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Abstract: Unmanned aerial vehicle (UAV) clusters usually face problems such as complex environ-
ments, heterogeneous combat subjects, and realistic interference factors in the course of mission
assignment. In order to reduce resource consumption and improve the task execution rate, it is very
important to develop a reasonable allocation plan for the tasks. Therefore, this paper constructs a
heterogeneous UAV multitask assignment model based on several realistic constraints and proposes
an improved half-random Q-learning (HR Q-learning) algorithm. The algorithm is based on the Q-
learning algorithm under reinforcement learning, and by changing the way the Q-learning algorithm
selects the next action in the process of random exploration, the probability of obtaining an invalid
action in the random case is reduced, and the exploration efficiency is improved, thus increasing the
possibility of obtaining a better assignment scheme, this also ensures symmetry and synergy in the
distribution process of the drones. Simulation experiments show that compared with Q-learning
algorithm and other heuristic algorithms, HR Q-learning algorithm can improve the performance
of task execution, including the ability to improve the rationality of task assignment, increasing
the value of gains by 12.12%, this is equivalent to an average of one drone per mission saved, and
higher success rate of task execution. This improvement provides a meaningful attempt for UAV
task assignment.

Keywords: task allocation; half-random Q-learning; UAV collaboration; random exploration

1. Introduction

Unmanned aerial vehicles (UAVs) are aircraft that do not need a human pilot on
board [1], and it is widely used in military operations to perform missions such as jam-
ming [2], attacks [3], and reconnaissance [4] due to their low cost, no casualties, and
flexibility [5]. Both task allocation and pre-mission path planning are the core parts of
the operational mission execution process [6], where task allocation refers to finding the
most reasonable set of allocation options under the condition of meeting environmental
elements and mission requirements, so that the UAV system can achieve the optimal overall
efficiency and resource allocation [7]. Due to the complex battlefield environment, often a
single UAV does not meet the conditions for mission execution, so multi-UAV cooperation
is a common form of UAV operations, and multi-UAV assistance can solve the problems
of small single UAV loads, fast power consumption, and inability to perform large-scale
missions, with the aim of maximizing operational effectiveness [8].

For UAV collaborative task assignment, it can usually be viewed as a multi-combination
optimization problem [9]. The traditional methods for solving this project are mainly
mathematical and heuristic methods. When the amount of data is small, mathematical
methods can be used to list all combinations and find the optimal solution in the com-
bination, but when the amount of data is large, the time taken to list all combinations is
too long and the result is optimal but inefficient. Some scholars use improved heuristic
algorithms to optimize the UAV mission planning problem, such as genetic algorithm [10],
particle swarm algorithm [11], and ant colony optimization algorithm [12] can be selected
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randomly and then gradually converge to the optimal method to get a near-optimal solu-
tion [13]. Reinforcement learning, a computational approach to learning from interaction,
has been applied to many disciplines in the past few years [14]. Reinforcement learning
seeks optimal solutions by continuous trial-and-error learning in an unknown environment.
Although neural networks have gradually become a research hotspot in recent years, and
they can solve the problem of large data volume in continuous space problems in rein-
forcement learning, but their time-consuming problems are also more prominent. Whether
it is a heuristic algorithm or a reinforcement learning algorithm, there is the problem of
randomly selecting a strategy in the process of solving the model [15,16]. The existence
of a random strategy on the one hand avoids the possibility of the algorithm falling into
a local optimum [17], and on the other hand too much invalid random exploration will
reduce the execution efficiency of the algorithm. In the actual combat environment, the
battle situation is often more urgent, so it is very important to make the optimal decision in
the most limited time possible. Q-learning algorithms are widely used for reinforcement
learning due to their simplicity and convergence [18].

Therefore, based on reinforcement learning, this paper proposes an improved Q-
learning algorithm. This algorithm can get a better allocation result than Q-learning
algorithm in almost the same time, which reduces resource consumption and expands
actual benefits. The point of random exploration is to accept a poorer action in the present in
order to maximize future gains [19]. In this paper, the specific approach to the improvement
of the Q-learning algorithm is to allow the acceptance of poorer actions in the random
exploration of the next action, but to remove the probability of selecting an action that will
always yield poor returns in the future, thus increasing the efficiency of the exploration
and making it more likely that a better solution will be obtained. The main contributions
of this paper are as follows:

1. A collaborative UAV mission allocation model is constructed, which takes into
account the types of UAVs and the resource requirements of the targets, and each type of
UAV has different mission execution capabilities; the final evaluation takes into account a
series of factors such as reward value, cost value, and adaptability when multiple UAVs
collaborate to execute a mission, and integrates all factors and their weights to evaluate the
rationality of the allocation scheme.

2. An improved reinforcement learning algorithm HR Q-learning algorithm (HR
Q-learning) is proposed, which is based on the characteristics of the model to improve the
efficiency of random exploration by judging the invalid action in advance when exploring
the strategy randomly, and can obtain the task assignment scheme with higher profit value.

The rest of the paper is organized as follows. In Section 2, a brief review of the
literature on UAV tasking assignment is presented. In Section 3, the simulation model
and mathematical formulation are given based on the actual battlefield environment.
In Section 4, the Q-learning algorithm for reinforcement learning is introduced and an
improved algorithm is proposed. In Section 5, experimental parameters are set, simulation
experiments are performed, the results are compared and analyzed. Section 6 concludes
the whole paper and provides an outlook on future work.

2. Literature Review

In recent years, the task allocation of UAVs based on intelligent algorithms have been
extensively studied by many scholars.

Many scholars have conducted modeling and algorithmic studies on the task assign-
ment problem of UAVs. For the study of the algorithm, most of the current research on
UAV task assignment is still based on heuristic algorithms and mathematical methods.
Some scholars have proposed some new heuristic algorithms based on biological behavior,
for example, Kurdi et al. [20] proposes a bacteria-inspired heuristic for the efficient distri-
bution of tasks among the deployed UAVs. The algorithm is based on a simple dynamic
energy model of the biological population and combines three allocation strategies to
improve the performance of the algorithm. Some scholars have improved the existing
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algorithm. Gao et al. [21] proposed a grouped ant colony optimization algorithm, and
negative feedback mechanism is introduced to accelerate convergence speed of the algo-
rithm; Bong-Kyun Kim et al. [22] designed a heuristic algorithm to solve the operational
planning problem for military aviation. In addition to heuristic algorithms, Ye et al. [23]
developed an extended CBBA with task coupling constraints (CBBA-TCC) to solve the
multi-task assignment problem with task coupling constraints in the heterogeneous multi-
UAV system. In addition, in [24], a new collaborative task assignment method of multi-type
UAV based on cross entropy is introduced and the resources required for the problem
are considered. Zhou et al. [25] proposed a new two-segment nested scheme generation
strategy task planning method based on genetic algorithm and cuckoo search, so as to
solve the multi-dimensional and complex problems in the process of UAV action. Heuristic
algorithms are mainly characterized by their high randomness and unstable convergence;
the main problem of mathematical methods is their long-time consumption. In terms of
model, [26] proposed a new dynamic ant colony’s labor division (DACLD) model, which
enables agents with low intelligence level to perform complex tasks, and this model is
highly self-organized and flexible in dynamic environment. In [27], a centralized dis-
tributed hybrid control framework for task allocation and scheduling is proposed, and
Dynamic Data Driven Application System (DDDAS) is applied to the framework to make
it adapt to changing environments and tasks.

Reinforcement learning, as an important branch in the field of machine learning
and artificial intelligence, has become an important direction for our research problems,
especially in recent years when numerous results beyond human level have been achieved
in solving problems such as Atari games and chess game confrontation [28–30]. In the field
of UAV task assignment, reinforcement learning algorithms are also gradually gaining
more and more attention from scholars. In [31], a fast task assignment algorithm based on
Q-learning is proposed. Through neural network approximation and priority experience
replay, online learning is transformed into offline learning, and the problem of UAV
assignment under uncertain environment is studied. In [32], a double-screening sampling
method is designed, which combines deep learning with deep deterministic strategy
gradient algorithm to break the correlation of continuous experiments in the experience
base and improve the convergence of the algorithm. In [33], based on the complexity and
dynamics of the future battlefield, an autonomous decision-making method for UAV is
developed by combining the deep belief network decision-making model with genetic
algorithm. In UAV collaborative task assignment, most of the improved algorithms based
on reinforcement learning are based on the fact that Q-table stored data in reinforcement
learning is not easy to be too large and using neural networks to transform it into deep
reinforcement learning, but for discrete data processing like task assignment, deep learning
is time-consuming and does not take advantage in fast task assignment.

Based on the above studies, it is found that the difficulties of task assignment are
mainly in the unacceptability of time during real-time tasks, such as mathematical traversal
methods and neural network methods, and the success rate of task assignment and the
stability of algorithms, such as heuristic algorithms that easily fall into local optima and
have poor robustness in some cases.

3. Multi–UAV Tasking Model Construction

This section is about the model construction in the task assignment process of UAV.
This model is based on the premise that the operational capability requirements of each task
on the battlefield are known before the operation, or the resources that need to be carried
to complete each mission have been reconnoitered during the operation. The purpose is to
assign a reasonable combination of heterogeneous UAVs for each task, so that the combi-
nation obtained can achieve greater actual benefits and minimum resource consumption.
The model considers three different performance indicators of heterogeneous UAVs and
missions, combining various factors such as profit, loss, and fitness, and multiple aspects
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to measure the advantages and disadvantages of the allocation scheme in a comprehensive
manner, which is more realistic.

3.1. Problem Statement

Suppose there are N tasks to be performed on the battlefield, each with three different
resource requirements and a reward value for being successfully executed, the set is
T = {T1, T2, . . . , TN}. Each task Ti = [αTi,βTi, θTi, ψTi] (Ti ∈ T) can be described by its
respective element group. The execution capabilities required to perform the task Ti are
αTi,βTi, θTi, respectively. The practical meaning of its representation can be respectively
attack capability, defense capability, and jamming capability, etc. ψTi represents the
revenue that can be obtained by executing task Ti. Moreover, suppose there are M types
of heterogeneous UAVs A = {A1, A2, . . . , AM}, and the resource vector carried by each
type of UAV is Aj =

[
αAj,βAj, θAj, λAj

](
Aj ∈ A

)
, where αAi,βAj, and θAj represent the

corresponding indicators of attack ability, jamming ability, and defense ability in the task
elements. Each type of UAV has three execution capabilities, but each type of UAV has
different values of the three capabilities, such as attack UAV may have a high attack
capability, but has a low defense capability, so multiple UAVs need to cooperate to perform
the mission to guarantee the maximum value of the benefits. λAj represents the cost
of UAV of type Aj, it was also an important factor in whether to send the drone. It is
assumed that the number of UAVs of each type is limited but can meet the task assignment
requirements by default, and each mission is performed by up to H UAVs of the same type.
Moreover, different types of UAVs take different times to perform different tasks, where
Tij represents the time spent for task Ti to be performed by a UAV of type Aj. The UAVs
perform their tasks in concert roughly as shown in Figure 1.

Figure 1. Simulated collaborative task allocation diagram.

3.2. Mathematical Description Based on Resource Constraints

The constraints that should be considered in the modeling of task assignment of UAV
cluster include the constraints of UAV’s own capability, the constraints of the weapon and
ammunition load, and the non-redundant constraints in the cooperative attack process.
Because of the different types of UAVs and the different resource capabilities required for
each mission to be performed, the combination of UAVs assigned to perform a mission
needs to meet the conditions under which the mission can be performed and to guarantee
the rational use of resources, which is translated into the following mathematical equation:

(1) When the UAV performs a task, each type of UAV has a different ability to perform
the task, a type of UAV can perform the task on the premise that each UAV itself has the
basic ability to satisfy the conditions that can perform the task, each task itself has a certain
ability to interfere, when the type of UAV can meet the resistance to the interference of the
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task, the type of UAV can perform the task without being destroyed due to the jamming,
that is:

∆θij = θAj − θTi

{
≥ 0 Aj satisfy the condition to execute Ti
< 0 Aj not satisfy the condition to execute Ti

(1)

where θTi represents the interference capability of task Ti, θAj denotes the anti-interference
capability possessed by the UAV of type Aj. When the anti-interference ability of the UAV
is greater than the interference power of the task, the UAV can perform the task.

(2) Due to the different types of UAVs and the different resources required for the
mission, in order to successfully execute the mission, under the condition that the mission
can be executed, it is also necessary to ensure that each combat capability of the assigned
UAV combination is greater than the combat capability required for the mission, such as
for mission Ti, the sum of the attack capability and the sum of the defense capability of
the assigned UAV combination that can execute the mission needs to be greater than the
mission’s required attack capability and defense capability. The formula is as follows:

τi =

{
1, ∑n αn ≥ αTi and ∑n βn ≥ βTi
0, otherwise

(2)

where n represents the combination of UAV carrying out mission Ti. For example, the
heterogeneous UAV combinations assigned to task Ti are [A1, A1, A2, A3, A3, A3], i.e.,
three UAVs of type A1, one of type A2, and two of type A3 perform the task Ti together. So
n ∈ (A1, A1, A2, A3, A3, A3) and αTi , βTi represent the attack capability and ammunition
reserve required to perform task Ti. If both equations are satisfied, then τi = 1, it means
that the combination can successfully execute the task, otherwise τi = 0, it means that
the combination cannot successfully execute the task. So τi = 1 is one of the necessary
conditions for the task to be successfully executed.

(3) In order to prevent waste of resources and achieve load balancing when executing
a mission, it is necessary to adapt the mission to the assigned heterogeneous UAV combina-
tions as much as possible while ensuring that the mission can be executed. We express the
fitness of the assigned UAV combination to the task in terms of the mean squared deviation
of its resource vector, that is:

ϕi =
√
(∑n αn − αTi)2 + (∑n βn − βTi)2 ≤ ∆X (3)

where ∆X denotes the maximum mismatch of resources that the allocation scheme can
accept. A smaller ϕi indicates a better allocation scheme, and when ϕi > ∆X, it indicates
that the task is not reasonably executed.

(4) Based on the practical constraints, we also need to consider the size of the number
of UAVs that can be assigned to each type for the same task, and in this paper, we set the
upper limit of the number of UAVs that can be assigned to the same task for each type of
drone as H, i.e.,

∑j nij ≤ H (4)

∑j nij denotes the sum of the number of drones of all types assigned to task Ti.
Finally, all the necessary conditions for successful task execution are shown in the

following equation:

s.t.


∆θij ≥ 0
τi = 1
ϕi ≤ ∆X
∑j nij ≤ H

(5)

3.3. Objective Function

For a certain task, it can be successfully executed only under the premise of satisfying
all the above constraints. If the task is successfully executed, the indicators to evaluate the
task assignment plan shall include the profit for completing the task, the cost of the UAV,
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and the adaptability of the task, etc. So, we set the returns as a linear combination of these
indicators and their weights, and our goal is to find the allocation scheme that maximizes
the returns, which is

maxPi = ψTi −∑ λAj −ω1 · ϕi −ω2 · n (6)

where Pi represents the profit from executing task Ti, which is related to the reward, cost,
and fitness etc., and is the result of their weighting, in this paper it is a representative
value to measure the merit of the allocation scheme, the aim is to get the maximum profit
Pi. ∑ λAj represents the sum of the costs of the assigned heterogeneous UAV combinations,
whose costs are not weighted as the actual consumption of resources. ϕi denotes the fitness
between the assigned heterogeneous combinations and the task, which indicates the degree
of resource wastage. n denotes the number of drones in the assigned combination, and
since each UAV dispatched will cause the related loss of human and material resources, it
also denotes one of the loss costs. ω1 and ω2 are the weights of the fitness and the number
of the assigned indicators, and their values are set based on the practical significance.

The model in the literature [31] is based on the setting of constraints and reward
values to measure whether satisfactory allocation results are obtained by judging the
magnitude of the total reward value. Although the total reward value is finally proven to
meet the objective requirements, there is no guarantee that every task assigned has been
successfully performed, and does not take benefits and costs into account and does not give
a specific allocation plan. In this paper, based on the model constructed in this literature,
profit and costs are added and the final solution is evaluated with fitness as one of the
elements, this setting makes the model more realistic. We can get the revenue and losses of
different distribution schemes, and finally calculate the scheme with the largest profit from
all distribution schemes that meet the requirements as the optimal scheme, and give the
specific scheme and the corresponding profit value.

4. HR Q-Learning Algorithm

Reinforcement learning (RL) is a method that is not based on environmental solution
models, this means that the state of the environment does not need to be known before
solving the model. Model-free RL is a powerful and general tool for learning complex
behaviors [34]. It is a method by which agents interact with the environment, get feedback
from the environment, and then learn the optimal strategy through trial and error [35], the
interaction process is shown in Figure 2. Its learning process can be described as a Markov
decision process and it is an unsupervised learning method [36]. Reinforcement learning
has five elements: the set of states S, the set of actions A, the state transfer probability P,
the immediate reward value R, and the policy Π. The five elements specifically include:

Figure 2. Action and environment interaction process.

State (S): represents the set of states, which refers to the current state of the agent and
is a constantly changing quantity.

Action (A): from the action space, which is a description of the behavior of the agent.
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State transfer probability P(s′|s, a) : denotes the probability of taking action a in state
s, and then the environment changes to state s′ at the next moment.

Immediate reward r(s, a, s′): refers to the reward value that the environment will give
back to the agent after the agent makes an action a in state s. This reward value is related
to the state s′ at the next moment.

Policy: refers to how the agent decides the next action a based on the environment
state s. There are generally two types of policies, deterministic policy and stochastic
policy. Deterministic policy is a function of mapping from state space to action space, and
stochastic policy represents the probability distribution of an agent to choose a certain action
given an environmental state. General reinforcement learning uses stochastic policies.

4.1. Q-Learning Algorithm

Q-learning algorithm is a kind of reinforcement learning method based on the up-
dating of value function to constantly update and adjust the strategy [37]. Reinforcement
learning has five elements: state set S, action set A, immediate reward value R, decay factor
γ, and exploration rate ε, and its goal is to solve the optimal policy пand the optimal action
value function q [38].

The general idea of the Q-learning algorithm is to constantly try in an unknown
environment, adjust the strategy according to the feedback information obtained from the
attempt, and finally generate a better strategy. According to this strategy, the machine
can know what action should be performed in what state. The main part of the algorithm
is to build a Q-table with row as state set S and column as actions set A before solving.
First initialize the Q-table. Let the initialized states s be the current state, based on the
greedy method(ε-greedy strategy) of selecting action a on the basis of the current state
and acting with the environment. Then get the updated state s′ and the reward R from the
environment feedback, update the Q-table with the obtained reward values, the updated
state s′ is used as the current state of the next loop, and judged whether the termination
condition is reached, and if not, the loop continues. The goal is to find the expectation of
the strategy with the largest cumulative reward.

If the reward sequence Rt+1, Rt+2, Rt+3 · · · is obtained after moment t, in general, we
look for the maximum value of the expected reward, and we want the agent to choose a
series of actions that maximize the sum of the values of the discounted rewards obtained
in the future, that means maximizing the expectation of the discounted reward Gt.

Gt = Rt+1 + γRt+2 + λ2Rt+3 + · · ·+ Rt+n =
n

∑
k=0

λkRt+k+1 (7)

maxπE[∑h
t=0 γtR(St, At, St+1)|π ] = maxπE[Gt|π ) (8)

where γ is the discount rate, which caters for (0 ≤ γ ≤ 1), and is the decay factor of future
reward value. The Q-learning algorithm uses the time difference method (TD) for learn
offline, using the Bellman equation to solve the optimal process, and derives its Q-table to
update the process as:

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)] (9)

where α is the learning rate, generally taken as a number between (0, 1), the larger the
learning rate the faster the convergence will be, but it may lead to problems of overfitting.

In the Q-learning algorithm, greedy ε is another important parameter, i.e., when
selecting actions based on strategies, the actions are selected with greedy strategies in
most cases, while the actions are selected randomly with a certain probability, which is to
prevent the algorithm from falling into local optima and increase the exploration degree of
the algorithm. A greedy rate that is too small will make the algorithm easily fall into a local
optimum, and a greedy rate that is too large will make the algorithm too noisy, causing too
much invalid exploration and not easy to converge. The specific process of the Q-learning
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algorithm is showed in Figure 3, where E represents the number of iterations, and r stands
for reward.

Figure 3. Flow chart of Q-learning algorithm.

4.2. Improved Q-Learning Algorithm–HR Q-Learning

In Section 4.1 we mentioned that the Q-learning algorithm selects actions based on a
greedy strategy and there is a greedy rate ε. The meaning of the greedy rate is so that there
is a certain probability that the action will be chosen randomly when the agent chooses
a strategy based on a greedy strategy, which is to add some noise to the action randomly
so that the agent can explore the possibility of achieving a greater reward in the future by
choosing a non-optimal action. The equation is as follows:

a =

{
argmaxaQ(s, a), with probability 1−ε
random from A, otherwise

(10)

Random selection of actions under a certain probability instead of selecting the optimal
strategy based on the greedy method may result in poor returns in the current iteration,
but in the long run, a better solution may be explored.

According to the model constructed in Section 3, we can find that the results obtained
are always poor when the UAV’s interference immunity is less than the task’s interference
capability. So, this paper proposes an improved evolutionary Q-learning algorithm with
a half-random selection strategy based on standard Q-learning, and combined with the
task assignment model constructed in Section 3. In order to reduce the invalid exploration
and make the results converge faster, the HR Q-learning algorithm makes improvements
in the process of randomly selecting actions. In the randomly selected strategy, the action
is selected according to the greedy strategy, the reward value of the action is obtained, and
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it is judged whether it is an action that is always poor in the future, and if so, the action is
removed from the randomly selected action in the future. This means that when an agent
randomly chooses an action with a certain probability, the result of the exploration will
not be the action that has the worst effect and will not achieve a good reward in the future.
Improved departments such as Algorithm 1, and the other parts are basically the same as
the Q-learning algorithm.

Algorithm 1: Half-Random Exploration

Input: Current State S, exploration rate ε, Action set A
Output: action a
a) Check if status S is in the q-table, if not then add
b) If k ≥ 1 − ε (k is a random number generated between 0 and 1)

Randomly choose a in the action set A
Else:

Greedy strategy choose a based on Q-table
c) Execute a, get R and s′

d) If a is worst action
A = A remove a
e) Update action set A
f) Determine if termination is reached, and if not, execute a)

Since the improvement of this algorithm makes the Q-learning algorithm less com-
pletely random in the process of random exploration, which is to eliminate the actions
with very poor results from the action set in advance by judging them in advance, so we
call this algorithm a Half-Random Q-learning (HR Q-learning) algorithm. In terms of the
performance of the algorithm this improvement reduces the noise, reduces the invalid
random exploration, and allows the algorithm to perform the random strategy efficiently
while avoiding getting trapped in a local optimum. For the collaborative task assignment
model constructed in this paper, an invalid random exploration leads to the termination of
the loop for that round, leaving the round without a satisfactory solution and moving to the
next round, reducing the likelihood of the algorithm achieving more reasonable solutions
for the same number of iterations, and improving the algorithm increases the likelihood of
the algorithm achieving a reasonable solution in each round, which also corresponds to an
increase in the probability of obtaining a better drone assignment solution.

4.3. Combining Algorithms with Models

In the model in Section 3, we give the parameters of the task, the parameters of the
UAV, the constraints, and the objective function. In order for the algorithm to solve the
model, we view the process of solving the model as a Markov decision process according
to what was mentioned earlier, and set the states, actions, and rewards in the model.

The initial parameters of the task are the initial set of states, the dimension of the
set of states is 4, the drone types are action sets, and if there are N types of drones, the
action set dimension is N and each action a(a ∈ A) also has four parameter indices. For
each action selection, first judge whether the jamming resistance of the selected drone is
greater than the jamming capability of the task, judge whether the task can be executed,
and if it is not satisfied, the current round ends, otherwise continue to judge whether other
constraints are satisfied. Reinforcement learning is an algorithm that updates the selection
policy in a single step, so the next state s′ is the parameter set of the current state set minus
the corresponding parameter set of the selection action, until the cumulative assigned
UAV combinations reach the condition that the task can be executed, and judge whether
the constraint of fitness is satisfied, if it is satisfied, it means that the task is successfully
executed and the round is over, and the round assignment scheme is recorded in the list.
The judgment process is shown in Figure 4.



Symmetry 2021, 13, 2417 10 of 23

Figure 4. Termination condition judgment.

Depending on the state s′ the agent is given a different reward value r. This reward
value is used to update the Q-table and to guide the selection of the agent’s action for the
next round. The process is the part of reward value acquisition and termination condition
determination, which is also the core part of applying the model constructed in Section 3 to
the reinforcement learning algorithm. Algorithm 2 shows the specific process.

Algorithm 2: HR Q-Learning Algorithm Implementation of Task Assignment

Input: Action set A, initial State S, learning rate α, exploration rate ε, etc.
Output: Allocation scheme, Profit value
1) Initialize Q-table, State S
2) For j from 1 to T

S = S (Tj)
Initialize A

3) For i in range E:
a) Initialization state s
b) Choose the a from the A based on the ε-greedy strategy
c) Execute a, get R and S’
d) If a is worst actio

A = A remove a
e) Update action set A
f) Equation (9) update the value function Q (S, A)

QNew(S, A) = QOld(S, A) + α(R + γmaxA′Q(S′, A′)−QOld(S, A))
g) s = s’
h) Determine if termination is reached, and if not, execute b)
i) if s’ = successful,

Storage
j) If the iteration completes, start the next task from 2)

4) When all tasks are assigned and completed
Calculate the revenue according to Equation (6)
Collation results
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First, the parameters αTi, βTi and θTi of the task are used as the parameter vectors of
the state S, s = (αTi, βTi, θTi) is the initial state; the action set is the type of heterogeneous
UAV, which is A = (A1, A2, · · · Am); the reward r and the next state s′ can be obtained
by performing action a in state s. The reward value is determined by the state obtained,
and since the reward value in turn determines the choice of action, so different rewards
should be set for different states. The state vector of the next step is equal to the parameter
vector of the current state minus the parameter vector of the selected drone type, where the
interference value θ is only compared to determine whether it can be executed, and is not
subtracted. When the assignment task completes or fails, it is determined to be terminated,
and if s′ is terminated, the next loop is started, otherwise the next state s′ is used as the
current state to continue iteration. The flow chart is shown in Figure 5.

Figure 5. HR Q-learning flow chart.

5. Simulation and Discussion

In order to verify the effectiveness of the algorithm, in this section we will conduct
multiple sets of experimental analysis to compare by setting different number of tasks and
number of UAV types. Finally, the effectiveness of the algorithm is measured by analyzing
the magnitude of the profit value of the resulting allocation scheme and the stability of the
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results. The experimental system configuration was AMD Ryzen 5 3500U with Radeon
Vega Mobile Gfx 2.10 GH,16.0 GB RAM, the experimental environment is python3.

5.1. Parameter Setting

Now let there be N types of UAVs on the battlefield with different mission execution
capabilities and cost values, and now specify 10 types of UAVs whose parameters are
shown in Table 1.

Table 1. Resource parameters for UAVs.

UAV Type
Resource Capacity Cost

αA βA θA λA

A1 25 30 25 1.5
A2 27 42 15 2.1
A3 18 20 30 1.0
A4 45 25 13 2.0
A5 20 16 30 0.8
A6 18 40 25 1.8
A7 35 20 15 1.2
A8 20 45 20 2.5
A9 18 25 28 0.9
A10 23 15 23 0.8

There are M tasks to be executed, each task requires different combat capabilities
to be executed and can be successfully executed with different rewards. The parameter
values and reward values are randomly generated in a certain interval, to ensure the
universality of the algorithm, so the parameter values of each comparison task are re-
generated randomly, but the task parameters are the same in one comparison. We set the
ranges of attack capability, defense capability, and jamming capability required for each
task as (130, 170), (130,170), (10,30), respectively, the interval of the value of the returns for
completing the task is (25,40).

Since reinforcement learning algorithm is based on the value function to solve the
model, different reward values should be given to different states to complete the final
allocation. The value of reward value Ri for each step of task Ti is determined by the
following formula:

Ri =


−9, if ∆θij < 0
0, if ∆θij ≤ 0 and τi = 1 and ϕi > ∆X
ψTi −ω1 · ϕi −ω2 · 1, if ∆θij ≤ 0 and τi = 1 and ϕi ≤ ∆X
−1 ·ω2, otherwise

(11)

where let ∆X = 30, it represents an allocation of the fitness size to waste no more than
one drone. The meaning of the above reward value is that when the UAV cannot satisfy
the task execution condition, a large negative reward value of −9 is given; when the UAV
satisfies the task execution condition but is not reasonable, that is, the fitness is small and a
reward of 0 is given. When the task is reasonably performed, the reward value is equal to
the value of the revenue of performing the task minus the fitness multiplied by the weight
ω1 and the value of the depletion caused by the assignment is 1 multiplied by the weight
ω2. Based on the actual suitability importance and the actual loss per drone dispatched,
we set ω1 = 0.7, ω2 = 0.6.

5.2. Contrast Analysis
5.2.1. Parameter Comparison

The setting of parameters has some influence on the results of reinforcement learning,
especially the setting of learning rate and exploration rate. According to the existing
experience, the learning rate and exploration rate can be set as constants, and in addition,
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they can be set as quantities that vary with the running process in order to make the
algorithm converge better. In general, the exploration rate can be set to 1/t, where t is the
number of iterations, implying that at the beginning the algorithm tends to choose actions
more randomly, it tends to choose better strategies as the number of iterations increases;
the learning rate can be set to α = 1/(1 + visits(s, a)), where visits(s, a) is the number of
times that we have sampled the state/action pair (s, a), indicating that the learning rate
gradually decreases with the number of samples of a state/action pair. We set epsilon
equal to 0.15, 0.1,0.05,1/t, respectively, and set multiple sets of experiments to compare the
profit value curves of HR Q-learning algorithm and Q-learning algorithm. As shown in
Figure 6, t denotes the number of iterations.

Figure 6. Comparison of different exploration rates (a–f).

By comparing the curves for different number of UAV types performing different
number of tasks with different epsilon, it can be seen that the HR Q-learning algorithm is
better than the Q-learning algorithm. For the HR Q-learning algorithm, the gain value at
ε = 0.05 is slightly higher than the other curves. The algorithm can converge better, but the
profits value does not show an advantage when ε = 1/t.

We continue to compare the performance of the algorithm under different learning
rates. Since in the above experiment we found that the algorithm has the best performance
when ε = 0.05, we set ε = 0.05, the number of iterations is 1000, and the learning rate is set
to be 0.1, 0.05, 0.01, and 1/(1 + visits(s, a)), respectively, as shown in Figure 7.
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Figure 7. Comparison of different learning rate (a–f).

It can be seen from Figure 7 that the effect of different learning rates on the return
profit curve of the HR Q-learning algorithm is not obvious. When α = 0.1, the effect
is poor, and the effect is slightly better when α = 0.01. Therefore, in the subsequent
algorithm experiments, we set α = 0.01 and ε = 0.05 for achieving better effectiveness of
the algorithm.

5.2.2. Comparison with Existing Reinforcement Learning Approaches

For the model proposed in the paper, there already exists well-known exploration
strategies in reinforcement learning that have been known to show good performance in
convergence, and we focus on comparing the proposed HR Q-learning algorithm with
the original Q-learning algorithm and Boltzmann exploration method in this section.
Boltzmann exploration strategy is more complicated than the greedy strategy. Its general
form is

P(an|s ) =
e

Q(s,an)
T

∑i e
Q(s,ai)

T

(12)

In which P(an|s ) is the probability of selecting action an in state s, and T is the
temperature parameter, we set T = 1.
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First, 10 tasks are randomly generated and performed by 5, 8, and 10 of the 10 types
of UAVs in Table 1, respectively, and the number of iterations is set to 1000. The profit
curve by running the results to obtain the maximum profit value curve of the algorithms is
shown in Figure 8.

Figure 8. Comparison with Boltzmann exploration strategy (a–c).

As can be seen from Figure 8, the Boltzmann exploration method does not show
good performance in the model proposed in this paper. The HR Q-learning algorithm
outperforms both the Q-learning algorithm and the Boltzmann exploration method in
terms of profits values and convergence speed.

5.2.3. Comparison with Other Algorithms

For the UAV task assignment problem, many scholars also use heuristic algorithms
such as ant colony algorithm (ACO) and particle swarm algorithm (PSO) for solving. To
better illustrate the effectiveness of the algorithm proposed in this paper, we compare
the HR Q-learning algorithm with several unimproved heuristic algorithms, where the
parameters of the heuristic algorithm are set to those commonly used in the literature. The
parameter settings are shown in Table 2.

Table 2. Algorithm parameter setting.

Parameter Value(s)

ACO
Information Heuristic Factor α 2
Expectation Heuristic Factor β 2
Information volatility factor ρ 0.4

Population number m 50
PSO

Inertia weight ω 0.8
Learning factor C1, C2 2
Population number n 1000
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Similarly, 10 tasks are randomly generated in the given interval, and given different
number of types of UAVs to perform the tasks. Since the four algorithms can be fully
converged by 1000 iterations when 5 types of UAVs perform the task, the number of
iterations is set to 1000; when 8 and 10 types of UAVs perform the task, the number of
iterations is set to 2000 due to the high complexity of the model. The gain value curves of
the run results are shown in Figure 9.

Figure 9. Comparison with heuristic algorithms (a–c).

As can be seen from Figure 9, the HR Q-learning algorithm can obtain greater gain
values than the original Q-learning, ACO and PSO. The worst results are obtained by the
PSO. Through analysis, it is found that the PSO is easy to fall into local optimum in the
operation process, and the model constructed in this paper is a discrete model, and the
algorithm is not suitable for solving. The ant colony algorithm gives better results when
the population size is large, but the system takes longer time, and does not give better
solutions than the two reinforcement learning algorithms when the initial population is
50. The Q-learning algorithm has a similar curve to the HR Q-learning algorithm, but
the HR Q-learning algorithm converges faster and the profit value is stable than the Q-
learning algorithm. This also indicates that the HR Q-learning algorithm reduces the noise
after removing the invalid exploration and obtains an increase in the probability of the
fitting solution. As the type of UAV increases, the complexity of the algorithm processing
increases, but the HR Q-learning algorithm can still obtain better gain values and converge
relatively fast compared to the heuristic algorithm and Q-Learning algorithm. The results
of the HR Q-learning algorithm for the assignment of ten tasks under different types of
number of UAVs are shown in Figure 10.
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Figure 10. HR Q-learning algorithm distribution results (a–c).

5.3. Multiple Test Comparison

Since reinforcement learning has a probabilistic process, in order to illustrate the
effectiveness of the algorithm, we compare the HR Q-learning algorithm with Q-learning
by running several repetitions and prove that the HR Q-learning algorithm with can obtain
a better allocation scheme by statistical significance.

To ensure the fairness of the experiment, we first set different parameters for the
Q-learning algorithm for comparison. Similarly, we set epsilon and alpha as some variables
and constants, respectively, and set different number of UAV types to perform the task,
and the results are shown in the Figures 11 and 12.
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Figure 11. Q-learning algorithm comparison with different epsilon (a–c).

Figure 12. Q-learning algorithm comparison with different alpha (a–c).

Through experimental comparison, we found that setting different parameters has less
effect on the results of Q-learning algorithm. The algorithm converges faster when epsilon
1/t, but the profit value is less different from the other parameters, and the algorithm
runs with little difference in results for different alpha. We set the same parameters of Q-
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learning algorithm and HR Q-learning algorithm in the experimental, and set the number
of repetitive trials to 20.

We ran 6 sets of experiments with 5 types of UAVs performing 10 missions, 5 types of
UAVs performing 15 missions, 8 types of UAVs performing 10 missions, 8 types of UAVs
performing 15 missions, 10 types of UAVs performing 10 missions, and 10 types of UAVs
performing 15 missions, and obtained a comparison of the results of 20 runs of the 6 sets of
experiments as shown in Figure 13, the result is retained as an integer.

Figure 13. Twenty times profit comparison (a–f).

From the above figure, it can be seen that the gain value of HR Q-learning algorithm
is significantly higher than that of Q-learning algorithm in 20 times, but its minimum
value is not necessarily greater than the maximum value of Q-learning algorithm, due
to certain random exploration, Q-learning will achieve higher gain value than HR Q-
learning algorithm in certain probability. In general, the HR Q-learning algorithm is more
advantageous. The mean, maximum, minimum, standard deviation, and coefficient of
variation of the results runs for the above six task sets are shown in Table 3, and the
statistical significance test p-value was calculated for the six data sets. The results are
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retained to two decimal places, and Type refers to the type of UAVs and task combination
(e.g., 8–10 refers to 8 types of UAVs performing 10 task, corresponding to in Figure 11a).

Table 3. Descriptive analysis of profit values.

Task
Group Type Algorithm Best Worst Mean Std Dispersion

Coefficient
Mean

Increase Rate

1 5–10
Q-learning 102.66 77.36 91.08 4.75 0.052

16.43%HR Q-learning 108.73 95.92 106.04 2.71 0.026

2 5–15
Q-learning 185.65 129.91 139.56 11.49 0.082

17.19%HR Q-learning 182.19 156.37 163.55 7.35 0.045

3 8–10
Q-learning 148.74 126.76 135.27 6.17 0.046

11.55%HR Q-learning 164.01 139.64 150.89 5.80 0.038

4 8–15
Q-learning 208.36 172.65 183.93 8.71 0.047

11.11%HR Q-learning 223.94 195.97 204.37 8.40 0.041

5 10–10
Q-learning 138.82 127.36 130.25 2.62 0.020

6.04%HR Q-learning 147.61 135.43 138.12 2.47 0.018

6 10–15
Q-learning 212.79 184.15 196.47 7.15 0.036

11.87%HR Q-learning 262.70 206.36 219.80 12.84 0.058
t-test: p = 0.00087

We performed a t-test on the means of the six comparison groups and obtained
p = 0.00087 < 0.05, indicating that the means of the HR Q-learning algorithm are signifi-
cantly greater than that of Q-learning algorithm. The above table shows that the maximum,
minimum, and mean values of the HR Q-learning algorithm are greater than those of the
Q-learning algorithm in the six task sets, except for the maximum value in the second
group, and the increment of the average value increases as the number of tasks increases.
The standard deviation and coefficient of variation of the HR Q-learning algorithm are
smaller than those of the Q-learning algorithm, indicating that the HR Q-learning algorithm
can not only achieve a better allocation scheme, but also obtain more stable benefit values.
The cost of each type of UAV ranges from [0.8–2.5], so in terms of mean increase, the
HR Q-learning algorithm can reduce about ten or so drone wastes than the Q-learning
algorithm at ten task volumes, at fifteen task volumes, the HR Q-learning algorithm can
reduce about 15 or so UAV wastes than the Q-learning algorithm, i.e., on average, the HR
Q-learning algorithm saves about one UAV consumption per task than the Q-learning
algorithm. This can significantly reduce the cost loss of drones in practical problems. Since
the standard deviation is small, the fluctuation of the benefit values of the two algorithms
is relatively small, so the comparison of the benefit values obtained by the two algorithms
can be viewed from the mean size alone, and the mean bar chart is shown in Figure 14.

Figure 14. Bar Chart of Means.
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From the histogram, the average gain value of the HR Q-learning algorithm is signifi-
cantly higher than that of the Q-learning algorithm, which indicates that this improved
algorithm is to a certain extent improving the effectiveness of task execution and sav-
ing resources, which has some practical significance for the task assignment of UAVs
in operations.

From the above analysis, we can conclude that HR Q-learning has a higher proba-
bility of successful completion of the task, higher gain value and greater stability than
the Q-learning algorithm. In addition, HR Q-learning takes less time than the two
heuristic algorithms.

6. Conclusions

Based on the characteristics of large-scale missions and the constraints of combat
capabilities, this paper establishes a model for cooperative multi-UAV operations and
proposes an improved algorithm under reinforcement learning to solve the UAV task
assignment model constructed. In this paper, the algorithm is improved according to the
characteristics of the model and combined with the design ideas of the q-leaning algorithm.
The improved reinforcement learning algorithm is made to reduce the invalid exploration
of the algorithm in the operation, while maintaining the exploration ability of the algorithm
to avoid falling into local optimum. Finally, by comparing the revenue values of the several
algorithms for different number of tasks many times through simulation experiments, it is
proved that the improved HR Q-learning algorithm outperforms the original Q-learning
algorithm. The specific conclusions are as follows:

(1) The improved HR Q-learning algorithm can increase the possibility of effective
exploration, so that more possible allocation schemes can be obtained within a limited
number of iterations, so there is a greater possibility of achieving larger gain values.
Experiments show that for the overall, the improved HR Q-learning algorithm yields a
better allocation scheme.

(2) By increasing the number of UAV types and tasks, it can be found that the HR
Q-learning algorithm can consistently obtain satisfactory assignment results with different
task sizes and more complex UAV combinations, and maintain stable high yield values
compared to other heuristic algorithms and Q-learning algorithms.

The model constructed in this paper is based on a task assignment model in a stable
state, but in the actual battlefield, it may encounter some uncertain situations, such as
attack and crash, new tasks, and the failure of UAV. Therefore, in the following research, we
will continue to consider the task assignment modeling under uncertain state, and design
a more appropriate algorithm to solve the model based on the complexity of the actual
battlefield and the continuity of the battle process.
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