan T and the constant C only depend on r, s and ρ (see Figure 1).

Figure 1. The relationship of r, s and α.
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Many researchers have studied the analyticity of solutions to g-BO, cf. [12]. However,
to our best acknowledge, the Gevrey regularity of solutions to the BO equation is still an
open problem. The definition of Sobolev–Gevrey spaces is stated as follows.

Definition 1. Let s be a real number and σ, δ > 0. A function f ∈ Gδ
σ,s(R) if and only if

f ∈ C∞(R) and satisfies

‖ f ‖Gδ
σ,s(R) =

(∫
R
(1 + |ξ|2)se2δ|ξ|1/σ | f̂ (ξ)|2dξ

)1/2
< ∞.

Denoting the Fourier multiplier eδ(−∆)
1
2r by eδ(−∆)

1
2r f = F−1(eδ|ξ| 1r f̂ ), we deduce that

|| f ||Gδ
r,s(R) = ||e

δ(−∆)
1
2r f ||Hs(R). For 0 < r < 1, it is called ultra-analytic function. If r = 1, it

is a usual analytic (or holomorphic) function, and δ is called the radius of analyticity. If
r > 1, it is the Gevrey class function.

By the generalized Ovsyannikov theorem [22] (see Theorem 6 in the Section 5), we
can obtain the Gevrey regularity and analyticity of the g-BO equation.

Theorem 3. Let σ ≥ 1 and s > 3
2 . Assume that u0 ∈ Gδ

σ,s(R). Then, for every 0 < δ < 1,
there exists a T0 > 0 such that the g-BO equation has a unique solution u, which is holomorphic

in |t| < T0(1−δ)2σ

22σ−1 with values in Gδ
σ,s(R). Moreover, there is a positive constant C such that

T0 = C
‖u0‖G1

σ,s(R)
.

Theorem 3 tells us that solutions of g-BO equation are analytic in both space and time
variables. Moreover, we give a lower bound of the analytic lifespan. Then, we continue to
study the continuity of the data-to-solution.

Definition 2. Let σ ≥ 1 and s > 3
2 . We say that the data-to-solution map u0 → u(t) of the g-BO

is continuous, if for a given u∞
0 ∈ G1

σ,s(R) there exists a T = T(‖u∞
0 ‖G1

κ,s
) such that, for any

sequence un
0 ∈ G1

κ,s and ‖un
0 − u∞

0 ‖G1
κ,s
→ 0 for n→ ∞, the corresponding solutions un of g-BO

satisfy ‖un − u∞‖ET → 0 for n→ ∞, where

‖ f ‖ET = sup
|t|< T(1−δ)κ

2κ−1

(
‖ f ‖Gδ

κ,s
(1− δ)κ

√
1− |t|

T(1−δ)κ

)
.

Theorem 4. Let σ ≥ 1 and s > 3
2 . Assume that u0 ∈ G1

σ,s(R). Then, the data-to-solution map
u0 7→ u of the g-BO equation is continuous from G1

σ,s(R) into the solutions space.

This paper is organized as follows. In Section 2, we recall some notation, give a
prior well-posedness estimate for g-BO Equation (1), and determine a lower bound on the
existence time of the solution in Hs(R). In Section 3, adopting the method of approximate
solutions and the well-posedness estimates, we show that the data-to-solution map fails
to be locally uniformly continuous. In Section 4, we prove that the solution map for g-BO
Equation (1) is Hölder continuous in Hr-topology for all 0 ≤ r < s. Finally, applying gener-
alized Ovsyannikov type theorem and properties of Sobolev–Gevrey spaces, we establish
the Gevrey regularity and analyticity of the g-BO equation and obtain the continuity of the
data-to-solution map.

2. Priori Estimates and Lifespan of Solution

For any s ∈ R, we take the operator Ds = (1− ∂2
x)

s/2 to be defined by

D̂s f (ξ) = (1 + ξ2)s/2 f̂ (ξ),
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where f̂ (ξ) is the Fourier transform,

f̂ (ξ) .
=
∫
R

e−ixξ f (x)dx, ξ ∈ R.

Let Hs be the Sobolev space consisting of all tempered distributions f such that

‖ f ‖Hs
.
= ‖ f ‖Hs(R) =

(∫
R
(1 + ξ2)s| f̂ (ξ)|2dξ

)1/2
< ∞.

Theorem 5. Assume u0 ∈ Hs(R) with s > 3
2 . Let T be the maximal existence time of the solution

u to g-BO Equation (1) with the initial data u0. Then, T satisfies

T ≥ T0 :=
2k − 1

2kCk‖u0‖k
Hs

, (3)

where Cs is a constant depending only on s. We have

‖u(t)‖Hs ≤ 2‖u0‖Hs , 0 ≤ t ≤ T0. (4)

Proof. Applying the operator Ds to g-BO Equation (1), it can be rewritten as follows

∂tDsu + DsH(∂2
xu) +

(
Ds(uk∂xu)− ukDs∂xu

)
+ uk∂xDsu = 0. (5)

Multiplying the g-BO Equation (5) by Dsu and then integrating it with respect to x ∈ R,
we obtain

1
2

d
dt
‖u(t)‖2

Hs =−
∫
R

DsH(∂2
xu) · Dsudx

−
∫
R

(
[Ds, uk]∂xu

)
· Dsudx−

∫
R

uk∂xDsu · Dsudx.
(6)

Noting that
∫
R DsH(∂2

xu) · Dsudx = 0. To estimate the second integral on the right-hand
side of (6), we need the following lemma, which is derived from [23,24].

Lemma 1. If r > 0, then

‖[Dr, f ]g‖L2 ≤ Cr(‖ fx‖L∞‖Dr−1g‖L2 + ‖Dr f ‖L2‖g‖L∞),

where Cr is a positive constant depending only on r.

Using the Cauchy–Schwarz inequality and Lemma 1, we can estimate the second integral
of (6) ∣∣ ∫

R

(
[Ds, uk]∂xu

)
· Dsudx

∣∣ ≤ ∥∥∥[Ds, uk]∂xu
∥∥∥

L2
‖Dsu‖L2

≤ Cs(‖∂xuk‖L∞‖Ds−1∂xu‖L2 + ‖Dsuk‖L2‖∂xu‖L∞)‖Dsu‖L2

≤ C‖u‖k+2
Hs ,

(7)

where we have used the equality ‖Dsu‖L2 = ‖u‖Hs and the Sobolev embedding theorem
Hs ↪→ L∞ for s > 3

2 .
Estimating the third integral of the right-hand side of (6), integrating by parts,

we deduce ∣∣∣∣∫R uk∂xDsu · Dsudx
∣∣∣∣ ≤ ‖∂xuk‖L∞‖Dsu‖2

L2 ≤ C‖u‖k+2
Hs . (8)
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Combining (6)–(8) we can obtain the following inequality

1
2

d
dt
‖u(t)‖2

Hs ≤ C‖u‖k+2
Hs . (9)

Solving differential inequality (9) yields

‖u‖Hs ≤ ‖u0‖Hs

(1− Ckt‖u0‖k
Hs)1/k

. (10)

Letting T0 := min
{

1
Ct‖u0‖k

Hs
, 2k−1

2kCk‖u0‖k
Hs

}
, then (1− CkT0‖u0‖k

Hs)1/k ≥ 1
2 . From (10), the

solution u exists for 0 ≤ t ≤ T0 with the following bound

‖u‖Hs≤ ‖u0‖Hs

(1− CkT0‖u0‖k
Hs)1/k

≤ 2‖u0‖Hs , 0 ≤ t ≤ T0. (11)

This completes the proof of Theorem 5.

3. Nonuniform Dependence for the Solution to g-BO
3.1. Approximate Solutions

In this section, we consider approximate solutions of the Equation (1) of the form

uω,λ = ul + uh, (12)

where ω = ±1 and λ > 0. The high frequency part is given by

uh = −λ−(1+δ)/2k−sφλ cos Φ, (13)

where φλ = φ( x
λ(1+δ)/k ), Φ = −ω2λ1/kt + ωλ1/2kx−ωk+1λ−1+1/2kt and φ is C∞(R) cutoff

functions such that

φ(x) =

{
1 if |x| < 1,
0 if |x| ≥ 2.

(14)

The low frequency part ul is the solution to system (1) with initial data{
∂tul +H∂2

xul + uk
l ∂xul = 0, t > 0, x ∈ R,

ul(x, 0) = ωλ−1/kφ̃λ, x ∈ R,
(15)

where φ̃ is C∞(R) functions such that

φ̃(x) = 1 if x ∈ suppφ.

Lemma 2 (See [12]). Let ψ ∈ S(R), 0 < δ < 2 and α ∈ R. Then, for any s ≥ 0, we have that

lim
λ→∞

λ−
1
2 δ−s

∥∥∥ψ(
x

λδ
) cos(λx− α)

∥∥∥
Hs(R)

=
1√
2
‖ψ‖L2(R). (16)

Relation (16) is also true if cos is replaced by sin.

Lemma 3. Let 0 < δ < 1 and φ ∈ C∞
0 (R). Then, for any N > 0, there exists a positive constant

CN such that for every α ∈ R

‖[H, φλ] cos(λx + α)‖Hσ(R) ≤ CNλ−N . (17)

Since the proofs of Lemma 3 are quite similar to lemma 2.2 in [12], they are omitted to
make the paper concise.
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Lemma 4. Let ω = ±1, 0 < δ < 1 and λ� 1. Then, the initial-value problem (1) has a unique
solution ul ∈ C([0, T); Hs(R)), s > 3

2 . For all σ ≥ 0, this solutions satisfies the estimate

‖ul(t)‖Hσ(R) ≤ Csλ(δ−1)/2k. (18)

Proof. Clearly, for any function φ ∈ S(R), we can easily check that∥∥∥φ
( x

λkδ

)∥∥∥
Hσ
≤ λkδ/2‖φ‖Hσ . (19)

As per the relation φ̂
(

x
ρ

)
(ξ) = ρφ̂(ρξ), making the change of variables η = λkδξ

yields ∥∥∥φ
( x

λkδ

)∥∥∥2

Hσ
=

1
2π

∫
R
(1 + ξ2)σ

∣∣∣λkδφ̂(λkδ)
∣∣∣2dξ

=
λkδ

2π

∫
R

(
1 +

η2

λ2kδ

)σ∣∣φ̂(η)∣∣dξ

≤ λkδ

2π

∫
R

(
1 + η2

)σ∣∣φ̂(η)∣∣dξ

= λkδ‖φ‖Hσ .

(20)

According to (19), we know that the initial data ul(0) satisfy the following estimate

‖ul(0)‖Hσ ≤ λ(δ−1)/2k,

which decays if 0 < δ < 1. Furthermore, the estimate (3) from Theorem 5 yields the
lifespan T = 2k−1

2kCk‖u0‖k
Hs
≥ 1 for λ � 1 and 0 < δ < 1. If σ ≥ 0, then the estimate (4) of

Theorem 5 implies

‖ul(t)‖Hσ ≤ ‖ul(t)‖Hσ+2 ≤ Cs‖ul(0)‖Hσ+2 ≤ Csλ(δ−1)/2k,

which achieves Lemma 4.

Now, we estimate the error in Hσ-norm of these approximate solutions. Substituting
the approximate solution uω,λ(x, t) into Equation (1), we find the following error:

F = ∂tuh +H∂2
xuh + uk

l ∂xuh +

(
k

∑
i=1

ciuk−i
l ui

h

)
∂x(ul + uh)

= ωλ−δ/2k−sφλ sin Φ
(

uk
l (x, t)− uk

l (x, 0)
)
− λ−3(1+δ)/2k−suk

l φ′λ cos Φ

+ λ−(1+δ)/2k−s
[
2ωλ−(1+2δ)/2kH(φ′λ sin Φ)− λ−2(1+δ)/kH(φ′′λ cos Φ)

]
+ ω2λ(1−δ)/2k−s[H, φλ] cos Φ +

(
k

∑
i=1

ciuk−i
l ui

h

)
∂x(ul + uh)

:= F1 + F2 + · · ·+ F5.

(21)

Estimating the Hσ-norm of F1. Apparently, applying the Cauchy–Schwarz inequality
yields

‖F1‖Hσ . λ−δ/2k−s
∥∥∥uk

l (x, t)− uk
l (x, 0)

∥∥∥
Hσ
‖φλ sin Φ‖Hσ

. λ1/2k+σ−s
∥∥∥uk

l (x, t)− uk
l (x, 0)

∥∥∥
Hσ

.
(22)
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To estimate the Hσ-norm of the difference uk(x, t)− uk(x, 0), we adopt the fundamental
theorem of calculus in time variable to obtain∥∥∥uk

l (x, t)− uk
l (x, 0)

∥∥∥
Hσ
≤
∫ t

0
‖uk−1

l (x, τ)‖Hσ‖∂tul(x, τ)‖Hσ dτ. (23)

Apply Lemma 4 and (15) to imply that

‖∂tul(x, τ)‖Hσ . ‖H∂2
xul‖Hσ + ‖uk

l ∂xul‖Hσ . λ(δ−1)/2k. (24)

Substitute (17) and (24) into (23) to yield∥∥∥uk
l (x, t)− uk

l (x, 0)
∥∥∥

Hσ
. λ(δ−1)/2. (25)

Finally, combining (22) and (25) gives

‖F1‖Hσ . λ(kδ−k+1)/2k+σ−s. (26)

Estimating the Hσ-norm of F2. Applying Lemma 2, we can easily estimate F2

‖F2‖Hσ = ‖λ−3(1+δ)/2k−suk
l φ′λ cos Φ‖Hσ . λ−(1+δ)/k+σ−s. (27)

Estimating the Hσ-norm of F3. Similar to the type, we readily check

‖F3‖Hσ =
∥∥∥λ−(1+δ)/2k−s

[
2ωλ−(1+2δ)/2kH(φ′λ sin Φ)− λ−2(1+δ)/kH(φ′′λ cos Φ)

]∥∥∥
Hσ

. λ−δ/k+σ−s + λ−2(1+δ)/k+σ−s.
(28)

Estimating the Hσ-norm of F4. Using Lemma 3, we achieve

‖F4‖Hσ =
∥∥∥ω2λ(1−δ)/2k−s[H, φλ] cos Φ

∥∥∥
Hσ

. λ−δ/k+σ−s. (29)

Estimating the Hσ-norm of F5. To estimate F5, we need the following lemma.

Lemma 5 (see [23,24]). If σ > 0, then Hσ ∩ L∞ is an algebra. Moreover,
(i) ‖ f g‖Hσ ≤ cσ(‖ f ‖L∞‖g‖Hσ + ‖g‖L∞‖ f ‖Hσ ), for σ > 0;
(ii) ‖ f g‖Hσ ≤ cσ‖ f ‖Hσ‖g‖Hσ , for σ > 1

2 .

Apply the Lemma 5 to obtain

‖F5‖Hσ . λ(δ−1)/2k+σ−s + λ1−(1+δ)/2k+σ−2s. (30)

Collecting the estimates above, we can obtain the following proposition.

Proposition 1. For s > 3
2 , 1

2 < σ ≤ 1 and 0 < δ ≤ 1
2 , we can find the following estimate

‖F‖Hσ . λ−δ/k+σ−s. (31)

3.2. Error Estimation between Approximate and Actual Solutions
Let uω,λ(t, x) be the solution to the Cauchy problem (1)—that is, uω,λ(t, x) satisfies{

∂tuω,λ +H∂2
xuω,λ + uk

ω,λ∂xuω,λ = 0,
uω,λ(x, 0) = uω,λ(x, 0) = ωλ−2/kφ̃λ − λ−(1+δ)/2k−sφλ cos ωλ1/kx.

(32)

To estimate the error between approximate and actual solutions, let

v = uω,λ − uω,λ.
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Clearly, v solves the following equation{
∂tv = −F−H∂2

xv− uk
ω,λ∂xv− v∂xuω,λ ∑i+j=k−1(uω,λ)

i(uω,λ)j,
v(0, x) = 0,

(33)

where F is defined by (21) and satisfying the Hσ-estimate (31).

Proposition 2. If λ� 1, s > 3
2 and 1

2 < σ ≤ s, then

‖v(t)‖Hσ
.
= ‖uω,λ(t)− uω,λ(t)‖Hσ . λ−δ/k+σ−s, for 0 ≤ t ≤ T. (34)

Proof. Applying the operator Dσ to both sides of Equation (33), and multiplying the
resulting equation by Dσv, then integrating it with respect to x ∈ R, we obtain

1
2

d
dt
‖v(t)‖2

Hσ =
∫
R

Dσv · DσFdx−
∫
R

Dσv · H∂2
xDσvdx−

∫
R

Dσv · Dσ(uk
ω,λ∂xv)dx

−
∫
R

Dσv · Dσ

(
v∂xuω,λ ∑

i+j=k−1
(uω,λ)

i(uω,λ)j

)
dx

.
= E1 + E2 + E3 + E4.

(35)

Noting that E2 =
∫
R Dσv · H∂2

xDσvdx = 0.
Estimating the Hσ-norm of E1. Referring to E1 from (35) and using the Cauchy–Schwarz
inequality gives us

|E1| =
∣∣∣∣∫R DσvDσFdx

∣∣∣∣ ≤ ‖v‖Hσ‖F‖Hσ . (36)

Estimating the Hσ-norm of E3. Clearly, E3 can be rewritten as

E3 = −
∫
R

Dσv · [Dσ, uk
ω,λ]∂xvdx−

∫
R

Dσv · uk
ω,λDσ∂xvdx. (37)

Using Lemma 1, we can estimate the first integral of the right-hand side of (37)∫
R

Dσv·[Dσ, uk
ω,λ]∂xvdx ≤ ‖v‖Hσ

∥∥∥[Dσ, uk
ω,λ]∂xv

∥∥∥
L2

. ‖v‖Hσ

(
‖∂xuk

ω,λ‖L∞‖Dσ−1∂xv‖L2 + ‖Dσuk
ω,λ‖L2‖∂xv‖L∞

)
. ‖uω,λ‖k

Hσ‖v‖2
Hσ .

(38)

Integrating by parts, we can estimate the second integral of the right-hand side of (37)∣∣∣∣∫R Dσv · uk
ω,λDσ∂xvdx

∣∣∣∣ = ∣∣∣∣12
∫
R

uk
ω,λ∂x(Dσv)2dx

∣∣∣∣
=

∣∣∣∣12
∫
R

∂xuk
ω,λ(Dσv)2dx

∣∣∣∣ . ‖uω,λ‖k
Hσ‖v‖2

Hσ .
(39)

Now, (37)–(39) imply

|E3| . ‖uω,λ‖k
Hσ‖v‖2

Hσ . (40)
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Estimating the Hσ-norm of E4. Apply the Cauchy–Schwarz inequality and Lemma 5 (ii)
to obtain

|E4| . ‖v‖Hσ

∥∥∥∥∥v∂xuω,λ ∑
i+j=k−1

(uω,λ)
i(uω,λ)j

∥∥∥∥∥
Hσ

. ‖v‖2
Hσ‖∂xuω,λ‖Hσ

∥∥∥∥∥ ∑
i+j=k−1

(uω,λ)
i(uω,λ)j

∥∥∥∥∥
Hσ

. ‖v‖2
Hσ .

(41)

Combining the estimates of (35)–(41) yields the ODE

1
2

d
dt
‖v‖2

Hσ . ‖v‖2
Hσ + λ−δ/k+σ−s‖v‖Hσ ,

and thus
d
dt
‖v‖Hσ . ‖v‖Hσ + λ−δ/k+σ−s,

which gives rise to the following estimate

‖v(t)‖Hσ . λ−δ/k+σ−s, for λ� 1, 0 ≤ t ≤ T. (42)

This proves the Proposition 2.

3.3. Proof of Theorem 1
In this subsection, with the error estimation between approximate and actual solutions

in hand, and using the interpolation properties of the Sobolev spaces, we can prove
Theorem 1.

Proof. Let s > 3
2 and define u1,λ(x, t) and u−1,λ(x, t) as the unique solutions to Equation (15)

with the initial data u1,λ(x, 0) and u−1,λ(x, 0), respectively. From Lemma 2 and (4), we can
obtain the following inequality

‖u1,λ(t)‖Hs + ‖u−1,λ(t)‖Hs ≤ 2(‖u1,λ(0)‖Hs + ‖u−1,λ(0)‖Hs) . 1.

At time t = 0, we deduce

lim
λ→∞

‖u1,λ(0)− u−1,λ(0)‖Hs = lim
λ→∞

‖2ωλ−1/kφ̃λ‖Hs = 0.

Next, we examine the Hs-norm of the difference when t > 0. Using the triangle inequality,
we find

‖u1,λ(t)− u−1,λ(t)‖Hs ≥‖u1,λ(t)− u−1,λ(t)‖Hs

− ‖u1,λ(t)− u1,λ(t)‖Hs − ‖u−1,λ(t)− u−1,λ(t)‖Hs .
(43)

With k-even, using the identity cos α− cos β = −2 sin α+β
2 sin α−β

2 , we find that

‖u1,λ(t)−u−1,λ(t)‖Hs

= ‖ul,1,λ − ul,−1,λ − 2λ−(1+δ)/2k−sφλ sin λ1/2kx sin(λ1/kt + λ−1+1/2kt)‖Hs .
(44)

With k-odd, we deduce

‖u1,λ(t)−u−1,λ(t)‖Hs

= ‖ul,1,λ − ul,−1,λ − 2λ−(1+δ)/2k−sφλ sin(λ1/2kx− λ−1+1/2kt) sin λ1/kt‖Hs .
(45)
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Letting m = [s] + 2 > 2, apply Lemma 2 and (11) to find

‖uω,λ(t)− uω,λ(t)‖Hm . ‖uω,λ(t)‖Hm + ‖uω,λ(0)‖Hm . λm−s, 0 < t ≤ T. (46)

Lemma 6. Suppose s1 < s < s2 and f ∈ Hs(R). Then,

‖ f ‖Hs ≤ ‖ f ‖
s2−s

s2−s1
Hs1 ‖ f ‖

s−s1
s2−s1
Hs2 . (47)

Employing the interpolation inequality in Lemma 6 with s1 = σ and s2 = [s] + 2 = m and
Equations (42) and (46), we obtain

‖uω,λ(t)− uω,λ(t)‖Hs ≤ ‖uω,λ(t)− uω,λ(t)‖
m−s
m−σ
Hσ ‖uω,λ(t)− uω,λ(t)‖

s−σ
m−σ
Hm

. λ
(−δ/k+σ−s)(m−s)

m−σ n
(m−s)(s−σ)

m−σ

. λ
(−δ/k)(m−s)

m−σ .

(48)

Taking the limit infimum to both sides of (43) gives us

lim inf
λ→∞

‖u1,n(t)− u−1,n(t)‖Hs

≥ lim inf
λ→∞

(‖u1,n(t)− u−1,n(t)‖Hs − ‖u1,n(t)− u1,n(t)‖Hs − ‖u−1,n(t)− u−1,n(t)‖Hs)

& lim inf
λ→∞

∣∣∣sin λ1/kt
∣∣∣,

(49)

apparently lim infλ→∞ ‖u1,n(t)− u−1,n(t)‖Hs 6= 0; thus, we complete the proof of Theorem 1.

4. Hölder Continuous in Hr-Topology
In this section, we continue to study the continuity properties for the solution map

in Hölder spaces Hr. More precisely, we consider two solutions of Equation (1), u and v,
which emanate from the initial data u0 and v0, respectively. We expect that if the initial
data u0 and v0 are assigned in a ball with radius ρ in Hs, i.e.,

‖u0‖Hs ≤ ρ, ‖v0‖Hs ≤ ρ, s >
3
2

, (50)

and then we obtain
‖u(t)− v(t)‖Hr . ‖u0 − v0‖α

Hr , 0 ≤ r < s,

where the Hölder exponent α is to be determined.

Proof of Theorem 2. Lipschitz continuity in region A1. Let v be another solution to the
Cauchy problem for (1) corresponding to the initial data v0(x) ∈ Hs(R), i.e.{

∂tv +H∂2
xv + vk∂xv = 0, t > 0, x ∈ R,

v(x, 0) = v0(x), t = 0, x ∈ R.
(51)

Subtracting (51) from (1) yields the Cauchy problem for w to

∂tw +H∂2
xw + ∂x(vkw)− w∂xvk + w∂xu ∑

i+j=k−1
(uivj) = 0, (52)
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where w = u− v and i, j ∈. For a fixed 0 ≤ r ≤ s− 1 with r + s ≥ 2, estimating the Hr

energy of w leads us to the following equation

1
2

d
dt
‖w(t)‖2

Hr = −
∫
R

Drw · H∂2
xDrwdx−

∫
R

Drw · Dr∂x(vkw)dx

+
∫
R

Drw · Dr(w∂xvk)dx−
∫
R

Drw · Dr

(
w∂xu ∑

i+j=k−1
(uiuj)

)
dx.

(53)

Noting that
∫
R Drw · H∂2

xDrwdx = 0. Clearly, the second integral of the right-hand side of
(53) can be rewritten as

−
∫
R

Drw · Dr∂x(vkw)dx = −
∫
R

Drw · [Dr∂x, vk]wdx−
∫
R

Drw · vk(Dr∂xw)dx. (54)

To estimate the first term on the right-hand sides of (57), we need the following lemma
(see [23,24]).

Lemma 7. If σ + 1 ≥ 0, s > 3
2 , σ + 1 ≤ s, then

‖[Dσ∂x, f ]g‖L2 ≤ cσ,s‖ f ‖Hs‖g‖Hσ .

Using Lemma 7 and (50), we find∣∣∣∣∫R Drw · [Dr∂x, vk]wdx
∣∣∣∣ ≤ Cs,r‖w‖Hr‖[Dr∂x, vk]w‖L2 ≤ Cs,r‖v‖k

Hs‖w‖2
Hr

≤ Cs,r‖v(0)‖k
Hs‖w‖2

Hr ≤ Cs,rρk‖w‖2
Hr ,

(55)

and we can easily yield the following estimates∣∣∣∣∫R Drw · vk(Dr∂xw)dx
∣∣∣∣ ≤ Cs,r‖v‖k

Hs‖w‖2
Hr ≤ Cs,rρk‖w‖2

Hr . (56)

Combining (55) and (56) yields the estimates∣∣∣∣∫R Drw · Dr∂x(vkw)dx
∣∣∣∣ ≤ Cs,rρk‖w‖2

Hr . (57)

For the third term on the right-hand sides of (53), we readily check∣∣∣∣∫R Drw · Dr(w∂xuk)dx
∣∣∣∣ ≤ Cs,r‖w‖Hr‖w∂xvk‖Hr ≤ Cs,rρk‖w‖2

Hr , (58)

where, in the second inequality, we used following lemma.

Lemma 8 (see [25,26]). If σ > − 1
2 , then

‖ f g‖Hσ ≤ cσ‖ f ‖Hσ+1‖g‖Hσ .

Similarly, we can estimate the last term of (53)∣∣∣∣∣
∫
R

Drw · Dr

(
w∂xu ∑

i+j=k−1
(uiuj)

)
dx

∣∣∣∣∣ ≤ Cs,rρk‖w‖2
Hr . (59)

End of Lipschitz Continuity in A1. Combining the above estimates generates the
following energy inequality

d
dt
‖w(t)‖Hr ≤ Cr,s,ρ‖w(t)‖Hr ,
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which implies

‖w(t)‖Hr ≤ eCr,s,ρT‖w(0)‖Hr .

Clearly, it is equivalent to

‖u(t)− v(t)‖Hr ≤ eCr,s,ρT‖u(0)− v(0)‖Hr ,

which is the desired Lipschitz continuity in A1.
Hölder Continuity in A2. As per the Lipschitz continuity in A1 and the assumption

r < 2− s, we deduce

‖u(t)− v(t)‖Hr ≤ ‖u(t)− v(t)‖H2−s ≤ eCr,s,ρT‖u(0)− v(0)‖H2−s .

Since r < 2− s < s, by the interpolation between the Hr and the Hs norms described in
Lemma 6, we find

‖u(0)− v(0)‖H2−s ≤ ‖u(0)− v(0)‖
2(s−1)

s−r
Hr ‖u(0)− v(0)‖

2−s−r
s−r

Hs ≤ Cr,s,ρ‖u(0)− v(0)‖
2(s−1)

s−r
Hr ,

which guarantees the Hölder continuity in A2.
Hölder Continuity in A3. For s− 1 < r < s, by the interpolation between Hs−1 and

Hs norms, we have

‖u(t)− v(t)‖Hr ≤ ‖u(t)− v(t)‖s−r
Hs−1‖u(t)− v(t)‖r−s+1

Hs .

By the well-posedness size estimate (50), we find

‖u(t)− v(t)‖Hs . ‖u0‖Hs + ‖v0‖Hs . ρ,

which, therefore, gives

‖u(t)− v(t)‖Hr ≤ Cr,s,ρ‖u(t)− v(t)‖s−r
Hs−1 .

The Lipschitz continuity in A1 and the condition s− 1 < r admit

‖u(t)− v(t)‖Hr ≤ Cr,s,ρ‖u(0)− v(0)‖s−r
Hs−1 ≤ Cr,s,ρ‖u(0)− v(0)‖s−r

Hr ,

which is the desired Hölder continuity in A3.

5. Gevrey Regularity and Analyticity for g-BO System

5.1. Analytic Solutions for g-BO in Gδ
σ,s

In this section, By applying nonlinear Cauchy-Kowalevski theory, we will establish
the Gevrey regularity and analyticity of solutions to g-BO system.

Theorem 6 (see [22]). Let (Xδ, ‖ · ‖Gδ
σ,s
)0<δ<1 be a scale of decreasing Banach spaces, namely, for

any δ′ < δ we have Xδ ⊂ Xδ′ and ‖ · ‖Gδ′
σ,s
≤ ‖ · ‖Gδ

σ,s
. Consider the Cauchy problem{

du
dt = F(t, u(t)),
u|t=0 = 0.

(60)

Let T, R > 0 and σ ≥ 1. For given u0 ∈ X1, assume that F satisfies the following conditions:
(1) If for any 0 < δ′ < δ < 1, the function t 7→ u(t) is holomorphic on |t| < T and continuous on
|t| < T with values in Xδ and

sup
|t|<T
‖u(t)‖Gδ

σ,s
< R,
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and then t 7→ F(t, u(t)) is a holomorphic function on |t| < T with values in Xδ′ .
(2) For any 0 < δ′ < δ < 1 and u, v ∈ B(u0, R) ⊂ Xδ—that is, ‖u‖Gδ

σ,s
< R, ‖v‖Gδ

σ,s
< R, there

exits a positive constant L depending on u0 and R such that

sup
|t|<T
‖F(t, u)− F(t, v)‖Gδ′

σ,s
≤ L

(δ− δ′)2σ
‖u− v‖Gδ

σ,s
.

(3) There exists a M > 0 depending on u0 and R such that, for any 0 < δ < 1,

sup
|t|<T
‖F(t, u0)‖Gδ

σ,s
≤ M

(1− δ)2σ
.

Then, there exists a T0 ∈ (0, T) and a unique function u(t) to the Cauchy problem (60) that is

holomorphic in |t| < (1−δ)2σT0
22σ−1 with values in Xδ for every δ ∈ (0, 1).

Proposition 3 (see [22]). Let 0 < δ′ < δ, 0 < σ′ < σ and s′ < s. From Definition 1, one can
check that Gδ

σ,s ↪→ Gδ′
σ,s, Gδ

σ′ ,s ↪→ Gδ
σ,s and Gδ

σ,s ↪→ Gδ
σ,s′ .

Proposition 4. Let s be a real number and σ > 0. Assume that 0 < δ′ < δ. Then, we have

‖∂x f ‖Gδ′
σ,s(R)

≤ e−σσσ

(δ− δ′)σ
‖ f ‖Gδ

σ,s(R), ‖∂
2
x f ‖Gδ′

σ,s(R)
≤ e−2σ(2σ)2σ

(δ− δ′)2σ
‖ f ‖Gδ

σ,s(R).

Proof. The first inequality can be found in [22], so we only prove the second inequality.
Since ∂̂x f = iξ f̂ , it follows that

‖∂2
x f ‖2

Gδ′
σ,s

=
∫
R
(1 + |ξ|2)se2δ′ |ξ|1/σ |ξ|4| f̂ (ξ)|2dξ

=
1

(δ− δ′)4σ

∫
R
(1 + |ξ|2)se2δ|ξ|1/σ

e−2[((δ−δ′)σ)|ξ|]1/σ
(δ− δ′)4σ|ξ|4| f̂ (ξ)|2dξ

≤
‖ f ‖2

Gδ
σ,s

(δ− δ′)4σ
sup
ξ∈R
{e−2[((δ−δ′)σ)|ξ|]1/σ

(δ− δ′)4σ|ξ|4}.

(61)

Let z = [((δ − δ′)σ)|ξ|]1/σ ≥ 0 and consider the function g(z) = e−2zz4σ. By directly
calculating, we have limz→0 g(z) = 0, limz→∞ g(z) = 0 and g′(z) = 2z4σ−1(2σ − z). By
solving g′(z) = 0, we obtain that z = 2σ, which implies that g(z) ≤ g(2σ) = e−4σ(2σ)4σ.
Then, we deduce from (61) that

‖∂2
x f ‖2

Gδ′
σ,s
≤

e−2σ(2σ)2σ‖ f ‖Gδ
σ,s

(δ− δ′)2σ
.

Proposition 5 (see [22]). Let s > 1
2 , σ ≥ 1 and δ > 0. Then, Gδ

σ,s(R) is an algebra. Moreover,
there exists a constant Cs such that

‖ f g‖Gδ
σ,s(R) ≤ Cs‖ f ‖Gδ

σ,s(R)‖g‖Gδ
σ,s(R).

Proof of Theorem 3. We rewrite (g-BO) as follows:{
ut = F(u) .

= −H∂2
xu− uk∂xu,

u|t=0 = 0.
(62)
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For a fixed σ ≥ 1 and s > 3
2 . By virtue of Propositions 3, 4 and 5, we deduce that, for any

0 < δ′ < δ < 1,

‖F(u)‖Gδ′
σ,s
≤ ‖∂2

xu‖Gδ′
σ,s

+ ‖uk∂xu‖Gδ′
σ,s

≤ e−2σ(2σ)2σ

(δ− δ′)2σ
‖u‖Gδ

σ,s
+

Cse−σσσ

(δ− δ′)σ
‖u‖k+1

Gδ
σ,s

≤ Cse−σ(2σ)2σ

(δ− δ′)2σ
(‖u‖Gδ

σ,s
+ ‖u‖k+1

Gδ
σ,s
),

(63)

which implies that F satisfies the condition (1) of Theorem 6. By the same token, we

obtain that ‖F(u0)‖Gδ
σ,s
≤ Cse−σ(2σ)2σ

(1−δ)2σ (‖u0‖G1
σ,s

+ ‖u0‖k+1
G1

σ,s
). Thus, F satisfies the condition

(3) of Theorem 6 with M = Cse−σ(2σ)2σ(‖u0‖G1
σ,s

+ ‖u0‖k+1
G1

σ,s
). Finally, we will show that F

satisfies the condition (2) of Theorem 6. Assume that ‖u− u0‖Gδ
σ,s
≤ R, ‖v− u0‖Gδ

σ,s
≤ R

and w = u− v. Applying Proposition 4, we find

‖F(u)− F(v)‖Gδ′
σ,s

=

∥∥∥∥∥H∂2
xw + ∂x(vkw)− w∂xvk + w∂xu ∑

i+j=k−1
(uivj)

∥∥∥∥∥
Gδ′

σ,s

≤ e−2σ(2σ)2σ

(δ− δ′)2σ
‖w‖Gδ

σ,s
+

Cse−σσσ

(δ− δ′)σ
‖w‖Gδ

σ,s
‖v‖k

Gδ
σ,s

+
Cse−σσσ

(δ− δ′)σ
‖w‖Gδ

σ,s
‖v‖k

Gδ
σ,s

+
e−σσσ

(δ− δ′)σ
‖w‖Gδ

σ,s
‖u‖Gδ

σ,s

∥∥∥∥∥ ∑
i+j=k−1

(uivj)

∥∥∥∥∥
Gδ

σ,s

≤
Cse−2σ(2σ)2σ + Cse−σσσ(‖u0‖G1

σ,s
+ R)k

(δ− δ′)2σ
‖w‖Gδ

σ,s

≤
Cse−σ(2σ)2σ

(
1 + (‖u0‖G1

σ,s
+ R)k

)
(δ− δ′)2σ

‖w‖Gδ
σ,s

.

From the above inequality, we verify that F satisfies the condition (2) of Theorem 6 with

L = Cse−σ(2σ)2σ
(

1 + (‖u0‖G1
σ,s

+ R)k
)

. Moreover, T0 = min{ 1
24σ+4L , (22σ−1)R

(22σ−1)24σ+3LR+M}, by

setting R = ‖u0‖G1
σ,s

, we see that L = Cse−σ(2σ)2σ
(

1 + 2k‖u0‖k
G1

σ,s

)
and M ≤ 24σ+3LR.

Then, we have T0 = 1

Cs24σ+4e−σ(2σ)2σ

(
1+2k‖u0‖k

G1
σ,s

) .

5.2. Continuity of the Data-to-Solution Map in G1
σ,s

Proof of Theorem 4. Without loss of generality, we may assume that t ≥ 0. Define that

Tn =
1

Cs24σ+4e−σ(2σ)2σ
(

1 + 2k‖un
0‖k

G1
σ,s

) , T∞ =
1

Cs24σ+4e−σ(2σ)2σ
(

1 + 2k‖u∞
0 ‖k

G1
σ,s

) , (64)

where Cs is given in Proposition 5. Since ‖un
0 − u∞

0 ‖G1
σ,s
7→ 0; therefore, there exists a

constant N such that

‖un
0‖G1

σ,s
≤ ‖u∞

0 ‖G1
σ,s

+ 1, f or n ≥ N. (65)

Then,

T .
=

1

Cs24σ+4e−σ(2σ)2σ
(

1 + 2k(‖u∞
0 ‖G1

σ,s
+ 1)k

) < min{Tn, T∞}, f or n ≥ N. (66)
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Furthermore, as in the proof of Theorem 3, we see that Tn and T∞ are the existence time
corresponding to ‖un

0‖G1
σ,s

and ‖u∞
0 ‖G1

σ,s
, respectively, which implies that, for any n ≥ N

un(t, x) = un
0 (x) +

∫ t

0
F(un(t, τ))dτ, 0 ≤ t <

T(1− δ)2σ

22σ − 1
,

u∞(t, x) = u∞
0 (x) +

∫ t

0
F(u∞(t, τ))dτ, 0 ≤ t <

T(1− δ)2σ

22σ − 1
,

(67)

where F is given in (62). Therefore, we verify that, for any 0 ≤ t < T(1−δ)2σ

22σ−1 and 0 < δ < 1

‖un − u∞‖Gδ
σ,s
≤ ‖un

0 − u∞
0 ‖Gδ

σ,s
+
∫ t

0
‖F(un(t, τ))− F(u∞(t, τ))‖Gδ

σ,s
dτ. (68)

Choosing δ(τ) = 1+δ
2 + 1

2
2+1/2σ

{[
(1− δ)2σ − t

T
]1/2σ −

[
(1− δ)2σ + (22σ+1 − 1) t

T
]1/2σ

}
.

we find ‖F(un(t, τ)) − F(u∞(t, τ))‖Gδ
σ,s

≤
L‖un−u∞‖

Gδ(τ)
σ,s

(δ(τ)−δ)2σ with

L = Cse−σ(2σ)2σ
(

1 + 2k‖u0‖k
G1

σ,s

)
and 0 < δ < δ(τ) < 1. Using this in (68)

yields

‖un − u∞‖Gδ
σ,s
≤ ‖un

0 − u∞
0 ‖Gδ

σ,s
+ L

∫ t

0

‖un − u∞‖
Gδ(τ)

σ,s

(δ(τ)− δ)2σ
dτ

≤ ‖un
0 − u∞

0 ‖Gδ
σ,s

+
24σ+3LT‖un − u∞‖ET

(1− δ)2σ

√
T(1− δ)2σ

T(1− δ)2σ − t
,

(69)

where, in the last inequality, we used lemma 3.7 in [22]. Since
T = 1

Cs24σ+4e−σ(2σ)2σ

(
1+2k(‖u0‖G1

σ,s
+1)k

) and L = Cse−σ(2σ)2σ
(

1 + 2k‖u0‖k
G1

σ,s

)
, this yields

that 24σ+3LT < 1
2 . Then, we have

‖un − u∞‖Gδ
σ,s
≤ ‖un

0 − u∞
0 ‖Gδ

σ,s
+
‖un − u∞‖ET

2(1− δ)2σ

√
T(1− δ)2σ

T(1− δ)2σ − t
. (70)

This leads to

‖un − u∞‖Gδ
σ,s
(1− δ)2σ

√
1− t

T(1− δ)2σ

≤ ‖un
0 − u∞

0 ‖Gδ
σ,s
(1− δ)2σ

√
1− t

T(1− δ)2σ
+

1
2
‖un − u∞‖ET

≤ ‖un
0 − u∞

0 ‖G1
σ,s

+
1
2
‖un − u∞‖ET .

(71)

Note that the right hand side of the above inequality is independent of t and δ. By the
definition of ET , we have

‖un − u∞‖ET ≤ 2‖un
0 − u∞

0 ‖G1
σ,s

. (72)

The above inequality holds true for any n ≥ N, which leads to our desired result.

6. Conclusions
The local well-posedness results in [14–16] imply that the existence, uniqueness and

continuously dependence on their initial data of the solutions to the g-BO Equation (1)
in in Hs(R) with s > 3

2 . We showed that such a data-to-solution map is not uniformly
continuous in Theorem 1 but Hölder continuous in Hσ-topology. On the other hand, in
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Sobolev–Gevrey spaces, we proved that the solutions of g-BO equation are analytic in both
space and time variables in Theorem 3. In addition, the continuity of the data-to-solution
in Sobolev–Gevrey spaces was also obtained.
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