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Abstract: This paper is interested in establishing some new reverse Hilbert-type inequalities, by
using chain rule on time scales, reverse Jensen’s, and reverse Holder’s with Specht’s ratio and mean
inequalities. To get the results, we used the Specht’s ratio function and its applications for reverse
inequalities of Hilbert-type. Symmetrical properties play an essential role in determining the correct
methods to solve inequalities. The new inequalities in special cases yield some recent relevance,
which also provide new estimates on inequalities of these type.
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1. Introduction
In [1], Hardy established that
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where @;, p; > 0 with 0 < Y22 ¢f < 00,0 < Z}’iltpjﬁ <ocoanda >1,1/a+1/p =1
Hardy and Reisz [2] established the continuous form of (1) in the following
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where § and w are measurable nonnegative functions such that 0 < fooo S (x)dx < oo,
0 < [y wP(z)dz < oo and 7/ sin(7/a) in (1), and (2) is the best value. In [2], Hardy
showed that,ifa >1,>1,1/a+1/>1and0 <A =2—(1/a+1/B) <1, then
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where K = K(a, ) relates to «, , only for 1/a +1/p=1,A=2—-(1/a+1/p) =1and
the constant factor K is optimal. For more details about the Hilbert-type inequalities, see

the papers [3-6]. In [7], Holder proved that
1
n B
<Z vt ) : 4)
k=1

n n
Y ik < <Z 51‘?)
k=1 k=1
where () and (yx) are positive sequences and «, § > 1 such that 1/a + 1/ = 1. The

integral form of (4) is
b p
(/ (Dﬁ(T)dT) , ®)
a

/b P(T)@(T)dT < ( /h l/J’X(T)dT)

where a, B > 1suchthat1/a+1/8=1and ¢, @ € C((a,b),R™).

Some authors established the reverse Holder inequalities, the reverse Young inequal-
ities, and the reverse Hilbert inequalities by using the Specht’s ratio function, see [8-12].
In particular, Zhao and Cheung [11] established the reverse Holder inequalities by using
the Specht’s ratio function and proved that if () and @({) are nonnegative continuous
functions and ¢!/#(Z)@'/#({) is integrable on [a, b], then

( /b w“@)dé) E ( /b wﬁ@)dg) E /b ° ( ;;Z/s((?) ) P (@), ©)

B

Rl=

with
b

b
X= [y @ac, v = u/wﬁ@)d; o> tand b gt

where the function S(.) is called the Specht’s ratio function (see [10]) and defined as follows:

a

H1/(h=1)

In [11], the authors proved that if ¢, @ € C((a,b),R") and m > 0, then

b m+1 el
gy ([S(EG) o)
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where , ,
G = [@@)dgand F= [ 4"+ (5)/@"(¢)ds.

In addition, they proved the discrete case of (7) as follows:
Ba"t1
gl LS (Aahlmﬂ> a;
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where B =Y b;and A = Y a1 /b,
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In [12], Zhao and Cheung established the reverse Hilbert inequalities by using the
Specht’s ratio and proved thatif 0 < a, 8 <1, {A;}, {{;} are nonnegative and decreasing
sequences of real numbers fori =1,2,..,kand j =1,2,...,r with k, r € N, then
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= (if)
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i=1 s=1
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x Z[%(Zw) ] (r=j+1 |, 9)
j=1 =1
where
D(w, B, k,17) = %zxﬁ(kr)%,
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In addition, they proved that, if {A;}, {w } are nonnegative sequences fori = 1,2, ..., k, and
j=12,.,r with k,r € Nand {«;}, {ﬁ]i are positive sequences. Let ¢, 1 are nonnegative,
concave and supermultiplicative functions. Then,
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where the function S(.) is the Specht’s ratio. In [12], the authors proved that, if {A;}, {w;}
are nonnegative sequences fori = 1,2, .., kand j = 1,2,..,r with k, r € N, then

and

k7 S A
22 St D
==L
> %<2A2 —z+1)>2<iw]2(r—j+l)>z, (11)
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In the last few decades, a new theory has been discovered to unify the continuous
calculus and discrete calculus. It is called a time scale theory. A time scale T is an arbi-
trary nonempty closed subset of the real numbers R. Many authors established dynamic
inequalities and generalized them on time scales. For more details, see ([13-17]).

In particular, El-Deeb, Elsennary, and Wing-Sum Cheung [15] proved the reverse
Holder inequality on time scales by using the Specht’s ratio function and proved that,
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if y,@ € C([a,b]T,R") such that ¢*, @P are Op— integrable on [a,b|y. If « > 1 and
1/a+1/B =1, then

[ ;Ygiﬁ GEGER:

> ([lv@os) ([eo0s)’

where X = fab P (0)0ul, Y = fab @P (7)<l and S(.) is the Specht’s ratio (see [11]). In addi-
tion, they proved (12) with weighted functions and proved that if ¢, @, w € C([a, b], R")
such that ¢*, @P are &, — integrable on [a,b]r. If « > 1and 1/a +1/B =1, then

[ s(35e ) w@we@on

Xwh(Z)
Z (./abw(@ll’“(é)%é)a(/wa(g)wﬁ(g)%‘g) ’ (13)
where X = fab w()YP*(0)Oal and Y = f @B (D) Oul.

The authors [15] proved that if ¢, @ € C([a, blt,R*) such that 0 < m < (t)/@(t) <
M < ooforallt € [a,b]p. Ifa >1and 1/a+1/p =1, then

[s( ;Z((?Qwi(é)wé(é)oaa

12/4133

M#

k\'ﬂ

0)0al, (14)

where X = [P $(0)0ul and Y = [ @({)Oul.

The aim of this paper is to establish some new reverse Hilbert-type inequalities on
time scales by using the Specht’s ratio function and applying reverse Holder inequalities
on time scales.

The organization of the paper is as follows: in Section 2, we show some basics of the
time scale theory and some lemmas on time scales needed in Section 3 where we prove our
results. Our main results (when T = R) give the inequalities (9)-(11) proved by Zhao and
Cheung [12].

2. Preliminaries and Basic Lemmas

A forward jump operator on time scales is defined by: ¢(7) := inf{r € T : r > 7}.
The set of all such rd—continuous functions is ushered by C,;(T, R) and for any function
® : T — R the notation ®7(7) denotes ®(c(7)). To learn more about the time scale
calculus, see ([18,19]).

The derivative of the product ®@ and the quotient ®/@ (where @@’ # 0) of two
differentiable functions ® and @ are given by

A Ao — Bl
(@0)2 = PP + 70d = P + D", (q)) _Po-ea7 (15)
@ o’
The integration by parts formula on time scales is given by
v v
| Amet@ar = Ame)l, - [ MA@ (ar. (16)
0 0

The time scales chain rule (see Theorem 1.87 [18]) is as follows:

!/

(@0 9)*(1) =@ (¢(x))9" (1), where x € [1,0(1)], (17)
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and @ : R — R is continuously differentiable, ¢ : T — R is A— differentiable.
Definition 1 ([20]). A function h: ] C R — R™ is supermultiplicative if
h(xz) = h(x)h(z), Vx,z€]. (18)

The inequality (18) holds with equality when h is the identity map (i.e., h(x) = x). If the last
inequality has a reversed sign, then h is said to be a submultiplicative function.

Lemma 1. Let T be a time scale with a € T, A is nonnegative rd-continuous function and
0<vy<1,then

(/:(t) /\(T)AT>7 > ’y./ug(t) (/ﬂa(;c) A(T)Ar) 7_1}\()()A;(. (19)
Proof. By applying (17) on the term fax AMT)AT, we get
[( / X/\(T)AT> q T 7( / g/\(T)AT) A, Le ool 20)

Since { < (), then we have (note 0 < y < 1) that
y—1

( /a gA(T)AT)7_1 > ( /a U(X)/\(T)Ar> . 1)

Substituting (21) into (20), we see that

([ mme) |2 i)

Integrating the last inequality over x from a to o(t), we observe that

y—1

/;(t) [(/ux)\(T)AT) TAX > v_/:(t) (-/;(X) g m“) Hoer

1

('/:m /\(T)Ar)7 > fy/;(t) ('/:()C> A(T)AT) " AGOAx,

which is (19). The proof is complete. O

ie.,

Lemma 2 (Specht’s ratio [10]). If « and B are positive numbers, p > land 1/p +1/q = 1, then

o x B
s()w g s & B 22)
B P P4
where
K1/ (h=1)
h) = 7elogh1/(h—1)'h # 1.

Lemma 3 ([10]). Let S(.) be a Specht’s ratio function which is defined in Lemma 2, then the
function S(t) is strictly decreasing for 0 < t < 1 and strictly increasing for t > 1. Furthermore,
the following equations hold:

S(1) =1and S(t) = S(%)for all t > 0.

In [15] for & = 1, we get the following lemma.



Symmetry 2021, 13, 2431

7 of 20

Lemma 4. If6,w € C([a,b]y, R") such that 67, w" are A—integrable on [a,b]y. If v > 1 and

1/y+1/v =1, then
b (YO
/ S(va(€)>5(é)w(C)A€

> ( A W@A@)%( / bw“(é)A@)i, (23)

where X = f: SY(Q)NL, Y = fﬂb wY(Z)AZ and S(.) is the Specht’s ratio.

Theorem 1 (Jensen’s inequality). Assume that T is a time scale with (o, { € T and ro,v € R. If
A€ Cyi([2o, 2T, R), ¢ = [Co, C)T — (ro,7) is rd-continuous and ¥ : (ro,r) — R is continuous
and convex, then

1 ¢ 1 ¢
‘P(W /go A(T)fp(r)Ar) < W/go AMT)¥ (9(T))AT. (24)

Lemma 5. Let a € T, A, i be nonnegative and decreasing functions and 0 < a, p < 1. Then,

(-0 @) (7O rmar) | 2
Jeo [/\(X) (I:(X) /\(T)ATYHTAX

2

(o(t)—a) [)\(u) ( @ A(T)AT)H]

Jeo [A(;() (Joto A(T)AT)H] “ax

2

(et [0 (7 amar) |

5 , (25)
j;f(f) |:/\(X) (j:'()() )\(T)Ar)ail]zAx
and
(w(@)-a) [0 (17 piriae)” | ’
17 o) (17 wimar)” | Az
(0(&)—a) {#’(ﬂ)(f:(”) ¥(v)AT ﬁ—lr
= maxK S 5
;7o [ll](Z) (J7@ pojar)” 71] Az
a (@) p-1)?
o[ )[#@ (1 yimar)| ”

;e {w(z) (7@ p(ojar)’ 71} a:

Proof. We have for x < z, that

() (2)
/” A(T)AT < /” A(T)AT,
a a

and then (where 0 < a < 1)

(/HU(X) )L(T)AT)

a—1 a—1

> (/HU(Z) )L(T)AT)
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Since A is decreasing, we have that

A(x) ('/;m )\(T)AT) H] 2 >

A2) ( / 7 /\(T)AT)IX_ll 2,
2

-1
thus the function {A( X) ( fff (x) A(T)AT> ¢ } is decreasing. Therefore, we have for a < x that

l)\(a) ( / 7 )\(T)AT) H] 2 > |A() ( / W A(T)AT)H] 2.

Integrate the last inequality over x from a to o(t), to get
2

(o(t) —a) [A(g) ( /a'a(a),\(T)AT)a > /ﬂ'am Ax) ( /:oc))\(r)m)“—ll AX,

and then )
((t)—a) {A(a) (e A(T)AT)H]

[0 [A(X) (ft0 A(T)AT)H] “ax

—112
Since the function {A(X) ( [ (x) A(T)A‘L')IX ] is decreasing, we have for y < t that

Ax) < / “w A(r)AT)M} " A() < / ) A(r)myl] |

and by integrating the last inequality over x from a to o(t), we get that

/:(t) A) < /afr(x) Amm)

_112

> 1. 27)

a—172

V
=
iR
—
>
-
7N
=
iR
=
aJ
>
ﬁ
N~
=
_
| —
>
=

and then

<1 (28)

From (27) and (28), we observe that

(o(t)—a) [A(a) (7 MTW)HT
f:(f) {/\(7() <f:(7€> /\(T)AT)ail}zAX 2 e =2 faa(t) {/\(7() <fﬂ0()c) /\(T)Ar)ail] AX.
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Since the function (Specht’s ratio S(.)) is decreasing on (0,1) and increasing on (1, o), we
observe that one of

2

(c(t)—a) [/\(a) (‘f;’@ A(T)AT)'H} 4 (o(t)—a) {A(t) (f;’(” A(r)Ar)H]Z
an 5

129 [0 (17 awa)™ | JOa00 (790 atmpar) | ax

is maximum (where S(1) = 1), and it is in the form

()= 2@ (f7© rmar)

S —_
fﬂv(f) [/\(X) (fzr T)AT

(o(t)—a) [ AT)IX !
170 (.f;’ oar)" | ax
(o(t)—a) [A(t) (o A(T)AT)H] i
;o [A(x) (o A(r)m)‘”] “a

= max{ S

which is (25). Similarly, with respect to the decreasing function ¢ when 0 < g < 1, we have

(¢(2)=a) [w(w (J7 p(ojar) ’1} 2
;7o [w(z) (7@ y(ryar) ’1} a:

S

(e(8)—a) [uz(a) (7@ y(ryar) ’1]2
;7o [¢<z> (7@ y(ryar) ’1} a:

= maxK S

(w(@-a)[p@ ()7 prar)” ’1]2
;e [wm (7@ p(ojar)’ ’1} a:

which is (26). O

3. Main Results

Throughout the paper, we will assume that the functions are nonnegative rd-continuous
functions on [, b|T and the integrals considered are assumed to exist. We define the time
scale interval [a, b]T by [a, b]T := [a,b] N T.

Now, we can present and prove the first result of this section.

Theorem 2. Leta € T,0 < a, 5 < 1, A, P be nonnegative and decreasing functions. Then,
the inequality

[ Sapsers (170 2007) (79 y(o)ac)”
(o(t) —a)2 ((€) — a)?

(o(s) —é)Aé‘) , (29)
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holds for all v, s € [a, 00|, with

NI=
Nl—=

Cla y1,5) = 2aplo(r) @) (o(s) —a)?,

a—112
(e(h)-a) |A@Q) (S A(r)aT
Stx,ﬁ,t,gf,r,s = S( { ( ) ] )

179 a0 (170 a@an)™]

(&) w0 (7" v(e)a7)’ 1]2)

T [w(z) (7 y(ryar)” 7TAZ

and

xS

xS

xS

such that

and

faa(é) {lp(z) (faU(Z) l/J(T)AT) ﬁl:| ZAZ

(@@= |v(a) ([ p(os ]
= max{ S
i [w(z ]
((() o [v@) (7 yorac)’ )}
;S
17 o) (17 wioar)”™

Proof. Applying (19) with v = &, we have

(/:(t) /\(T)AT)

a—1

> /;(t) Ax) (/QU(X) /\(T)AT) Ax.

o

(30)
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Multiplying the last inequality by

S ((a(t)a) [A(g)(fau(é) )\(T)AT>“1]2) |

fu”(t) [)\(X) (f:m /\(T)AT)ail} ZA;(

we get

Ja

o) _[ -0 a5 A(r)Ar)“’T o) a1
> zx/ S - — Ax) </ /\(T)AT) Ax.
a a

17060 (790 amae) | ax

. a—172 o
o -0 [A(&) (U “)W)AT)l 2 } ( / 7 A(T)AT)
faa(r) [A(X)(IU(X)A(T)AT)“— } Ax a

From Lemma (5), the last inequality becomes

. a—1 o
; (o(t)—a) [A(C) (U (g)A(T)AT)I i } (/U(t) )\(r)AT)
1A (1 Awar) x| Ve

o) [ @00 (F aman) ] . am1
Zoc/ﬂ (t)S( t ){ 0(/. A7> 2} )/\(X)</a (X)/\(T)AT> N

fag(t) [A(X)(IHV(X)A(T)ATY 1} Ax

2

Similarly, we have for the decreasing function ¢ and 0 < B < 1 that

172
(@) o (1 v(miar) | o(2) P
S( @ ! </a lp(T)AT)

70 o) (17 o) | ae

@ [ @@-aloe (7 prac)’ | o) p-1
zﬁ/u s( [ ( 7) 2} )w(z) (/a l/J(T)AT) Az.  (32)

179 o (57 wmar)” oz

From (31) and (32), we see that

5 (Wf)u) o “T)AT)AT) s c© [ (5 w(r)m)ﬁlﬁ

9 o aae) " ax |0 e (1 yeome)” e

o(t) & ()
X (/u /\(T)AT) </a P(T)AT
12
[ @O-0 200 ([P rma) ) a1
> ap /U 5 o >1 A (/” )\(T)AT) < 1.Ax
Ja ;v [%o JE9 Ar)at)” } Ax a

P(z) (/:(Z) w(T)AT) a X 1.Az). (33)

N———
=
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Applying (23) when v = v = 2, we have

s (“’G)a) ol A(ﬂm)alr) > (Wr’;)a) [y (57 w(rw)ﬁlf)

52 oo (170 x| o (1 weome)” o

X (/:(t) A(T)Ar)a (/:(g) 1p(*r)Ar>ﬁ
(/J(t)

1

o(x) a-112 2
A(x) </u A(T)AT) ] A)()

2\ 3
Az) . (34)

NI—

> ap(o(t) —a)

we see that

o(t) @
Sa,ﬁ,t,cf,,r,s (/a )\(T)AT)

o « o(r)—a) [ 7@ A(1)AT w1
B < [ N (T>AT> o[ eo-n RGIE kj( )|
a fﬂv(r) {/\()() (fav()c) )L(T)AT) ]

412
B ( (w(9)-a) 7 [y (" y(wa)” )
A

o(8)
X (/a l[J(T)AT) S
xS ((U(t)ﬂ) {A(Q O"J(g) (T)Arylr) 5 ((U(g)ﬂ) {l"(q)Q:("} lP(T)M)ﬁl]Z)

1 oo (17 acoe) e |\ e (1w o

2
1 o(r)—a aﬂ(f) AD) ;(g)/\('c T%l
>Ixﬁ<0(t)a>zs( (o)) 7 (), 2)A) ] )
I

(35)
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Dividing the two sides of (35) by (o (t) — a)% (0() — a)% and then taking the integration
over t from a to o(r) and the integration over ¢ from a to o(s), we get

/U(S) /0(7) Swpiirs (f:(t) A(T)AT)(X (faa(g) IP(T)ATy;
o« e (@(t) — )% (o(2) o)

w112
o S

B faa(r) {A(X) (f:(x) A(T)AT)“1:| 2(0’(1’) —X)Ax

AtAE

o) [ o(x) w172
x(/u /\(X)(/u A(r)m) ]AX At

2\ 2
Az) AC. (36)

By applying (16) on the term

(r) a(x) a—172
/a lA(X>(/z MT)AT) ](U(r)—x)Ax,

0112
with u(x) = (o(r) — x) and 02 (x) = {A(X) (faa()‘) A(T)AT) 1] , we get

o(r) o) 11
[ ([ amar) | e s
= etk + [ s
2

where v(x) = [} [)\(9) (f;(e) /\(T)AT>“_1} A0 and then (where v(a) = 0)

o(r) o) w1
/ [MX)(/H Aw)ar) ](U(r)—x)Ax

_ /aa(r) /;(X) l)\(@)( /LZU(G)A(T)AT)aerGA)(. (37)

Similarly, we see that

AOAz. (38)
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Substituting (37) and (38) into (36) and then by applying (23) when v = v = 2, we
observe that

1

—a)2(c(2) — )
0_ 1’ 0’(t>|: U(é) )L ) 1:| zAé'

P L (AL O

2aﬁ/ff(f)s o
C L EO (0 aman) | aeay

( o [ o) w172

x /a A(x) (/a A(T)AT) 1 Ax | x1at
x/U(S)S
X (/:(é) [w(z) </:(Z) 1/7(T)AT> o ZAZ) 2 X 1AE

>af(o(r) —a) (/U(r / [ (/ (T)AT> .
o] ( /ﬂa(s) /aa(é) [w(z) ( /;(Z)I/J(T)Ar>ﬁ_1

From (37)—(39), the last inequality becomes

2 2
AzAg) . (39)

/ / a,gtg,s /\(T)Ar)“(f:«;) lP(T)AT)ﬁ

AV
=
=
2
a
\
S
NI—
—
S
q
=
| —
>
=
7 N
=z\.
2
=
a
>
,-]
N——
=
|
_
—_
2
S
\
=
e
~
N

which is (29). O

Remark 1. As a special case of Theorem 2, when T = N, we can get (9) proved by Zhao and
Cheung [12].
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Theorem 3. Let a € T and A, w be nonnegative functions. In addition, we assume that o, B

are positive functions. If ¢,  are nonnegative, concave, and supermultiplicative functions, then
the inequality

2 2
} (a(s)—z)Az) , (40)

o [ (eh)=a)|a(o(}
= S a(x
MO= ) <f Teoe (9] o

@ e@-apep(42)]
0l = /ﬂ S(]‘ﬂ"@)[ﬁ(Z)ll’(“’(z))r w(z)Az,

)
o _ /\( ) 2
o) = / 0 5(@) a)[a(xwga(")z)] )MX) Ax,

and

w@):/u"@s(” {“)W“”E?Z)] )ﬁ( )z

[ (42)]
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Proof. Using the fact that ¢ is a supermultiplicative function, applying Jensen’s inequality
and then applying (23) with v = v = 2. Then,

PAL) = ¢

%
=

o
=
5

Vv

P(D (1)) /«f(f) s ((a(t)—a) ()9 (20)
O Ja Nl (38)

. ¢(<§((tt))> () — o)} ( /:(t) [a 0 (P</\(X))]2Ax> %. (41)

Similarly, we can get

v 2 L o) - o ( [ [ﬁ(z)av(‘;((j)))]zAz) L @
Multiplying the both sides of (41) and (42), respectively, by
(70 [0 (28)] (010 - 00 ) (23802’
(0 (5 r) (1 b )T o)

2

and
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and then multiplying these inequalities, we get

(A2
=
e
==
)
|
e
VO
&\
2
—
2
=
RSy
~—~
/§>—
alits’
S~
| IR |
>
=
~
N

o (0 sooe ) o) (452)°
(55 o) (1 leon ()T o)

XWW@PM%( [ s ‘”<Z))}2Az>z

( (19 w5 e-ns) (92 )
xS ( ’ - .

FO)

(43)

By dividing the two sides of (43) on (o(t) — a)% (o(0) — a)% and then taking the integration
over { from a to 0(s) and then the integration over f from a to ¢(r), we observe that

/ / StrSC(P ))lP(Q(é))%AtAg

2(0(Z) —a)

I o)) e

By using (16), we can see that

/ 2
st
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In addition, we can obtain that

[ [ﬁ<z>¢(‘g((j)’)]z<a<s> REYe

/ / { 94)(“’9 )TA@AZ. (46)

Substituting (45) and (46) into (44), we have

e H)H

Applying (23) with v = v = 2 on the right-hand side of (47), we get

[7 % (DU, g |
: (/f“@fié”ﬂf)z(/;“ [ (i) oone)
(LY s) ([ [ (59 e
o ron(3) )
([ (50 o) -
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which is (40). O

Remark 2. As a special case of Theorem 3, when T = N, we can get (10) proved by Zhao and
Cheung [12].

By applying Theorem 3 with ¢() = x and ¢(z) = z, we can obtain the following theorem.

Theorem 4. Let a € T and A, w be nonnegative functions. Then, the inequality

/a(s) /‘7(7) St,r,s,gA(t)Q(g) AtAL
o (o) - a) o) - )}

holds for all r,s € [a, co|r, with

77 A0 (o (r) = x)8x
(e(r) = a) (7 22008x) )\ (0(s) =) (S} «?(2)82)

St,r,s,§ =S

and
U(t) H—a /\2 U(g) é —a (4)2 7
w0 = [ (e s 00 = [5G o

Remark 3. As a special case of Theorem 4, when T = N, we can get (11) proved by Zhao and
Cheung [12].

4. Conclusions

In this article, we first proved the reverse Hilbert-type inequalities on time scales
which involving nonnegative and decreasing functions. After that, we proved the reverse
Hilbert-type inequalities on time scales which involve nonnegative, concave, and super-
multiplicative functions. All of these results are proved by using the Specht’s ratio function.
In future work, we will continue to generalize more the reverse Hilbert-type inequalities
by using Kantorovich’s ratio.
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