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Abstract: This paper investigates the relation between the geometry of metric space of a TiAlNiAu
thin film metal system and the geometry of normed functional space of its sheet resistances (func-
tionals), which are elements of the functional space. The investigation provides a means to describe
a lateral size effect that involves a dependency in local approximation of sheet resistance Rsq of
TiAlNiAu metal film on its lateral linear dimensions (in (x,y) plane). This dependency is defined by
fractal geometry of dendrites, or, more specifically, it is a power-law dependency on fractal dimension
Df value. The revealed relation has not only fundamental but also a great practical importance both
for a precise calculation of thin film metal system Rsq values in designing discreet devices and ICs,
and for controlling results at micro- and nanoscale in producing workflow for thin metal films and
systems based on them.

Keywords: fractals; metric space; functional space; thin film; size effects

1. Introduction

The unique properties of thin (~100 nm) metal films differ from bulk properties of the
metals used for their production, and enable designing electronic devices with improved
static and high-frequency performance, and developing brand new electronic devices. Lack
of information on thin metal film properties dependency in local approximation on lateral
(in the substrate plane–further (x,y) plane) dimensions of the film makes it practically
impossible to simulate devices at micro- and nanoscale and use them with specified device
characteristics.

The main mechanical and electrical properties of thin metal films and systems based
on them are generally determined by their morphology, i.e., an aggregated characteristic
involving the geometry of surfaces and interfaces as well as the substructure of metal
layers and their solid solutions defined by dimensions, shape, and relative position of its
components: grains, dendrites (crystallites) and dielectric interspaces between them. With
this consideration in mind, we understand by the term ‘thin metal system geometry’ not
only an external shape of the perimeter P limiting it in (x,y) plane, but also geometry of
surfaces and interfaces forming the system, and its substructure defined by fractal structure
of its components and their relative positions.

In most cases, metal films of nanometric thickness are basically a complex of conduc-
tive nanograins and crystallites located in one plane and separated from each other by
dielectric interspaces (the Mayadas-Shatzkes model) [1]. The growth of such films comes
from expansion and intergrowth of germinative grains and crystallites, accompanied with
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increase of their thickness and conductivity [2–6]. The phenomenon flowing or not flowing
current through such systems, which are complex conductive and non-conductive local
areas interleaving on the (x,y) plane, is called percolation and is described by percolation
theory [7]. In most works on this subject, electromagnetic field inside the film is assumed
to be homogeneous [8,9]. For the films with the thickness of 100–150 nm, in centimeter and
millimeter frequency bands this assumption does not work which complicates application
of known thin film system physical models [1,4–7,10] and interpretation of the results
obtained. However, these are the main frequency bands at which the majority of thin film
metal systems in ohmic and barrier contacts, high-frequency diodes and transistors, thin
film resistors, capacitors, transmitting microwave lines, bonding pads, etc., are used today.

The investigations of percolation effects in metal films are connected mainly with
the study of cross section (perpendicular to the (x,y) plane) dimensions (a film thickness
d) influence on conductivity of the films. In particular, the structure investigation of the
majority of metals used in electronic industry (niobium Nb [8], tantalum Ta [8], chromium
Cr [8], rhenium Re [8], scandium Sc [8], gold Au [11], molybdenum Mo [12,13], tungsten
W [14], silver Ag [15], bismuth Bi [16], titanium Ti [17], copper Cu [18], zinc Zn [19], cobalt
Co [20], platinum Pt [21], palladium Pd [22], tin Sn [23], aluminum Al [24], nickel Ni [25],
etc.) reveals a strong dependency on their conductivity and in some cases S-parameters
on cross section dimensions, specifically on thicknesses d [26–28]. Conductivity variations
observed in such films are explained in most cases by the peculiarities of charge carriers
scattering on the boundaries between grains and crystallites [10] forming the film, and on
surface roughnesses [29].

However, it is worth noting that in local approximation, the lateral structure of the
majority of thin film metal systems have fractal geometry on the (x,y) plane, e.g., [30–32],
whose influence on electrophysical characteristics depending on device linear dimensions
(linear dimensions on the substrate plate–lateral size effect, hereinafter referred as size
effect) is still virtually unstudied. In all likelihood, that is the reason for the lack of review
articles on this topic. Due to this fact, developing and manufacturing thin film metal
systems with the desired characteristics are a research task.

We remind the reader that in contemporary materials science linear dimensions L of
local approximation areas, in which lateral size effects can appear, go beyond nanometer
values and are often comparable to or even greater than linear dimensions of the main
constructive elements of semiconductor devices (tens and hundreds of microns) [33–35].
In this regard, the size effect definition in this paper is guided by the needs of planar
semiconductor nanotechnologies in which linear dimensions are understood not as lateral
dimensions of grains and crystallites forming the film but as dimensions of the main
semiconductor device constructive elements and lateral inhomogeneities on the (x,y) plane:
linear dimensions of barrier and ohmic contacts, thin film resistors, capacitors, transmitting
microwave lines, surface irregularities h(x,y), and inhomogeneities of surface potential
(x,y), phase composition, and etc. [33,34].

In particular, there is a great scientific and practical interest in connection between
the geometry of a TiAlNiAu metal system that is widely applied as ohmic contact (OC)
metallization in nitride (GaN) HEMTs (High Electron Mobility Transistors), and its electro-
physical properties [34,36].

Therefore, it is reasonable to define a necessity to investigate size effects manifesting
in sheet resistances Rsq dependency on lateral dimensions of multilayer metal systems
based on TiAlNiAu [31,37].

2. Materials and Methods

The notion of sheet resistance is often used to characterize electric resistance of thin
metal films and systems based on them, when their lateral dimensions on the (x,y) plane of
the film are much greater than the thickness. Sheet resistance can be defined as a resistance
of a square Rsq, i.e., a resistance of a square R� or round RO (Figure 1) area of the film.
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Figure 1. Schemes for calculation of sheet resistances of round thin films with thickness d—(a); the
optical photograph shows a 4-point probes Kelvin method measuring process for the test contact
with r4 = 200 um—(b).

In this paper, the sheet resistance Rsq of the multilayer metal system TiAlNiAu with
the layer thicknesses of 50× 50× 150× 100 nm correspondingly, formed on semi-insulated
buffer layer i-GaN is investigated with the use of round TiAlNiAu test contacts with the
following values of the radius ri: r1 = 20 um, r2 = 50 um, r3 = 100 um, r4 = 200 um, and
r5 = 500 um. The contacts were formed by means of standard lift-off lithography and
electron-beam sputtering. Samples were exposed to a fast-thermal annealing with the
mode used to form ohmic contacts to nitride HEMT structures in the temperature of 780 ◦C
during 30 s. The measured average thickness of the metal test samples after the annealing
was d = 310 ± 60 nm.

Sheet resistance of the test RO (or conductivity G = 1/RO) was measured by the
analyzer B-1500 Keysight Technologies at the probe system M-150 Cascade Microtech. The
4-point probes Kelvin method was used to eliminate the influence of serial resistances
formed at test surfaces by measuring probes (Figure 1b). The tolerance of resistance
measurement was not more than 0.04 Ω in a bias range from −5 to +5 V.

Thin films with thickness d(x,y) = Const and volume resistivity ρ(x,y) = Const ([ρ] = Ω
×m) have the following property: the lateral conductivity (resistance) of their square R�
and round RO areas does not depend on their lateral linear dimensions, i.e., on the value of

side a (R�(a) = Const) or radius r (RO(r) = Const) (Figure 1). Replacing h =
√
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where in R� = ρ
d = Const.

Brownian surface irregularity h(x,y) monitoring of the TiAlNiAu test contacts was
conducted by means of the optical microscopy.

We used the notions of measure, metric, metric, and normed functional (linear) space
to investigate the relation between TiAlNiAu test geometry and resistance RO that allow
considering scalar and vector values, continuous functions, and number sequences from a
unified position.
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In general, measure M of the measured object is an integral of some function deter-
mined at family of Minkowski space sets. It must have the property of additivity and
satisfy the axioms of triangle, symmetry and zero spacing [38]. The Minkowski space is a
4D pseudo-Euclidean space of signature {1,3}.

The definition of the object measure M involves determination how many times N the
measured object enclosed in the space RD with the dimension D can be filled with some
measuring (calibrating) object defined by the function:

d(δ) = γ(D)δD , (2)

(i.g., interval (D = DT = 1), square or disk (D = DT = 2), cube (D = DT = 3)). Here, DT is
a topological dimension of the 1D, 2D, or 3D Euclidean space represented by an integer
number, γ is a normalizing index, and δ < 1 is a non-dimensional scale.

Then, according to [39]:

N =
1

δDH
, (3)

where in general, DH is a dimension of Hausdorff-Bezikovich space [39].
In the most cases known today, only non-negative functions defined at families of

Minkowski space sets, as mentioned above, are considered to determine fractal measures M.
For example, intervals are used to measure a line (1D object), squares are used to measure
an area (2D object), and cubes are used to measure a volume (3D object).

This approach enables investigation of object geometry peculiarities but does not allow
revealing the connection between geometry and electrophysical properties of the object.

Let us consider metric spaces R formed by pair R = {X, ρ} consisting of some element
set X = {xi} in which distance ρ between any pair of elements is defined with the axioms
of triangle, symmetry and zero distance [38,40], as the Minkowski space sets. Therein,
single-valued, non-negative, and real function ρ = ρ(rij) has to be defined for any rij (where
rij is a radius vector between any two i-th and j-th points (elements), where i 6=j, i = 1, 2,
. . . , N, j = 1, 2, . . . , N, N is a quantity of elements) from the set X.

For example, the metric space of the thin film system under investigation R = {X,
ρ} can be formed by the set X of surface (relief h(x,y)) points, or its components: grains,
crystallites and dielectric interspaces, between any pair of which the distance ρ is defined
with the axioms of triangle, symmetry and zero distance.

In the meantime, it is known that it is possible to determine various metrics at the
same set that are described by certain continuous functions defined at this set. The sets
of such functions form functional spaces. For convenience, when functional spaces are
considered, geometric notions and definitions are often used. Accordingly, it is possible to
use various additive functions to define measure, if they are determined at some being in
use normed linear space (hereinafter referred to as a functional space) and their set satisfies
all axioms of the linear space [41]. For such spaces the notions of continuity and norm,
which is the equivalent distance between two points in Euclidean space, are applicable. The
distance between the functions F1 and F2 from the functional space is understood as a norm
||F1-F2||. Elements of functional space can be presented by various mathematical objects:
scalar numbers, vectors, matrixes, singular self-similar (fractal) functions, and self-similar
(fractal) sets [42]. It is very convenient when it is necessary to describe not only spatial but
also other properties of fractal objects. For example, an area can be characterized not only
by area units but also by dopant area density, various defects area density, electric charge
density, etc., which are described both by positive and negative functional dependencies.

Using singular self-similar functions in various functional spaces for process describ-
ing is strictly limited in modern electronic (e.g., semiconductor) technologies. Until quite
recently, self-similar measure applications in semiconductor material science basically
were connected to the statement that all processes taking place on surfaces, interfaces,
and in the depth of electronic device were driven by homogeneity of the space, and
present inhomogeneities were basically exception and defined by defects, dopants, and
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anisotropy properties in some cases (e.g., anisotropy of crystal lattice properties). In fact,
semiconductor material can have non-linear properties too [31–34].

Generically, there is no universal functional space that is why in every individual
case depending on the problems considered it is necessary to use the functional space
which nature is defined by the class of functions used (metric type) to describe some
electrophysical characteristic of the object.

Please note that functions describing average values of resistances R, as well as of
many other electrophysical characteristics in electronic technologies, are not fractal. The
fractality appears only after introduction of space coordinates (x,y,z) that in fact allows
quantitative description of various size effects.

Let us use a functional space consisting of continuous functions F(x,y,z) defined at
some area of Euclidean space and describing the dependency of sheet resistance Rsq of the
thin film metal system under investigation on coordinates.

Integrals of F(x,y,z) are considered to be a measure Mk = Rsq = Φ in such functional
space (functional Φ):

Mk = Φ =
∫

∆r
F(r)dr. (4)

The functional and metric spaces can be associated by means of mapping every area
from the metric space set R to some functional Φ from the functional space Mk, or measure
Mk describing some k-th additive (integral) electrophysical characteristic, where k = 1, 2,
. . . K is a quantity of additive characteristics, Mk = {Mk

i}. In this case, all arguments of the
functions F in linear space Mk have to belong to the metric space set R.

Therefore, any i-th element from the metric space set R can be mapped to an integral
measure Mk

i (functional) from the functional space describing some k-th additive (integral)
electrophysical characteristic, where k = 1, 2, . . . K is a quantity of measures.

For example, the space of resistances Mk = 1 = {Rsq
i}, masses Mk = 2 = {mi}, electric

charges Mk = 3 = {Qi}, etc., can be considered to be such integral characteristics of thin film
system functional space elements.

The association of R и Mk bears a metric space with a measure SM,k = {R, Mk} that
is an assembly of elements of metric space R on which some set of measures Mk

i from
the linear functional space Mk depends (through the arguments) [38]. Such space already
characterizes a specific object along with its properties. In this case, the dimensions of
metric spaces R and functional spaces Mk can stay within topological dimensions of
Euclidean spaces as they can be expressed by any real number from 0 to 3.

For example, the integrals of the function of electric charge density, the function
of electric current density, or the function of mass density can be regarded as the mea-
sures qualifying capacitive, conductive, and weight-size parameters of linear lines, 2D
surfaces, and 3D volumes. As opposed to the metric space R, measures of the functional
space (functionals Φ) can have, as is stated above, negative values, e.g., as electric charge
measures do.

Therefore, the set X of test contacts belongs to the metric space R = {X, ρ}, and the
set of the measures {Mk

i} (the parameters characterizing these contacts), belongs to the
functional space.

In the experiments given, i = 1, 2, 3, 4, and 5 (N = 5, five test elements) and k = 1, as
we considered just one measure M1

i of the only electrical characteristic RO. So here and
elsewhere we eliminate subscript k and assume M1

i ≡Mi = ROi, M1 ≡M, and SM = {R, M}.
For determination of the metric space Harsdorf dimension DH of the samples under

investigation, we used technique based on defining similarity dimension DS by means of
calculation of the object measure M relative increase in η = Mi + 1/Mi times at measuring
scale linear dimensions relative decrease in ζ = li/li + 1 times [39].

DS =
ln(η)
ln(ζ)

= − ln(N)

ln(δ)
δ = 1/ζ < 1 (5)
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For this purpose, we traced bitmaps of surface reliefs for the thin film contacts under
investigation at given measuring scale li, and counted the obtained number of closed
contours of filled areas. At the first iteration, the value of measuring scale l0 was equal to
the radius of test contact r, and the obtained number N0 of non-crossing closed contours of
zero-level was counted. At the next iteration, the value l0 decreased to l1 in such a way so
that after the tracing we obtained the integer number N1 > N0 of the contours enclosed by
the contours of zero-level, and so on, until li was equal to minimal distance between image
pixels. The maximal number N of enclosed contours corresponding to the minimal value l
was chosen as a measure for the metric space of the object M. The value of the similarity
dimension DS of the surface metric space at the i-th similarity level can be determined by
means of substitution of the values ζ = li/l0 and η = Ni into the Expression (5).

Minkowski dimension DM, similarity dimension DS, and Hausdorff dimension DH
are similar in meaning with the following correction DT:

DM = DS + DT . (6)

For linear elements DT = 1, for 2D elements DT = 2. For simplification of physical
representation, it is worthwhile to assume that the fractal dimension Df is equal to DM.

In accordance with a Mandelbrot criterion, the value Df for fractal objects have to be
greater than the value of Euclidean space topological dimension DE = DT.

According to [35,43], the dependency of fractal object measure on its linear dimension
li can be expressed by the following statement:

Mi = M0

(
li
l0

)2DT−D f
. (7)

In the case of limit transition from local approximation to a global one, when the
values Df and DT are the same, the Expression (7) is converted to a known one for the
objects with the integer topological dimension value:

Mi = M0

(
li
l0

)DT
. (8)

Since the basic properties of metric spaces (properties of triangle, symmetry, and zero
distance) can be inherent to functional space elements (functionals) under consideration,
it is possible to use Expression (5) to determine their dimension, where the test contact
minimal sheet resistance RO,1 = 0.36 Ω is chosen to be equal to M0, and the test radius
value r1 = 20 um is chosen to be equal to l0. Assuming η = Mi/M0 and ζ = li/l0, Expression
(5) gives the sheet resistance functional space values DS [35].

The fractal structure modeling of the crystallites was conducted with the use of
off-lattice modeling by means of multiparticle Monte-Carlo technique. In the model
experiments we used an assembly of 30,000 Brownian particles. The algorithm of the
multiparticle Monte-Carlo technique had the following sequence. During the time τ, the
model particles of the assembly drawn at random from the points of a nontransparent
closed contour accomplished one-by-one discrete movements ∆r inside the contour at
the (x,y) plane. This contour was represented by a circle (Figure 2, full line). Then we
monitored the elementary (step) movements ∆r of every particle one-by-one during the
time τ and memorized their positions. Furthermore, the process repeated in the same way
for a given number of times N. After the state analysis, we performed the next time step τ
and so on. In such a manner the shown in Figure 2b dendrite time evolution during the
time t = τ × N was modeled. For modeling particles movement, the random walk model
was used.
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Figure 2. Bitmaps of TiAlNiAu surface of the same test contact with r1 = 100 um. A computer model of the cluster with
DS≈1.64 is shown in (a). The images were obtained at optical system focusing on the bottom of the mesh structure—(b)
(insertion), and on the surface of the crystallites—(c).

The model cluster began to grow from the one or several nucleation centers (nuclei)
located inside the contour. The Brownian particles of the assembly contacted the growing
cluster and could adjoin some of its areas with a specified probability defining a degree of
cluster branching. The degree of branching was determined by several connections per
unit of length of its self-similar area components, namely by values of scaling rates η and ζ.

The elemental composition of the tests metallization was determined by means of
the analytical high vacuum system with the electron and the focused ion beams Quanta
200 3D (EDAX, Netherlands), fitted out with the system of energy-dispersive analysis
(energy-dispersive spectroscopy, EDS) and the X-ray detector Sapphire with the very thin
window in the range of energies from 0 to 10 eV at the reduced accelerating voltage of
15 keV.

3. Experimental Results

The measurement of the manufactured TiAlNiAu test contacts of the various diameter
reveals that despite the generally accepted conception their sheet resistances ROi grow with
the radius growth from r1 = 20 um to r5 = 500 um more than six times, from 0.36 Ω to 2.38 Ω
(Table 1). The size effect observed can be explained by test internal structure peculiarities,
as the average dispersion of the thickness d = 300 ± 60 nm cannot result in such a great
difference in sheet resistance values ROi. The possible reason of the dependency of ROi
on the radius ri is seen to consist of substructure inhomogeneity of the tests, namely in its
fractal constitution.

Table 1. RO, DS,1(RO) and DS,2(RO) values depending on TiAlNiAu test contact radius r values.

r, µm

500 200 100 50 20

RO, Oм 2.38 ± 0.16 1.72 ± 0.07 1.10 ± 0.09 0.64 ± 0.05 0.36 ± 0.04

DS,1(RO) 1.59 1.68 1.69 1.63 —

DS,2(RO) — 1.35 1.48 1.57 1.59

From the analysis of test surfaces bitmap images, it follows that the space between
the dendrites grown in 2D plane in TiAlNiAu thin film system is filled up by a mesh
structure (Figure 2c, insertion, pointed with an arrow), which looks like hexagonal Benar
meshes. The mesh lateral dimension does not depend on the test contact radius and equals
4 ± 0.5 um on average.



Symmetry 2021, 13, 2391 8 of 11

A dendrite lateral dimension was determined on the basis of the radius of its circum-
scribing circle (Figure 2a, dotted line). Unlike meshes, the dendrite lateral dimension grew
as ri increased in a raw: for r1 it was equal to 18 um, for r2—53 um, for r3—61 um, for
r4—140 um, and for r5—275 um. It is known that such dendrites appear as the result of 2D
limited diffusion of particles aggregation [39].

The investigation of the contour map of the tests surface (Figure 2b) allows defining
the value of the dendrite’s similarity dimension DS as Ds ≈ 1.66 (5) that is virtually equal
to their computer model value Ds ≈ 1.63. The fractal values 1 < DS < 2 of linear dendrites
points out that because of their branching in a plane of the contact some 2D properties are
inherent to them too. The obtained in the same way values 2 < DS < 3 of 2D mesh structure
point out that apart from 2D properties some bulk properties can be inherent to it [39].

In accordance with the EDS analysis of the tests, their elemental composition has
inhomogeneous lateral spreading that almost completely correlates with their metallization
morphology. Therefore, as per spectrums shown in Figure 3b, the mesh dendrites and
walls are formed by the initial set of the elements Ti, Al, Ni, and Au (Figure 3b, point 1). As
per Figure 3c, the point 2, and the data [4], the exit of Ni from the meshes during the rapid
annealing results in its redistribution and the aggregation of the Ni-Al conductive alloy in
the areas of mesh dendrites and walls localization. At this, the retention of the diffusive
Ni barrier at these areas during the annealing almost completely preserves the top contact
layer of the golden phase.
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The absence of the diffusive Ni barrier inside the meshes and the space between
the dendrites during the annealing (Figure 3c, point 2) results in their filling with the
low conductivity Au-Al system which promotes a strong growth of these areas electrical
resistance and expenditure of significant part of the Au top contact layer.

From Figure 3, it follows that region 1 at the cell boundary has an increased content
of the Au phase and, for this reason, better conductivity. The cells are formed by wall
irregularities with a thickness of 30–50 nm at the base and a height of about 300 nm. In
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general, as can be seen from Figure 2b,c, the cells form a fractal structure in the metallization
plane, which determines the dependence of the layer resistance on the linear dimensions of
the film (9). Observed in Figure 2b, dendrites stand out against the general background
(Figure 2c) due to the fact that the formed cells have a high wall height of 450–550 nm.

In this way, high conductivity of the mesh dendrites and walls at low conductivity of
the space between them, as well as good compliance of their fractal parameters with the
same parameters of the sheet resistances linear space, can explain the dependency of the
tests sheet resistance on their lateral dimensions.

In accordance with (7), the relation of tests sheet resistance Rsq and their linear dimen-
sions can be represented by the following power-law dependencies:

R�,i = R�,0

(
a0
ai

)DT−D f
and RO,i = RO,0

(
r0
ri

)DT−D f
. (9)

The Expression (9) describe also a case of limit transition from the local approximation
to a global one when the values Df and DT match and Rsq does not depend on linear
dimensions of measured areas: R�,i = R�,0 and RO,i= RO,0.

We remind readers that a fractal crystallite (dendrite) differs from a usual (non-fractal)
one due to the fact that its density decreases exponentially as the distance to its center
increases [39]. In this case, the similarity dimension DS or fractal dimension Df can play
the role of the power in (9). They are quantitative characteristics of non-uniformity of
topological space crystallite filling at the plane [39]. The decrease of fractal crystallite
density with the increase of the distance to its center is ascribable to a growth of its
components branching in a space that in accordance with their equivalent electric circuit, is
accompanied with the power-law increase of the resulting electrical resistance. At this, the
growth of crystallite branching is accompanied with the expansion of its boundaries and
consequently with the widening of dielectric spaces between neighboring crystallites. It
results in conduction electrons additional scattering at these boundaries and, according to
the Mayadas-Shatzkes conductivity model, tests sheet resistances growth with their linear
dimensions increase that we observe in experiments.

Table 1 represents the dimensions DS(RO) of all five tests. It can be seen that the
average values DS(RO) calculated on the basis of the Expression (5) have fractional values
that are close to average value DS of the crystallite metric space. It follows that a power
law dependency of sheet resistances R�(O) of the thin film system under investigation is
determined mainly by crystallites fractal geometry not by mesh structure.

Consequently, it is possible to conclude that the lateral conductivity of tests is provided
mainly by crystallites that have much better conductivity than the Al-Au alloy filling the
mesh structure.

The obtained experimental results reveal the existence of self-similarity phenomenon
not only between the elements of metric spaces R, but also between functionals, i.e.,
elements of normed functional spaces that is not obvious. This explains the observed
size effects that imply dependency of electrophysical characteristics of the object on its
geometry [31,35].

In accordance with the data shown in Table 1, the value of the Hausdorff dimension of
functional space DH is relative and depends on the point of reference (system of coordinates,
or the point of view of the observer). This agrees well with the one of the attributes of
chaotic systems. In the case when M0 is equal to the minimal value RO,0 = 0.36 Ω DS,1(RO)
have one value, and in the case when M0 is equal to the maximal value RO,0 = 2.38 Ω
DS,2(RO) have another value (Table 1). In accordance with the obtained results this relativity
of DS values does not generate contradictions in determination of measures M of the object
under measurement as in accordance with (7) the value M is invariant with respect to the
values of M, l, and Df, i.e., does not depend on the point of view of the observer.

The same size effects were found out in a thin film AuGeNi metal system used to form
ohmic contacts to GaAs with an electron conductivity type [44].
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4. Conclusions

The experimental results observed in local approximation enable revealing the re-
lation between metric space geometry of thin film TiAlNiAu metal system and normed
functional space geometry of its sheet resistances that are elements of functional space.
This allows explaining the observed size effect that implies a dependency of thin film metal
TiAlNiAu system sheet resistance Rsq on its lateral (in a plane (x,y)) linear dimensions. The
dependency of Rsq on linear dimensions is determined by fractal geometry of the Ni-Au
dendrites forming the film, namely by power-law dependency on the fractal dimension Df
value. The revealed relation has a great practical importance both for a precise calculation
of thin film metal systems Rsq values in designing ohmic and barrier contacts, thin film
resistors, capacitors, transmission microwave lines, bonding pads, and for controlling
results at micron and nanoscale in producing workflow for thin metal films and systems
based on them.
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