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Abstract: Pre-stretching and post-bending are the simplest loading methods for the profile stretch-
bending technical process. The inner layers of the profile are stretched and then compressed during
the loading process. Considering the Bauschinger effect of metal materials, a new material model
called the proportional kinematic hardening model was proposed. The stretch-bending mechanical
model was established under a pre-stretching and post-bending loading path. The stress and strain on
the cross section of profiles were analyzed. The analytic expressions of curvature radius of the strain
neutral layer and bending moment were derived after loading. The analytic method for determining
the curvature radius of the geometric center layer after unloading and springback during stretch-
bending was established. The rectangular section ST12 profile with symmetrical characteristics
is adopted, the stretch-bending experimental results show that the new proportional kinematic
hardening model is more accurate than the classical kinematic hardening model in predicting the
stretch-bending springback.

Keywords: stretch-bending; proportional kinematic hardening; springback; material model

1. Introduction

Many bent profiles in structures such as buildings, aircraft and automobiles are
manufactured by a stretch-bending technical process. Accurate prediction of springback
is an inevitable problem. At present, the research methods of stretch-bending springback
mainly include theoretical analysis, numerical simulation and physical experiment.

The plane bending springback equation was established based on the bilinear material
model and provided a method for the analysis of stretch-bending springback [1]. Ma and
Elsharkawy studied the variation law of bending moment during stretch-bending with
exponential hardening material model [2,3]. In addition, many scholars have studied the
law of stretch-bending springback of profiles with some typical cross section by using an
exponential hardening material model [4–10]. Based on the classical kinematic hardening
material model, Zhai established a general plane stretch-bending springback equation, and
the effect of the Bauschinger effect on springback is considered [11,12].

The law of stretch-bending springback of aluminum alloy profile AA6082 (T5) was
studied by experimental method [13]. Uemori and Naka described the effects of temper-
ature and loading speed on springback in stretch-bending of high strength steel profiles
by experimental method [14,15]. A new “rubber-assisted stretch bending method” was
established by Muranaka [16] and the springback decreased by 21% in comparison with
the crank motion simple bending by using ordinary metal dies. The composites prepared
by Etemadi in the fifth cumulative pressure welding cycle have good tensile strength and
large elastic modulus, which greatly reduces the amount of springback [17]. Lamanna [18],
Bjorkhaug [19] and Li [20] used the finite element method to study the stretch-bending
process, and obtained the springback law consistent with the experiment. Huang [21,22]
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solved the problem of large ellipse of large thin-walled tube by combining theoretical
calculation, numerical simulation and physical experiment.

In the process of stretch-bending, unloading and reverse loading are inevitable in
inner layers of profile, the Bauschinger effect of metal material cannot be ignored when
reverse plastic deformation occurs. Traditionally, there are few studies on the influence
of the Bauschinger effect on stretch-bending springback, and the accuracy of material
model used in analytical prediction is not high. In order to improve the analytical accuracy
and to facilitate the engineering application, a more rigorous constitutive relation of the
proportion kinematic hardening model and a more accurate mechanical analysis method
are proposed in this article. The new model is verified by experiments.

2. Mechanical Model of Profile Stretch-Bending and Springback Analytical Method
2.1. Research Object

Figure 1 is shown as the geometric diagram of any asymmetric section profile. The
geometric center o of the profile is set as the origin of the coordinate system uvw. In the
coordinate system, the longitudinal section uow represents the bending plane formed by
stretch-bending. The coordinate axis w is always perpendicular to the cross section of
profile in the whole forming process. In the bending plane, the intersection of the outermost
layer and the axis u is set as point A, and the innermost intersection is B. The section height
is set as h and the width of the section is B(u), which changes with the coordinate value u.
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Figure 1. Geometric diagram of any asymmetric section profile.

Figure 2 is the schematic diagram of stretch-bending loading. During stretch-bending,
it must be ensured that the tensile force at the cross section of the profile is equal, and the
axial tensile force direction during bending is always consistent with the tangent direction
of the geometric central axis of the profile. ρ represents the bending radius of the geometric
center layer of the profile, R represents the bending die radius, M represents the total
bending moment of the profile after stretch-bending deformation, and ρ = R + h − c.
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2.2. Basic Hypothesis

(1) Plane section assumption: It is assumed that the cross section of profiles before and
after stretch-bending loading is planar and perpendicular to the geometrical central
axis of the profile.
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(2) Uniaxial stress assumption: In the process of stretch- bending, it is assumed that every
fiber along axis w is in uniaxial tension or uniaxial compression state.

(3) Bilinear material model hypothesis: in the stretch-bending process, it is assumed
that stress–strain relationship of the elastic deformation and plastic deformation are
both linear.

2.3. Material Model

Based on the base hypothesis (3), the relationship of stress and strain is as shown in
Figure 3. In the past, in the classical kinematic hardening material model, the yield point
under reverse loading was approximately expressed as: σr = σT − 2σs. In this article, a new
proportional kinematic hardening model was established, and the yield point under reverse
loading was accurately expressed as: σr = λσT . λ is called the proportional coefficient of
reverse yield. When unloading and reverse loading, considering the Bauschinger effect of
the material, the stress–strain relationship under unidirectional loading is as follows:

σ =

{
E·ε ε ≤ εs

σs + D·(ε − εs) ε > εs
(1)

where, σ and ε stand for stress and strain, E and D stand for the modulus of elasticity and
the modulus of plasticity, εs stands for elastic limit strain, and σs = εs·E. σT and εT are the
stress and strain of plastic pre-stretch, εr is the strain at the yield point of reverse loading.
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2.4. Mechanical Model of Stretch-Bending Loading

When the initial tensile stress is greater than the yield stress of the material, all the
fiber layers in the cross section of the material have a plastic tensile deformation. In the
subsequent bending process, when the bending radius is small, the inner fiber will appear
as a reverse compression yield, as shown in Figure 4. σT is the stress of plastic pre-stretch,
and c1 is the distance from the boundary point of plastic tensile deformation zone and
elastic unloading deformation zone of profile to the geometric center layer. c2 is the distance
from the boundary point of plastic compression deformation zone and elastic unloading
deformation zone of profile to the geometric center layer. σA and εA are the stress and
strain of the outermost layer of the profile after stretch-bending, σB and εB are the stress and
strain of the innermost layer of the profile after stretch-bending. The radius of curvature of
the strain neutral layer is ρε, and the radius of curvature of the geometric center layer is ρ.
After stretch-bending, the strain neutral layer moves inward. At this time, the coordinate
system of the strain neutral layer is xoz and the coordinate system of the geometric center
layer is still wou.
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σ =


λσT +

(
u + ρ − ρε

ρε
− εT + 1 − λ

E σT

)
·D c − h ≤ u ≤ c2

σT +
(

u + ρ − ρε
ρε

− εT

)
·E c2 ≤ u ≤ c1

σT +
(

u + ρ − ρε
ρε

− εT

)
·D c1 ≤ u ≤ c

(2)

The area of inner layer reverse plastic compression deformation area in cross section
of profile is A1, the static moment of v axis is S1, the moment of inertia to the v axis is I1.
The area of middle elastic deformation zone is A2, the static moment to the v axis is S2, the
moment of inertia to the v axis is I2; The area of the outer plastic stretched deformation
zone is A3, the static moment to the v axis is S3, the moment of inertia to the v axis is
I3. The mathematical relationship between the internal stress of the cross section of the
profile and the externally applied axial stretch and bending moment in stretch-bending
deformation are:∫ c2

c−h λσT +
(

u+ρ−ρε
ρε

− εT + 1−λ
E σT

)
·DdA +

∫ c1
c2

σT +
(

u+ρ−ρε
ρε

− εT

)
·EdA

+
∫ c

c1
σT +

(
u+ρ−ρε

ρε
− εT

)
·DdA = T

(3)

∫ c2
c−h

[
λσT +

(
u+ρ−ρε

ρε
− εT + 1−λ

E σT

)
·D
]
·udA +

∫ c1
c2

[
σT +

(
u+ρ−ρε

ρε
− εT

)
·E
]
·udA

+
∫ c

c1

[
σT +

(
u+ρ−ρε

ρε
− εT

)
·D
]
·udA = M

(4)

The expressions of curvature radius and total bending moment of strain neutral layer
are respectively:

ρε =
(S1 + A1ρ)D + (S2 + A2ρ)E + (S3 + A3ρ)D

(1 + εT)(A1D + A2E + A3D) +
[

A − A1λ − A2 − A3 − (1−λ)
E A1D

]
σT

(5)

M = I1D+I2E+I3D
ρε

+
(

ρ
ρε
− 1 − εT

)
(S1D + S2E + S3D) + 1−λ

E S1D
+(λS1 + S2 + S3)σT

(6)

The total strain at the boundary point c1 is expressed as:

c1 + (ρ − ρε)

ρε
= εT (7)

The total strain at the boundary point c2 is expressed as:

c2 + (ρ − ρε)

ρε
= εT − 1 − λ

E
σT (8)
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The expressions of curvature radius of strain neutral layer and bending moment can
be obtained by simultaneous Equations (5)–(8).

2.5. Analytical Method of Stretch-Bending Springback

Based on the research results of reference [11,12], the analytical method of stretch-
bending springback is as follows:

The strain after stretch-bending springback is the superposition of the strain un-
der stretch-bending loading and the strain under reverse elastic loading. The geometric
constraint equation of plane stretch-bending springback can be obtained as follows:{ 1

ρε
− 1

ρεe
− 1

ρεp
= 0

ρ
ρε
+ ρe

ρεe
− ρp

ρεp
= 1

(9)

where, ρεe is the curvature radius of strain neutral layer after reverse elastic loading; ρe
is the curvature radius of geometric center layer after reverse elastic loading; ρεp is the
curvature radius of strain neutral layer after springback; ρp is the curvature radius of
geometric center layer after springback.

The plane stretch-bending springback equation of profile is:

ρp =
ρ − T

EA ρε

1 − M
EIv

ρε

(10)

According to the plane stretch-bending springback equation of profile, when the
profile is given, the cross-sectional area A, the moment of inertia about the cross-section
about v axis and the elastic modulus E can be determined. When a certain tensile force T
and bending radius ρ are applied to the profile for stretch-bending, the analytical prediction
results of the curvature radius of the geometric center layer after the springack of the profile
can be obtained only by determining the curvature radius of the strain neutral layer ρε and
the bending moment M.

3. Determination of Model Parameters of Proportional Kinematic Hardening Materials
3.1. Geometric Parameters of Profile Cross Section

In order to verify the correctness and accuracy of the theoretical methods, the rect-
angular section ST12 profile with symmetrical characteristics is adopted. Figure 5 shows
the schematic diagram of rectangular section profile, and the geometric dimensions of
rectangular section profile are shown in Table 1.
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3.2. Determination of Material Mechanical Property Parameters and Proportional Kinematic
Hardening Model Parameters

In the proportional kinematic hardening model, the elastic modulus E, the plastic
modulus D, the yield stress σs and the proportional coefficient of reverse yield λ can be
obtained by a tension–compression cycling loading test. Standard test pieces matched with
the test equipment were used for material performance test as shown in Figure 6.
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The true stress–strain data are obtained by the test. Through the data bilinear fitting of
the elastic tension zone and the plastic tension zone, the mechanical property parameters
of the material are obtained in Table 2. The bilinear fitting process is shown in Figure 7.

Table 2. Mechanical property parameters of materials.

Elastic Modulus
E/MPa

Plastic Modulus
D/MPa Yield Stress σs/MPa Elastic Limit

Strain εs

205,598 1127.7 178.57 0.00086
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The reverse yield point was determined by fitting the data of the elastic compression
zone and the plastic compression zone. When the initial tensile stress is different, the
reverse yield points are shown in Table 3.
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Table 3. Table of tensile stress value and reverse yield point during the tension-compression
cycle experiment.

Number 1 2 3 4 5

Tensile stress
value/MPa 190 210 240 270 300

Reverse yield
point/MPa −172 −160 −152 −139 −124

Then, based on the least square principle, the relationship between the tensile stress
value and the reverse yield point can be established as σr = 0.45σT − 258.9. In this article,
the proportional kinematic hardening model σr = λσT is adopted, so the proportional
coefficient of reverse yield λ can be obtained through the data conversion as shown in
Table 4. When the tensile stress is different from the data in the table, the reverse yield
point and the proportional coefficient can be obtained by interpolation.

Table 4. Table of tensile stress and proportional coefficients during unloading in tension-
compression cycle.

σT/σs σT/MPa σr/MPa λ

1.2 214 −162 −0.76
1.4 250 −146 −0.58
1.6 286 −130 −0.45
1.8 321 −114 −0.36
2.0 357 −98 −0.27

4. Numerical Simulation of Stretch-Bending

The finite element modeling of stretch-bending is carried out by using ABAQUS
software, as shown in Figure 8. The stretch-bending springback law of rectangular section
profile under the pre-stretching and post-bending loading path under different tension
and bending radiuses was analyzed in order to compare effectively with experiment and
theoretical analysis predictions.
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The material and section properties of the profile are established according to
Tables 1 and 2. In order to improve the accuracy, the static implicit algorithm is adopted.
The 8-node linear incompatible integration element (C3D8I) is applied to mesh the profile.
The half-model is used in the finite element model to improve the calculation efficiency.
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The model of stretch-bending motion mechanism used in this study referred to the
model in reference [11].

The coordinate values of the nodes on the innermost layer are extracted to fit a circle
as shown in Figure 9. Therefore, the residual radius after springback can be obtained to
compare with the experimental and theoretical values.
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5. Stretch-Bending Experiment
5.1. Experimental Equipment

The self-made rotary arm stretch-bending experimental machine is adopted. The main
components of the stretch-bending experimental machine system include stretch-bending
actuator and a hydraulic control system, as shown in Figure 10.
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To verify the theoretical analysis of stretch-bending springback under a proportional
kinematic hardening model, it is necessary to select the bending die with a smaller curvature
radius. The die radius is 40 mm, 50 mm and 60 mm respectively. The photos of the bending
die are shown in Figure 11.
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5.2. Experimental Results and Data Measurement

The photos of the specimen after stretch-bending and springback in the plastic pre-
stretch and post-bending loading path is shown in Figure 12.
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Figure 12. Photos of experimental specimens after springback. (a) R = 40 mm; (b) R = 50 mm;
(c) R = 60 mm.

The Series3000iTM coordinate measuring instrument is used for the measurement of
the specimens after springback of stretch-bending experiment. The measuring instrument
and measurement method are shown in Figure 13.
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Figure 13. Data measurement instrument and measurement method.

5.3. Experimental Data Analysis

The analytical springback results based on the proportional kinematic hardening
model are compared with the theoretical analysis results of the classical kinematic harden-
ing model, and the springback law of stretch-bending is obtained, as shown in Figure 14.

Under the condition of the same bending radius and the same tension, the curvature
after springback of the stretch-bending experiment is closer to the theoretical analytical
curvature of the proportional kinematic hardening model, and the relative deviation is
less than 0.5%. The theoretical analytical curvature of the classical kinematic hardening
model is generally lower the stretch-bending experiment, and the relative deviation is less
than 1%.
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Figure 14. Comparison figures of curvature after springback of stretch−bending. (a) R = 40 m; (b) R 
= 50 mm; (c) R = 60 mm. 

Under the condition of the same bending radius and the same tension, the curva-
ture after springback of the stretch-bending experiment is closer to the theoretical ana-
lytical curvature of the proportional kinematic hardening model, and the relative devia-
tion is less than 0.5%. The theoretical analytical curvature of the classical kinematic 
hardening model is generally lower the stretch-bending experiment, and the relative de-
viation is less than 1%. 

Figure 14. Comparison figures of curvature after springback of stretch−bending. (a) R = 40 m;
(b) R = 50 mm; (c) R = 60 mm.

6. Conclusions

(1) Based on the proportional kinematic hardening model, the analytical expressions for
the curvature radius of the strain neutral layer and total moment are obtained after
stretch-bending loading. Then, the analytical prediction results of the springback
after stretch-bending unloading are obtained based on the plane stretch-bending
springback equation.
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(2) For the stretch-bending process, when the radius of the bending die does not change,
the springback decreases with the increase of tensile force. When the tensile force
does not change, the springback increases with the increase of the radius of the
bending die.

(3) The experimental results show that the springback analysis based on a proportional
kinematic hardening model is more accurate than the results based on a classical
kinematic hardening model. Compared with the experimental results of stretch-
bending, the accuracy is improved by more than 0.5%.
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