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Abstract: The principal objective of this article is to develop new formulas of the so-called Chebyshev
polynomials of the fifth-kind. Some fundamental properties and relations concerned with these
polynomials are proposed. New moments formulas of these polynomials are obtained. Linearization
formulas for these polynomials are derived using the moments formulas. Connection problems
between the fifth-kind Chebyshev polynomials and some other orthogonal polynomials are explicitly
solved. The linking coefficients are given in forms involving certain generalized hypergeometric
functions. As special cases, the connection formulas between Chebyshev polynomials of the fifth-kind
and the well-known four kinds of Chebyshev polynomials are shown. The linking coefficients are all
free of hypergeometric functions.

Keywords: Chebyshev polynomials; connection and linearization coefficients; generalized hypergeo-
metric functions; moments formulas

1. Introduction

The special functions in general and orthogonal polynomials, in particular, are related
to a large number of problems in different disciplines such as approximation theory, theoret-
ical physics, chemistry, and some other mathematical branches. Special functions have been
investigated theoretically by a large number of authors, for example, the authors in [1–4]
have investigated some special functions including Humbert and Genocchi polynomials.

There are four well-known kinds of Chebyshev polynomials. They are direct special
kinds of Jacobi polynomials with certain parameters. They have their roles, especially
in the scope of solving different types of differential equations (see, for example, [5–7]).
Chebyshev polynomials of the fifth- and sixth-kinds are two special classes of the so-called
generalized ultraspherical polynomials (see, [8,9]). They also can be considered as special
classes of a general class of symmetric polynomials generated by the extended Sturm–
Liouville problem which was investigated by Jamei [10]. In addition, they are categorized as
Chebyshev polynomials due to their trigonometric representations. From a numerical point
of view, these polynomials have been recently employed by some authors. The authors
in [11–13] utilized them to obtain spectral solutions to some types of fractional differential
equations. The authors in [14] have developed an approximate solution of a certain
variable-order fractional integro-differential equations by using Chebyshev polynomials
of the sixth-kind. In addition, recently, Abd-Elhameed in [15] utilized the Chebyshev
polynomials of the sixth-kind to treat numerically the non-linear one-dimensional Burgers’
differential equation.

In Jamei [10], the author extracted the Chebyshev polynomials of the fifth- and sixth-
kinds, but to the best of our knowledge, The theoretical results concerned with the Cheby-
shev polynomials of the fifth-kind are not complete. For example, the connection problems
of these polynomials with other orthogonal polynomials are not yet solved. In addition, the
moments and linearization formulas of these polynomials are also not found. This gives us
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the motivation to develop such formulas. In addition, it is expected that these formulas will
be useful in some applications. This gives us another motivation to investigate theoretically
the fifth-kind Chebyshev polynomials.

Two important problems related to the orthogonal polynomials are the so-called
connection and linearization problems. Regarding the connection problem, if we consider
the two polynomial sets {φi(x)}i≥0 and {ψj(x)}j≥0, then the two connection problems
between them are to determine the connection coefficients Ai,j and Āi,j, such that

φi(x) =
i

∑
j=0

Ai,j ψj(x),

and

ψi(x) =
i

∑
j=0

Āi,j φj(x).

Regarding the linearization problem, if we consider the three polynomial sets {φi(x)}i≥0,
{ψj(x)}j≥0, and {θk(x)}k≥0, then the problem

φi(x)ψj(x) =
i+j

∑
k=0

Lk,i,j θk(x), (1)

is called the general linearization problem. We comment here that if φi(x) ≡ ψi(x) ≡ θi(x),
then the linearization problem in such case is called Clebsch–Gordan type linearization
problem. To solve the general linearization problem (1), we have to find the lineariza-
tion coefficients Lk,i,j. Several articles were interested in investigating the connection and
linearization formulas of different orthogonal polynomials using different approaches.
For example, a symbolic approach is followed in [16] to find the connection coefficients
between different polynomials. The linearization problem of Jacobi polynomials and the
non-negativity of the linearization coefficients were investigated in [17–19]. Another study
for the non-negativity of the linearization coefficients of orthogonal polynomials was con-
sidered in [20]. In [21], the author studied the linearization problems of some classes of
Jacobi polynomials. Chaggara and Koepf in [22] succeeded in finding closed analytical
linearization formulas of some classes of Jacobi polynomials. In the papers [23–25], the
authors derived closed linearization formulas for some other classes of Jacobi polynomi-
als. Recently, two different approaches based on connection and moments formulas are
followed in [26] to obtain linearization formulas of certain Jacobi polynomials. In [27], the
authors presented the expansions of a product of Laguerre and Legendre polynomials in
series of such polynomials. Some approaches were followed in [28–30] to treat Clebsch–
Gordan type linearization formulas. Some other studies can be found in [31–33]. We refer
here that most connection and linearization coefficients of different orthogonal polynomials
may be expressed in terms of certain generalized hypergeometric forms that can be reduced
in specific cases of the involved parameters either by using some reduction formulas in the
literature or via employing some symbolic algorithms, such as Zeilberger’s algorithm [34].
Some other important problems related to linearization problems can be found in [35–38].

Among the important formulas concerned with a set of orthogonal polynomials is the
moments formula. That is, if we consider a polynomial set {φj(x)}j≥0, then to find the
moments formula

xm φj(x) =
m+j

∑
`=0

M`,m,j φj−`+m(x), m ≥ 0, (2)

we have to find the moments coefficients M`,m,j in (2).
In order to show our theoretical contribution, we summarize the aims of the current

article in the following items:

• Introducing some elementary formulas of the fifth-kind Chebyshev polynomials;
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• Obtaining explicit formulas of the moments of these polynomials;
• Solving the linearization problem of these polynomials with the aid of the derived

moments formulas;
• Solving the connection problems that join Chebyshev polynomials of the fifth-kind

with some other orthogonal polynomials.

It is worth pointing out here that another motivation for our interest in developing the
presented formulas in this paper is that these formulas may be useful in some applications.
Some of their expected uses are listed as follows:

• The moments formulas are useful in the numerical treatment of ordinary differential
equations with polynomials coefficients;

• The linearization coefficients are useful in the numerical treatment of some non-linear
differential equations as followed in [15];

• The connection coefficients are very useful in investigating the convergence analysis
as followed in [11].

The following is a breakdown of the paper’s structure. Section 2 covers some basic
properties and elementary relations of fifth-kind Chebyshev polynomials. New formulas
for the moments of these polynomials are obtained in Section 3. In Section 4, the lineariza-
tion formulas of the fifth-kind Chebyshev polynomials are derived using these formulas.
Connection problems between these polynomials and some other orthogonal polynomials
are solved in Section 5. Finally, in Section 6, some findings are presented.

2. Some Properties and Essential Formulas

In this section, we give an account on Chebyshev polynomials of the fifth-kind Cj(x),
and we introduce some of their fundamental properties. These polynomials are orthogonal

on [−1, 1] with respect to the weight function: w(x) =
x2

√
1− x2

in the sense that [11]

1∫
−1

x2
√

1− x2
Cm(x) Cn(x) dx =

hn, if m = n,

0, if m 6= n,
(3)

with

hn =
π

22 n+1


1, n even,

n + 2
n

, n odd.

The three-term recurrence relation satisfied by Cn(x) may be written in the following form:

Cn(x) = x Cn−1(x)− (n− 1)2 + n + (−1)n (2n− 1)
4 n(n− 1)

Cn−2(x), n ≥ 2,

with the initial values
C0(x) = 1, C1(x) = x.

The power form representations of these polynomials can be written as [10]

C2j(x) =(2j + 1)
j

∑
r=0

(−1)r (2j− r)!
r! 22r (2j− 2r + 1)!

x2j−2r, (4)

C2j+1(x) =
Γ
(

j + 5
2
)

(2j + 1)!

j

∑
r=0

(−1)r ( j
j−r) (2j− r + 1)!

Γ
(

j− r + 5
2
) x2j−2r+1. (5)

Of the important formulas concerned with any set of polynomials is its inversion formula.
The following lemma gives the inversion formulas to Formulas (4) and (5).
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Lemma 1. For any non-negative integer m, the following two formulas are valid:

x2m =(2m + 1)!
m

∑
r=0

1
22r r! (2m− r + 1)!

C2m−2r(x), (6)

x2m+1 =Γ
(
m + 5

2
) m

∑
r=0

( m
m−r) (2m− 2r + 2)!

Γ
(
m− r + 5

2
)
(2m− r + 2)!

C2m−2r+1(x). (7)

Proof. First, we can assume that the inversion formula of (4) is of the form

x2m =
m

∑
r=0

Fr,m C2m−2r(x), (8)

and we have to determine explicitly the coefficients Fr,m. If we multiply both sides of (8)
by C2k(x), k ≥ 0, integrate over the interval [−1, 1], and use the orthogonality relation (3),
then the coefficients Fr,m can be computed using the following integral form

Fr,m =
1

2−1−4m+4rπ

1∫
−1

x2m+2
√

1− x2
C2m−2r(x) dx. (9)

The power form representation in (4) enables one to convert the right-hand side of (9) into
the form

Fr,m =
2m− 2r + 1
2−1−4m+4rπ

m−r

∑
`=0

(−1)`(2m− 2r− `)!
22` `! (2m− 2`− 2r + 1)!

∫ 1

−1

x4m−2`−2r+2
√

1− x2
dx.

With the aid of the identity

∫ 1

−1

x4m−2`−2r+2
√

1− x2
dx =

√
π Γ
( 3

2 − `+ 2m− r
)

(2m− r− `+ 1)!
,

the coefficients Fr,m can be written as

Fr,m =
(2m− 2r + 1)
2−1−4m+4r

√
π

m−r

∑
`=0

(−1)` (2m− 2r− `)! Γ
( 3

2 − `+ 2m− r
)

22` `! (2m− 2`− 2r + 1)! (2m− r− `+ 1)!
.

Now, regarding the sum

Sj =
j

∑
`=0

(−1)`(2j− `)! Γ
( 3

2 + 2j− `+ r
)

`! 22` (2j− 2`+ 1)!(2j− `+ r + 1)!
,

it can be written in a closed form with the aid of Zeilberger’s algorithm [34]. In fact, it can
be demonstrated that Sj obeys the following recurrence relation of order one

Sj+1 −
(2j + 1)(r + j + 1)(2j + 2r + 3)

8(2j + 3)(r + 2j + 2)(r + 2j + 3)
Sj = 0, S0 =

Γ
(
r + 3

2
)

(r + 1)!
. (10)

The recurrence relation (10) is simple to solve to yield

Sj =
(r + 1)j Γ

( 3
2 + r + j

)
22j (2j + 1) (2j + r + 1)!

,

and, hence, the coefficients Fr,m take the form

Fr,m =
(2m + 1)!

22r r! (2m− r + 1)!
,
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therefore Formula (6) is proved. Formula (7) can be similarly proved.

The following two lemmas are useful in the follow-up. In the first lemma, a trigono-
metric representation of the polynomials Cj(x) is given, and in the second, an explicit
expression for the polynomials Cj(x) for j < 0 is given in terms of their counterparts Ck(x)
for k > 0. Thus Cj(x) can be defined for all j ∈ Z.

Lemma 2 ([11]). For every integer j, we have

Cj(cos θ) =


cos((j + 1)θ)

2j cos(θ)
, j even,

sec(θ)
{
(2 + j) cos((1 + j)θ)− cos((2 + j)θ) sec(θ)

}
j 2j , j odd.

(11)

Lemma 3. For j < 0, we have

Cj(x) =


1

22j+2 C−j−2(x), j even,

j + 2
j 22j+2 C−j−2(x), j odd.

(12)

Proof. Identity (12) is a straightforward result of the trigonometric identity (11).

Regarding the first four kinds of Chebyshev polynomials, they are special polynomials
of the Jacobi polynomials. More precisely, if the normalized orthogonal Jacobi polynomials
(see [23]) are defined as:

R(α,β)
j (x) = 2F1

(
−j, j + α + β + 1

α + 1

∣∣∣∣1− x
2

)
,

with α > −1 and β > −1, then six celebrated classes of orthogonal polynomials can be
deduced from R(α,β)

j (x) as follows:

Tj(x) = R(− 1
2 ,− 1

2 )
j (x), Uj(x) = (j + 1) R( 1

2 , 1
2 )

j (x),

Vj(x) = R(− 1
2 , 1

2 )
j (x), Wj(x) = (2j + 1) R( 1

2 ,− 1
2 )

j (x),

Pj(x) = R(0,0)
j (x), U(λ)

j (x) = R(λ− 1
2 ,λ− 1

2 )
j (x),

where Tj(x), Uj(x), Vj(x) and Wj(x) are, respectively, the first-, second-, third-, and fourth-

kinds of Chebyshev polynomials, while Pj(x) and U(λ)
j (x) are, respectively, the Legendre

and ultraspherical polynomials. A comprehensive survey on Jacobi polynomials and their
special ones can be found in Andrews et al. [39] and Mason and Handscomb [40].

It is worthy to mention here that the first four kinds of Chebyshev polynomials have
explicit trigonometric representations. In fact, if θ = cos−1 x, we have [40]

Tj(cos θ) = cos(j θ), Uj(cos θ) =
sin((j + 1) θ)

sin θ
, (13)

Vj(cos θ) =
cos
((

j + 1
2

)
θ
)

cos
(

θ
2

) , Wj(cos θ) =
sin
((

j + 1
2

)
θ
)

sin
(

θ
2

) . (14)

We comment that the following relation:

Wj(x) = (−1)j Vj(−x),
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connects Wj(x) with Vj(x). The four kinds of Chebyshev polynomials can be generated by
the unified recurrence relation:

φj(x) = 2 x φj−1(x)− φj−2(x), j ≥ 2,

but with the following different initial values:

T0(x) = 1, T1(x) = x, U0(x) = 1, U1(x) = 2x,

V0(x) = 1, V1(x) = 2x− 1, W0(x) = 1, W1(x) = 2x + 1.

It is worth mentioning here that the polynomials φj(x) can be defined for all j ∈ Z. More
precisely, we have the following identities for every non-negative integer j

T−j(x) = Tj(x), U−j(x) = −Uj−2(x),

V−j(x) = Vj−1(x), W−j(x) = −Wj−1(x).

The following lemma gives the unified moments formula of φj(x).

Lemma 4. Let m and j be For any non-negative integers. We have

xm φj(x) =
1

2m

m

∑
s=0

(
m
s

)
φj+m−2s(x). (15)

Proof. The proof can be completed using similar steps that followed in [41].

3. Moments Formulas of Chebyshev Polynomials of the Fifth-Kind

This section focuses on obtaining new moments formulas of Chebyshev polynomials
of the fifth-kind. These formulas are the keys for deriving some other important formulas
of these polynomials such as their linearization formulas. First, the following lemma is
useful in the sequel.

Lemma 5. Let j, `, m be non-negative integers. The following reduction formula holds

4F3

(
−j,−`,− 1

2 − j,−1− 2j + `− 2m
−2j,− 1

2 − j−m,−j−m

∣∣∣∣1)

=


(2m)! (2j− `+ 2m + 1)!
(2j + 2m + 1)! (2m− `)!

, 0 ≤ ` ≤ j,

(2m)!
(

`!
(`−2j−1)! +

(2j−`+2m+1)!
(2m−`)!

)
(2j + 2m + 1)!

, ` ≥ j + 1.

Proof. First, set

A`,m,j = 4F3

(
−j,−`,− 1

2 − j,−1− 2j + `− 2m
−2j,− 1

2 − j−m,−j−m

∣∣∣∣1). (16)

Due to the appearance of the two non-negative integers j and ` in the numerator param-
eters of the hypergeometric function (16), the following two cases should be taken into
consideration:
(i) The case corresponds to ` ≤ j. Making use of Zeilberger’s algorithm, we conclude

that the following recurrence relation is satisfied by A`,m,j

(−1 + `)(−2 + `− 2m) A`−2,m,j − 2
(

2 + 2 j− 3 `− 2 j `+ `2 + 2 m + 2 j m− 2 `m
)

A`−1,m,j

+ (−1− 2 j + `)(−2− 2 j + `− 2m) A`,m,j, A0,m,j = 1, A1,m,j =
2m

2j + 2m + 1
.



Symmetry 2021, 13, 2407 7 of 21

The exact solution of the last recurrence relation is

A`,m,j =
(2m)! (2j− `+ 2m + 1)!
(2j + 2m + 1)! (2m− `)!

.

(ii) The case corresponds to ` > j. Making use of Zeilberger’s algorithm again yields the
following recurrence relation for A`,m,j

(2− 2 j + `)(3− 2 j + `)(1− 2 j + `− 2m)(2− 2 j + `− 2 m)(−2 j + `−m)A`,m,j−2

− 4(1− 2 j + `−m)(−1 + j + m)(−1 + 2 j + 2 m)×(
−4 j + 4 j2 + 2 `− 4j`+ `2 −m + 4 j m− 2 `m + 2 m2

)
A`,m,j−1

+ 4(2− 2 j + `−m)(−1 + j + m)(j + m)(−1 + 2 j + 2 m)(1 + 2 j + 2 m) A`,m,j = 0,

with the initial values

A`,m,0 = 1, A`,m,1 =
3 ` (`− 2m− 3)

2(m + 1) (2m + 3)
+ 1,

whose exact solution is explicitly given as:

A`,m,j =
(2m)!

(
`!

(`−2j−1)! +
(2j−`+2m+1)!

(2m−`)!

)
(2j + 2m + 1)!

.

From the two cases (i) and (ii), the proof of Lemma 5 is now complete.

Now, in the following theorem, we give the formula that expresses explicitly the
moments of the polynomials Cj(x) in terms of their original polynomials.

Theorem 1. Let m and j be any non-negative integers. The following moments formula holds

xm Cj(x) =
m

∑
`=0

S`,m,j Cj−2 `+m(x), (17)

with the moments coefficients A`,m given by

S`,m,j =
m!

22 ``! (m− `)!

×



1, m and j even,

j2(−1 + m) + 2`(1− 2`+ m) + j
(
−2− 2`(−1 + m) + m + m2)

j(2 + j− 2`+ m)(m− 1)
, m even, j odd,

−2`(1 + m) + m(2 + j + m)

m(2 + j− 2`+ m)
, m odd, j even,

2`+ j m
j m

, m and j odd.

Proof. The four formulas that make up (17) are as follows:
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x2m C2j(x) =(2m)!
2m

∑
`=0

1
22 ` `! (2m− `)!

C2j+2m−2`(x),

x2m C2j+1(x) =
m

2j + 1

2m+1

∑
`=0

(1− `+ 2m)`−2

`! 22 `−1 (3 + 2j− 2`+ 2m)

{
− 3− 4(−1 + `)`+ 4m(1 + m)

− 4 j(−2 + `−m)(−1 + 2m)− 4 j2(1− 2 m)
}

C2 j+2 m−2 `+1(x),

(18)

x2m+1 C2j(x) =m
2m+1

∑
`=0

(2− `+ 2m)`−2

`! 22`−1 (3 + 2j− 2`+ 2m)
×{

3− 4`(1 + m) + 4m(2 + m) + 2 j(1 + 2m)
}

C2j+2m−2 `+1(x),

x2m+1 C2j+1(x) =
(2m)!
2j + 1

2m+1

∑
`=0

(1 + 2`+ 2m + 2 j(1 + 2m))

`! 22 ` (2m− `+ 1)!
C2j+2m−2 `+2(x).

The proofs of the four formulas are similar, we prove only Formula (18). The power form
expression of C2j(x) in (4) yields the following formula

x2m C2j(x) = (2j + 1)
j+m

∑
r=0

(−1)r (2j− r)!
22r (2j− 2r + 1)! r!

x2j+2m−2r,

which can be turned with the aid of relation (6) into the form

x2m C2j(x) =(2j + 1)
j+m

∑
r=0

(−1)r (2j− r)! (2j + 2m− 2r + 1)!
22r (2j− 2r + 1)! r!

×

j+m−r

∑
`=0

1
22` `! (2j + 2m− 2r− `+ 1)!

C2j+2m−2`−2r(x).

Performing some manipulations on the last formula converts it into the following hyperge-
ometric expression

x2m C2j(x) =(2j + 2m + 1)!
j+m

∑
`=0

1
22` `! (2j− `+ 2m + 1)!

×

4F3

(
−j,−`,− 1

2 − j,−1− 2j + `− 2m
−2j,− 1

2 − j−m,−j−m

∣∣∣∣1)C2j+2m−2`(x).

(19)

The result in Lemma 5 enables one to reduce the hypergeometric form 4F3(1) that appears
in (19). Hence, Formula (19) is turned into

x2m C2j(x) =
m+j

∑
`=0

B`,m,jC2m+2j−2`(x),

where

B`,m,j =


(2m)!

`! 22 `(2m− `)!
, 0 ≤ ` ≤ j,

4−`(2m)!
(

1
`! (−`+ 2m)!

+
1

(`− 2j− 1)! (2j− `+ 2m + 1)!

)
, j + 1 ≤ ` ≤ j + m,
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and accordingly, we have

x2m C2j(x) =
m−j−1

∑
`=0

{
4−j+`−m(2m)!

(j− `+ m)!(−j + `+ m)!
+

4−j+`−m(2m)!
(−j− `+ m− 1)!(j + `+ m + 1)!

}
C2`(x)

+
m+j

∑
`=m−j

4−j+`−m(2m)!
(j− `+ m)!(−j + `+ m)!

C2`(x),

which is equivalent to

x2m C2j(x) =
j+m

∑
`=0

4−j+`−m (2m)!
(j− `+ m)! (−j + `+ m)!

C2`(x) +
m−j

∑
`=1

4−1−j+`−m (2m)!
(−j− `+ m)! (j + `+ m)!

C2`−2(x). (20)

Now, based on Lemma 3, the following identity is valid

C2`−2(x) = 2−4`+2 C−2`(x), ` ≥ 1,

and, therefore, Formula (20) can be written as

x2m C2j(x) =
j+m

∑
`=0

4−j+`−m (2m)!
(j− `+ m)! (−j + `+ m)!

C2`(x) +
m−j

∑
`=1

2−2(j+`+m) (2m)!
(−j− `+ m)! (j + `+ m)!

C−2`(x)

=
j+m

∑
`=0

(2m)!
22` `!(2m− `)!

C2j+2m−2`(x) +
2m

∑
`=j+m+1

(2m)!
22` `! (2m− `)!

C2j+2m−2`(x)

=(2m)!
2m

∑
`=0

1
22` `! (2m− `)!

C2j+2m−2`(x).

This ends the proof.

4. Linearization Formulas of Chebyshev Polynomials of the Fifth-Kind

In this section, and based on the moments formulas that obtained in Section 3, the lin-
earization formulas of Chebyshev polynomials of the fifth-kind are given. Furthermore, the
products of Chebyshev polynomials of the fifth-kind and the first four kinds of Chebyshev
polynomials are linearized.

Theorem 2. Let i and j be any non-negative integers. The following linearization formula holds

Ci(x)Cj(x) =
min (i,j)

∑
p=0

Lp,i,j Ci+j−2p(x), (21)

where the linearization coefficients Lp,i,j are given explicitly by

Lp,i,j =
(
−1
4

)p



1, i and j even,

j(2 + i + j)− 2(1 + i + j)p + 2p2

j(2 + i + j− 2p)
, i even, j odd,

i(2 + i + j)− 2(1 + i + j)p + 2p2

i(2 + i + j− 2p)
, i odd, j even,

ij− 2(1 + i + j)p + 2p2

ij
, i and j odd.
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Proof. First, we consider the case in which both i and j are even. That is, we have to show
the following linearization formula:

C2i(x)C2j(x) =
2i

∑
p=0

(
−1
4

)p
C2i+2j−2p(x). (22)

Based on relation (4), we can write

C2i(x)C2j(x) = (1 + 2i)
i

∑
r=0

(−1)r (2i− r)!
r! 22 r (1 + 2i− 2r)!

x2i−2r C2j(x).

Making use of the moments formula in (18), the last formula can be transformed into the
form

C2i(x)C2j(x) = (1 + 2i)
i

∑
r=0

(−1)r (2i− r)!
22 r r! (1 + 2i− 2r)

2j−2r

∑
`=0

1
`! 22 `(2i− `− 2r)!

C2i+2j−2r−2`(x). (23)

Some computations on the right-hand side of (23) enable one to convert it into the form

C2i(x)C2j(x) = (1 + 2i)
2i

∑
p=0

(−1)p

22p

{
p

∑
`=0

(−1)` (−2i + `)p

(1 + 2i− 2`) `! (p− `)!

}
C2i+2j−2p(x),

but it can be shown that

p

∑
`=0

(−1)` (−2i + `)p

(1 + 2i− 2`) `! (p− `)!
=

(−1)p (2i)!
(1 + 2i)(2i− p)! p! 3F2

(
−p,− 1

2 − i,−2i + p
1
2 − i,−2i

∣∣∣∣1),

and, therefore, the following linearization formula can be obtained

C2i(x)C2j(x) = (2i)!
2i

∑
p=0

1
p! 22 p (2i− p)! 3F2

(
−p,− 1

2 − i,−2i + p
1
2 − i,−2i

∣∣∣∣1)C2i+2j−2p(x). (24)

The balanced 3F2(1) in (24) can be summed by Pfaff-Saalschütz identity (see, Olver et al. [42])
to give

3F2

(
−p,− 1

2 − i,−2i + p
1
2 − i,−2i

∣∣∣∣1) =
(−1)p p! (2i− p)!

(2i)!
,

and, therefore, the linearization Formula (24) reduces into the following form

C2i(x)C2j(x) =
2i

∑
p=0

(
−1
4

)p
C2i+2j−2p(x).

Similarly, we can prove the following three linearization formulas

C2i(x)C2j+1(x) =
1

1 + 2j

2i

∑
p=0

(−1)p ((1 + 2j)(3 + 2i + 2j)− 4(1 + i + j)p + 2p2)
22p (3 + 2i + 2j− 2p)

C2i+2j−2p+1,

C2i+1(x)C2j(x) =
1

1 + 2i

2i+1

∑
p=0

(−1)p ((1 + 2i) (3 + 2i + 2j)− 4 (1 + i + j) p + 2p2)
22p (3 + 2i + 2j− 2p)

C2i+2j−2p+1(x),

C2i+1(x)C2j+1(x) =
1

(1 + 2i) (1 + 2j)
×

2i+1

∑
p=0

(
−1
4

)p (
1 + 2 j− 6 p + 2

(
i + 2 i j− 2 (i + j) p + p2

))
C2i+2j−2p+2(x).
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Merging the above three linearization formulas along with Formula (22), the linearization
Formula (21) can be obtained.

The next theorem gives a formula that linearizes the product of Chebyshev polynomi-
als of the fifth-kind with any one of the first four kinds of Chebyshev polynomials.

Theorem 3. Let i and j be any two non-negative integers and let φj(x) by any kind of the first four
kinds of Chebyshev polynomials. The following linearization formulas hold

C2 i(x) φj(x) =
1

22i

2i

∑
p=0

(−1)p φj+2i−2p(x),

C2 i+1 φj(x) =
1

(2i + 1) 22i+1

2i+1

∑
p=0

(−1)p (1 + 2i− 2p) φj+2i−2p+1(x).

Proof. The proof is based on the application of the unified moments formula of φj(x) in
(15) along with the power form representations (4) and (5).

5. Connection Formulas with Some Orthogonal Polynomials

This section is devoted to solving the connection problems between Chebyshev polyno-
mials of the fifth-kind and some other orthogonal polynomials. Among these connections
are the connection formulas between Chebyshev polynomials of the fifth-kind and the
first four kinds of Chebyshev polynomials. The following theorem exhibits the fifth-kind
Chebyshev-ultraspherical connection formulas.

Theorem 4. Let j be any non-negative integer and let the U(λ)
j (x) be the ultraspherical polynomials.

The fifth-kind Chebyshev and ultraspherical polynomials are connected with each other by the
following two formulas:

C2j(x) =
(2j)! Γ(1 + λ)

22j−1 Γ(1 + 2λ)

j

∑
`=0

(2j− 2`+ λ) Γ(2(j− `+ λ))

(2j− 2`)! `! Γ(1 + 2j− `+ λ)
×

3F2

(
−`,−j− 1

2 ,−2j− λ + `

−2j, 1
2 − j

∣∣∣∣1)U(λ)
2j−2`(x),

(25)

C2j+1(x) =
4−j−λ

√
π (1 + 2j)!

Γ
(

1
2 + λ

) j

∑
`=0

(1 + 2j− 2`+ λ)Γ(1 + 2j− 2`+ 2λ)

`! (2j− 2`+ 1)! Γ(2 + 2j− `+ λ)
×

3F2

(
−`,−j− 3

2 ,−2j− λ + `− 1
−2j− 1,− 1

2 − j

∣∣∣∣1)U(λ)
2j−2`+1(x).

(26)

Proof. First, assume the following connection formula

C2j(x) =
j

∑
`=0

R`,j,λU(λ)
2j−2`(x),

where R`,j,λ are the connection coefficients that should be determined. If the orthogonality
relation of ultraspherical polynomials is applied, then we can write

R`,j,λ =
21−2λ (2j− 2`+ λ) Γ(2(j− `+ λ))

(2j− 2`)! Γ
(

1
2 + λ

)2

1∫
−1

(1− x2)λ− 1
2 C2j(x)U(λ)

2j−2`(x) dx,
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and in virtue of Rodrigues’ formula for the ultraspherical polynomials [43], we obtain

R`,j,λ =
21−2j+2`−2λ (2j− 2`+ λ) Γ(2(j− `+ λ))

(2j− 2`)! Γ
(

1
2 + λ

)
Γ
(

1
2 + 2j− 2`+ λ

) 1∫
−1

(
1− x2

)2j−2`+λ− 1
2 D2j−2` C2j(x) dx.

The application of the power form representation of C2j(x) in (4) turns the last relation into
the form

R`,j,λ =
(1 + 2j)(2j− 2`+ λ) Γ(2(j− `+ λ))

(2j− 2`)! Γ
(

1
2 + λ

)
Γ
(

1
2 + 2j− 2`+ λ

) j

∑
s=0

(−1)s 21−2j+2`−2s−2λ (2j− s)!
(1 + 2j− 2s) (2`− 2s)!s!

×

1∫
−1

(
1− x2

)2j−2`+λ− 1
2 x2`−2s dx.

It is not difficult to show that

1∫
−1

(
1− x2

)2j−2`+λ− 1
2 x2`−2s dx =

Γ
(

1
2 + `− s

)
Γ
(

1
2 + 2j− 2`+ λ

)
Γ(1 + 2j− `− s + λ)

,

and, therefore, the coefficients R`,j can be written in the form

R`,j,λ =
21−2j−2λ (1 + 2j)

√
π (2j− 2`+ λ) Γ(2(j− `+ λ))

(2j− 2 `)! Γ
(

1
2 + λ

) ×

`

∑
s=0

(−1)s (2j− s)!
(1 + 2j− 2s) (`− s)! s! Γ(1 + 2j− `− s + λ)

.

(27)

The last summation in (27) can be written in terms of hypergeometric form as

`

∑
s=0

(−1)s (2j− s)!
(1 + 2j− 2s) (`− s)! s! Γ(1 + 2j− `− s + λ)

=

(2j)!
(1 + 2j) `! Γ(1 + 2j− `+ λ) 3F2

(
−`,−j− 1

2 ,−2j− λ + `
1
2 − j,−2j

∣∣∣∣1),

and, accordingly, the coefficients take the form

R`,j =
21−2j (2j− 2`+ λ) (2j)! Γ(1 + λ) Γ(2(j− `+ λ))

(2j− 2`)! `! Γ(1 + 2j− `+ λ) Γ(1 + 2λ)
×

3F2

(
−`,−j− 1

2 ,−2j− λ + `
1
2 − j,−2j

∣∣∣∣1),

and, accordingly, the connection Formula (25) can be obtained. Formula (26) can be proved
in a similar way.

Taking into consideration the three celebrated special polynomials of U(λ)
j (x), the

following three connection formulas can be deduced.
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Corollary 1. The fifth-and first- kinds Chebyshev polynomials are connected with each other by
the following formulas:

C2j(x) =
1

22j−1

j

∑
`=0

(−1)` ξ j−` T2j−2`(x),

C2j+1(x) =
1

22j (2j + 1)

j

∑
`=0

(−1)`(1 + 2j− 2`) T2j−2`+1(x), (28)

with

ξ` =

{
1
2 , ` = 0,
1, ` > 0.

Proof. Substitution by λ = 0 into the connection Formula (25) yields

C2j(x) =
(2j)!
22j−1

j

∑
`=0

ξ j−`
`! (2j− `)! 3F2

(
−`,−j− 1

2 , `− 2j
1
2 − j,−2j

∣∣∣∣1). (29)

The balanced 3F2(1) in (29) can be reduced making use of Pfaff-Saalschütz identity to give

3F2

(
−`,−j− 1

2 , `− 2j
1
2 − j,−2j

∣∣∣∣1) =
(−1)``!

(2j− `+ 1)`
,

and, consequently, the following connection formula can be obtained:

C2j(x) =
1

22j−1

j

∑
`=0

(−1)` ξ j−` T2j−2`(x).

The connection formula in (28) can be similarly deduced.

Corollary 2. The fifth-and second- kinds Chebyshev polynomials are connected with each other by
the following formulas:

C2j(x) =
1

22j−1

j

∑
`=0

(−1)` ξ` U2j−2`(x),

C2j+1(x) =
1

22j+1 U2j+1(x) +
1

22j−1 (2j + 1)

j

∑
`=1

(−1)`(1 + j− `)U2j−2`+1(x). (30)

Proof. Substitution by λ = 1 into the connection Formula (25) yields

C2j(x) =
(2j)!
22j

j

∑
`=0

1 + 2j− 2`
`!(2j− `+ 1)! 3F2

(
−`,− 1

2 − j,−1− 2j + `
1
2 − j,−2j

∣∣∣∣1)U2j−2`(x).

Now, if we set

A`,j = 3F2

(
−`,− 1

2 − j,−1− 2j + `
1
2 − j,−2j

∣∣∣∣1),

then it can be shown that the 3F2(1) in the last formula satisfies the following recurrence
relation of order one:

(1 + 2j− 2`)(1 + `) A`,j + ξ`(−1 + 2j− 2`)(1 + 2j− `) A`+1,j = 0, A0,j = 1,
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which can be solved quickly to provide

A`,j =
2 ξ` (−1)` (1 + 2j) `!

(2j− 2`+ 1) (2j− `+ 2)`
,

and, therefore, the following connection formula holds

C2j(x) =
1

22j−1

j

∑
`=0

(−1)` ξ` U2j−2`(x).

The connection Formula (30) can be similarly proved.

Corollary 3. The fifth-kind Chebyshev and Legendre polynomials are connected with each other by
the following formulas:

C2j(x) =
√

π (2j)!
22j+1

j

∑
`=0

1 + 4j− 4`
`! Γ
( 3

2 + 2j− `
) 3F2

(
−j− 1

2 ,−`,−2j + `− 1
2

1
2 − j,−2j

∣∣∣∣1) P2j−2 `(x), (31)

C2j+1(x) =
√

π (1 + 2j)!
22 j+2

j

∑
`=0

(3 + 4j− 4`)
`! Γ
( 5

2 + 2j− `
)×

3F2

(
−`,−j− 3

2 ,−2j + `− 3
2

−2j− 1,−j− 1
2

∣∣∣∣1) P2j−2`+1(x).

(32)

Proof. The substitution by λ = 1
2 into the connection Formulas (25) and (26) yields,

respectively, the two connection Formulas (31) and (32).

In the following, we give the inversion connection formulas to the connection Formu-
las (25) and (26) and their special ones. First, the following lemma is needed.

Lemma 6. For every non-negative integers ` and j, the following reduction holds:

3F2

(
−`,− 1

2 − j,−2− 2j + `
− 3

2 − j,−2j− λ

∣∣∣∣1) =
(λ)`−1

(
2 j λ + 4 j `− 2 j + 3λ− 2 `2 + 4 `− 3

)
(2j + 3)(2j + λ)(2j− `+ λ + 1)`−1

.

Proof. If we set

S`,j = 3F2

(
−`,− 1

2 − j,−2− 2j + `
− 3

2 − j,−2j− λ

∣∣∣∣1),

after that, using Zeilberger’s algorithm, the following recurrence relation for S`,j can be
obtained

(λ + `− 2)
(
−2j λ− 4 j `+ 2 j− 3 λ + 2 `2 − 4`+ 3

)
S`−1,j

+ (−2j− λ + `− 1)
(
−2 jλ− 4 j `+ 6 j− 3λ + 2 `2 − 8 `+ 9

)
S`,j = 0, S0,j = 1.

.

The above recurrence relation can be immediately solved to give

S`,j =
(λ)`−1

(
2 j λ + 4 j `− 2 j + 3λ− 2 `2 + 4 `− 3

)
(2j + 3)(2j + λ)(2j− `+ λ + 1)`−1

.

This proves Lemma 6.
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Theorem 5. The ultraspherical-fifth-kind Chebyshev connection formulas are

U(λ)
2j (x) =

(2j)! Γ
(

1
2 + λ

)
√

π Γ(λ) Γ(2(j + λ))

j

∑
`=0

2−1+2j−2 `+2 λ Γ(2j− `+ λ) Γ(−1 + `+ λ)

`! (2j− `+ 1)!
×{

− 1− 2(−1 + `) `+ λ + 2j (−1 + 2`+ λ)

}
C2j−2`(x).

(33)

U(λ)
2j+1(x) =

(2j + 1)! Γ
(

1
2 + λ

)
√

π Γ(λ) Γ(1 + 2j + 2λ)

j

∑
`=0

22(j−`+λ) Γ(1 + 2j− `+ λ) Γ(−1 + `+ λ) (1 + j− `)( 3
2 + j− `

)
`! (2j− `+ 2)!

×

×
{
− 3 + 4`− 2`2 + 3λ + 2j(−1 + 2`+ λ)

}
C2j−2`+1(x).

(34)

Proof. We prove Formula (34). From the power form representation of the ultraspherical
polynomials, we have

U(λ)
2j+1(x) =

(2j + 1)! Γ(1 + 2λ)

Γ(1 + λ) Γ(1 + 2j + 2λ)

j

∑
r=0

(−1)r 22(j−r) Γ(1 + 2j− r + λ)

r! (2j− 2r + 1)!
x2j−2r+1. (35)

In virtue of relation (7), Formula (35) can be transformed into

U(λ)
2j+1(x) =

(2j + 1)! Γ(1 + 2λ)

Γ(1 + λ) Γ(1 + 2j + 2λ)

j

∑
r=0

(−1)r 21+2j−2r (3 + 2j− 2r) Γ(1 + 2j− r + λ)

r!
×

j−r

∑
`=0

4−` (−1− j + `+ r)
(−3− 2j + 2`+ 2r)`!(2j− `− 2r + 2)!

C2j−2`−2r+1(x).

The last formula can be transformed into the following one by certain algebraic computa-
tions.

U(λ)
2j+1(x) =

(2j + 1)! Γ
(

1
2 + λ

)
√

π Γ(1 + 2j + 2λ)

j

∑
`=0

21+2j−2`+2λ (1 + j− `)

3 + 2j− 2`
×{

`

∑
p=0

(−1)p (3 + 2j− 2p) Γ(1 + 2j− p + λ)

(2j− `− p + 2)! p! (`− p)!

}
C2j−2`+1(x).

However, it can be shown that

`

∑
p=0

(−1)p (3 + 2j− 2p) Γ(1 + 2j− p + λ)

(2j− `− p + 2)! p! (`− p)!
=

(3 + 2j)Γ(1 + 2j + λ)

`! (2j− `+ 2)!

× 3F2

(
−`,− 1

2 − j,−2− 2j + `
− 3

2 − j,−2j− λ

∣∣∣∣1),

and, therefore, the following connection formula is obtained:

U(λ)
2j+1(x) =

(2j + 3) (2j + 1)! Γ
(

1
2 + λ

)
Γ(1 + 2j + λ)

√
π Γ(1 + 2j + 2λ)

j

∑
`=0

21+2j−2 `+2λ(1 + j− `)

(3 + 2j− 2`) `! (2j− `+ 2)!
×

× 3F2

(
−`,− 1

2 − j,−2− 2j + `
− 3

2 − j,−2j− λ

∣∣∣∣1).
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Now, based on Lemma 6, and after performing some calculations, the following connection
formula can be obtained:

U(λ)
2j+1(x) =

(2j + 1)! Γ
(

1
2 + λ

)
√

π Γ(λ) Γ(1 + 2j + 2λ)

j

∑
`=0

22(j−`+λ) Γ(1 + 2j− `+ λ) Γ(−1 + `+ λ) (1 + j− `)( 3
2 + j− `

)
`! (2j− `+ 2)!

×

×
{
− 3 + 4`− 2`2 + 3λ + 2j(−1 + 2`+ λ)

}
C2j−2`+1(x).

.

This proves Formula (34). Formula (33) can be similarly obtained.

The following special connection formulas can be also deduced as special cases of
Theorem 5.

Corollary 4. The first-fifth kinds Chebyshev connection formulas are:

T2j(x) =2−3+2j (4 C2j(x) + C2j−2(x)
)
, (36)

T2j+1(x) =4j−1
(

4 C2j+1(x) +
−1 + 2j
1 + 2j

C2j−1(x)
)

. (37)

Proof. If we substitute by λ = 0 into Formulas (33) and (34), then the connection Formulas
(36) and (37) can be obtained.

Corollary 5. The second-fifth kinds Chebyshev connection formulas are:

U2j(x) =
j

∑
`=0

21+2j−2` ξ` C2j−2`(x), (38)

U2j+1(x) =22j+1 C2j+1(x) +
j

∑
`=1

22j−2`+3(1 + j− `)

3 + 2j− 2`
C2j−2`+1(x). (39)

Proof. If we substitute by λ = 1 into Formulas (33) and (34), then the connection Formulas
(38) and (39) can be obtained.

Corollary 6. The Legendre-fifth kind Chebyshev connection formulas are:

P2j(x) =
1
π

j

∑
`=0

2−1+2j−2` (−(1− 2`)2 − 2 j(1− 4 `)
)

Γ
(

1
2 + 2j− `

)
Γ
(
− 1

2 + `
)

`! (2j− `+ 1)!
C2j−2`(x), (40)

P2j+1(x) =
1
π

j

∑
`=0

21+2j−2` (1 + j− `) Γ
( 3

2 + 2j− `
)

Γ
(
− 1

2 + `
)

(3 + 2j− 2`) `! (2j− `+ 2)!
×{

− 3− 4(−2 + `)`− 2 j(1− 4 `)
}

C2j−2`+1(x).

(41)

Proof. If we substitute by λ = 1
2 into Formulas (33) and (34), then the connection Formulas

(40) and (41) can be obtained.

Now, we give the connection formulas between the fifth-kind Chebyshev polynomials
and the class of Jacobi polynomials R(α,α+1)

k (x) that generalize the third- and fourth- kinds
Chebyshev polynomials.
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Theorem 6. Let j be any non-negative integer, we have

C2j(x) =
j

∑
`=0

H`,j,α R(α,α+1)
2j−2` (x) + 2

j−1

∑
`=0

j− `

1 + 2j− 2`+ 2α
H`,j,α R(α,α+1)

2j−2`−1(x), (42)

with

H`,j,α =
2−1−2j−2α

√
π (2j)! Γ(2(1 + j− `+ α))

`! (2j− 2`)! Γ(1 + α) Γ
( 3

2 + 2j− `+ α
) 3F2

(
−`,− 1

2 − j,− 1
2 − 2j + `− α

1
2 − j,−2j

∣∣∣∣1),

and

C2j+1(x) =
j

∑
r=0

4−1−j−α
√

π (2j + 1)! Γ(3 + 2j− 2r + 2α)

r! (2j− 2r + 1)! Γ(1 + α) Γ
( 5

2 + 2j− r + α
) 3F2

(
−r,− 3

2 − j,− 3
2 − 2j + r− α

−1− 2j,− 1
2 − j

∣∣∣∣1)×{
R(α,α+1)

2j−2r+1(x) +
1 + 2j− 2r

2(1 + j− r + α)
R(α,α+1)

2j−2r (x)
}

.

(43)

Proof. The proof of (42) and (43) is based on making use of the the power form representa-
tions of the polynomials Cj(x) in (4) and (5), and the inversion formula of the polynomials

R(α,α+1)
k (x) that introduced in [44] in form free of any hypergeometric functions.

As special cases of Theorem 6, the following connection formulas can be deduced.

Corollary 7. Let j be a non-negative integer. The fifth-third kinds of Chebyshev connection
formulas are:

C2j(x) =
1

22 j

{
(−1)j +

j−1

∑
r=0

(−1)r {V2j−2r(x) + V2j−2r−1(x)
}}

, (44)

C2j+1(x) =
1

22j+1 (2j + 1)

j

∑
r=0

(−1)r (1 + 2j− 2r)
{

V2j−2r(x) + V2j−2r+1(x)
}

, (45)

while the fifth-fourth kinds Chebyshev connection formulas are:

C2j(x) =
1

22 j

{
(−1)j +

j−1

∑
r=0

(−1)r {W2j−2r(x)−W2j−2r−1(x)
}}

, (46)

C2j+1(x) =
1

22j+1 (2j + 1)

j

∑
r=0

(−1)r (1 + 2j− 2r)
{

W2j−2r+1(x)−W2j−2r(x)
}

. (47)

Proof. If we substitute by α = −1
2 , into the two connection Formulas (42) and (43), then

the two connection Formulas (44) and (45) can be obtained. Moreover, if we take into
consideration the two identities

Cj(−x) = (−1)j Cj(x), Vj(−x) = (−1)j Wj(x), (48)

then the two connection Formulas (46) and (47) are direct consequences of (44) and (45).

Remark 1. The connection formulas between the different Chebyshev polynomials can be translated
into their corresponding trigonometric identities based on the trigonometric representations of
Chebyshev polynomials. Some of these identities are presented in the corollary below.
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Corollary 8. The following trigonometric identities are the translations to the connection Formulas
(44)–(47), respectively.

j−1

∑
r=0

(−1)r
(

cos
(

2j− 2r + 1
2

)
θ + cos

(
2j− 2r− 1

2

)
θ
)
+ (−1)j cos

(
θ
2

)
= cos

(
θ
2

)
sec(θ) cos((2j + 1) θ),

(49)

j

∑
r=0

(−1)r(1 + 2j− 2r)
(

cos
(

2j− 2r + 1
2

)
θ + cos

(
2j− 2r + 3

2
)
θ
)

=
(
(3 + 2j) cos(θ) cos(2(1 + j)θ)− cos((3 + 2j)θ)

)
sin
(

θ
2

)
sec2(θ),

(50)

j−1

∑
r=0

(−1)r
(

sin
(

2j− 2r + 1
2

)
θ − sin

(
2j− 2r− 1

2

)
θ
)
+ (−1)j sin

(
θ
2

)
= sin

(
θ
2

)
sec(θ) cos((2j + 1) θ),

(51)

j

∑
r=0

(−1)r(1 + 2j− 2r)
(

sin
(
2j− 2r + 3

2
)
θ − sin

(
2j− 2r + 1

2

)
θ
)

=
(
(3 + 2j) cos(θ) cos(2(1 + j)θ)− cos((3 + 2j)θ)

)
sin
(

θ
2

)
sec2(θ).

(52)

Proof. The trigonometric identities (49)–(52) are direct consequences of the connection
Formulas (44)–(47). More precisely, If the trigonometric representations of the four kinds
of Chebyshev polynomials in (13) and (14) along with the trigonometric representation of
the fifth-kind Chebyshev polynomials in (11) are substituted into Formulas (44)–(47), then
the four trigonometric identities (49),(50),(51) and (52) can be, respectively, obtained.

Now, the following theorem gives the inversion formulas to Formulas (42) and (43).

Theorem 7. Let j be any non-negative integer. We have

R(α,α+1)
2j (x) =

j

∑
`=0

F`,j,α C2j−2`(x) +
j−1

∑
`=0

F̄`,j,α C2j−2`−1(x), (53)

where

F`,j,α =
4j−`+α Γ(1 + α) Γ

( 3
2 + 2j− `+ α

)
(2 + 2j− `)`−1

( 3
2 + α

)
`−1√

π `! Γ(2(1 + j + α))
×

(1− 4(`− 1)`+ 2α + j(2 + 8`+ 4α)),

and

F̄`,j,α =
−21+2j−2`+2α j (j− `) Γ(1 + α) Γ

(
1
2 + 2j− `+ α

)
(1 + 2j− `)`−1

( 3
2 + α

)
`−1

(1 + 2j− 2`)
√

π `! Γ(2(1 + j + α))
×(

1− 4`2 + 2α + j(2 + 8`+ 4α)
)

.

Moreover,

R(α,α+1)
2j+1 (x) =

j

∑
r=0

Mr,j,α
{

C2j−2r(x) + ηr,j,α C1+2j−2r(x)
}

, (54)
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with

Mr,j,α =
4j−r+α (1 + 2j)! Γ(1 + α) Γ

( 3
2 + 2j− r + α

)
Γ
(

1
2 + r + α

)
√

π (1 + 2j− r)! r! Γ
( 3

2 + α
)

Γ(3 + 2j + 2α)
×

(1− 4(−1 + r)r + 2α + 2 j (1 + 4 r + 2 α)),

and

ηr,j,α =
−2(1 + j− r)(3 + 4j− 2r + 2α)(3− 4(−2 + r)r + 6 α + 2 j(1 + 4 r + 2 α))

(3 + 2j− 2r)(2 + 2j− r)(1− 4(−1 + r)r + 2α + 2 j (1 + 4 r + 2 α))
.

Proof. The proofs of (53) and (54) are based on making use of the the power form rep-
resentation of the polynomials R(α,α+1)

k (x) that was introduced in [44] and the inversion
formulas of Cj(x) in (6) and (7).

The following corollary displays the solutions of the third-fifth Chebyshev kinds and
the fourth-fifth Chebyshev kinds connection problems. These connection formulas are
spacial ones of those of Theorem 7.

Corollary 9. Let j be a non-negative integer. The third-fifth kinds Chebyshev connection formulas are:

V2j(x) =22jC2j(x)− 22j−1C2j−1(x) +
j

∑
`=1

22j−2`+1 C2j−2`(x)

−
j−1

∑
`=1

21+2j−2`(j− `)

1 + 2j− 2`
C2j−2`−1(x),

(55)

V2j+1(x) =22j+1C2j+1(x)− 22j C2j(x)−
j

∑
r=1

22j−2r+1 C2j−2r(x)

+
j

∑
r=1

22j−2r+3(−j + r− 1)
−2j + 2r− 3

C2j−2r+1(x),

(56)

while, the fourth-fifth kinds Chebyshev connection formulas are:

W2j(x) =22jC2j(x) + 22j−1C2j−1(x) +
j

∑
`=1

22j−2`+1 C2j−2`(x)

+
j−1

∑
`=1

21+2j−2`(j− `)

1 + 2j− 2`
C2j−2`−1(x),

(57)

W2j+1(x) =22j+1C2j+1(x) + 22j C2j(x) +
j

∑
r=1

22j−2r+1 C2j−2r(x)

+
j

∑
r=1

22j−2r+3(−j + r− 1)
−2j + 2r− 3

C2j−2r+1(x).

(58)

Proof. If we substitute by α = −1
2 , into the two connection Formulas (53) and (54), then

the two connection Formulas (55) and (56) can be obtained. Moreover, if we take into
consideration the two identities in (48), the two Formulas (57) and (58) can be obtained.

6. Conclusions

In this paper, a class of Chebyshev orthogonal polynomials was investigated from
a theoretical point of view. Several interesting formulas concerned with this kind of or-
thogonal polynomials were proposed. Connections with the other well-known Chebyshev
polynomials were presented. Many important problems that are useful in some applica-
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tions were also proposed such as the moments, linearization, and connection formulas.
Two different approaches are followed to obtain the connection coefficients between the
fifth-kind Chebyshev polynomials with some other orthogonal polynomials. We utilized
some standard reduction formulas as well as some symbolic algorithms such as Zeilberger’s
algorithm during the derivation of our formulas. As future work, and from a numerical
point of view, we aim to employ some of the derived formulas in this paper along with
suitable spectral methods to treat numerically the differential equations with polynomial
coefficients, as well as some types of non-linear differential equations.
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