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Abstract: In general, the braid structures in a topological space can be classified into algebraic forms
and geometric forms. This paper investigates the properties of a braid structure involving 2-simplices
and a set of directed braid-paths in view of algebraic as well as geometric topology. The 2-simplices
are of the cyclically oriented variety embedded within the disjoint topological covering subspaces
where the finite braid-paths are twisted as well as directed. It is shown that the generated homotopic
simplicial braids form Abelian groups and the twisted braid-paths successfully admit several vari-
eties of twisted discrete path-homotopy equivalence classes, establishing a set of simplicial fibers.
Furthermore, a set of discrete-loop fundamental groups are generated in the covering spaces where
the appropriate weight assignments generate multiplicative group structures under a variety of homo-
logical formal sums. Interestingly, the resulting smallest non-trivial group is not necessarily unique.
The proposed variety of homological formal sum exhibits a loop absorption property if the homotopy
path-products are non-commutative. It is considered that the topological covering subspaces are
simply connected under embeddings with local homeomorphism maintaining generality.
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1. Introduction

There are interplays between the topological spaces and braid structures with appli-
cations in geometric as well as algebraic topology, including knot theory and physical
sciences. Let a finite and countable set be given as BSn = {si : i = 1, 2, 3 . . . ., n} and the set
of functions S f = { fi : [0, 1]→ X} be continuous such that ∀i ∈ [1, n], fi(0) 6= fi(1) and
BSn ⊂ X, where the space X may or may not be strictly topological in nature. The set BSn
is a braid if, and only if, there are homeomorphisms given by hom( fi([0, 1]), si) such that
fi(0) ∈ P2

A and fi(1) ∈ P2
B, where P2

A, P2
B are two parallel planes with P2

A ∩ P2
B = ∅. Inter-

estingly the integrals over the braid-paths have various topological invariant properties [1].
An example of such topological invariance is the countable winding number in lower
dimensional topological spaces representing the Gauss linking number. It is important to
note that the Gauss linking number is not completely invariant. In the case of links forming
a Borromean ring, the Gauss linking number vanishes although the braid-paths are not
separable from the planes within the topological spaces [2]. In general, the braid structures
can be classified into two varieties: (1) algebraic structures, namely braid groups, and (2)
geometric structures called knots if we consider that ∀i ∈ [1, n], fi(0) = fi(1) preserving
the hom( fi([0, 1]), si) property [3]. With regard to the topology of singular knots, the
numbers of self-intersecting double points are countable as well as finite. The concept of
fundamental groups is central to the homotopy theory of algebraic topology. However, an
analogous structure, called homology, can be constructed in higher dimension admitting
group algebraic structures which are computable. First, we briefly present the concept of a
homological formal sum because a similar concept is followed in this paper with suitable
as well as necessary modifications.
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1.1. Homological Formal Sum

The homology theory is similar to the theory of fundamental groups of algebraic
topology, allowing the classification of topological spaces by identifying the simple con-
nectedness of the spaces locally as well as globally. The distinction of the homology groups
is that these are Abelian varieties extendable to higher dimensions [4]. If we consider that
K is a simplicial complex, then a p−chain is the homological formal sum of p−simplices in
K given by ∑

i
aiσi, where σi is the p−simplices in K and the coefficients are binary type such

that ai ∈ {0, 1} in the p−chain [4]. Note that two p−chains can be added, similar to the
addition of polynomials. Moreover, if we denote the set of p−chains as Cp, then

(
Cp,+

)
is

an Abelian group. The boundary ∂p of a p−simplex is the sum of its (p− 1) faces given as
∂pc = ∑

i
ai.(∂pσi) where c represents the p−chain [4]. A p−cycle is a p−chain where the

corresponding boundary is empty, i.e., ∂pc = 0. One of the fundamental properties of a
homological formal sum is that the boundary of a boundary is always zero.

1.2. Motivation and Contributions

The theory of virtual knots and their properties in view of geometric topology were
introduced by Kauffman in detail [5,6]. Suppose we consider that I ≡ [0, 1] and D = I2

are equipped with two projections: η1 : D → I and η2 : D → I . The n > 1 strand diagram
is a geometric topological structure admitting curves KD = (c1, c2., , , , ,cn) as n-tuple such
that ∀i ∈ [1, n], ci : I → D maintains a set of properties [6]. The virtual braid structures are
generated based on the strand diagram, offering an interesting topological property. If
we consider two virtual braid diagrams, KD1, KD2, then there is a neighborhood ND ⊂ D
such that ND is homeomorphic to a disk and KD1\ND = KD2\ND is an isotopy. Note that
virtual braids are the combinatorial representations of general braid structures where the
equivalence classes can be admitted. Moreover, the virtual braids and general braid-path
structures maintain a bijective correspondence. There exists a combinatorial formulation to
present an oriented closed curve on a plane by employing a Gauss word in a topological
space [6]. Furthermore, there is a close relationship between braid structures and homotopy.
Hurewicz illustrated that if a topological space is simply connected then there is interplay
between homotopy and homology [7].

These observations motivate the investigation of the homotopy properties of oriented
2-simplices connected by twisted braid-paths within a simply connected topological cov-
ering space. Note that in this case the orientations of a 2-simplex are relaxed admitting
cycles with reversed directions. Moreover, it is interesting to formulate a different variety
of appropriate homological formal sums within the twisted braid-path structures and the
corresponding cyclically oriented 2-simplices. The relevant interesting questions are: (1)
Is it possible to maintain the homotopy equivalences admitting fundamental groups in
such twisted as well as cyclically oriented topological structures? (2) Is it possible that a
different variety of homological formal sum retains any group algebraic structure within
the topological space under consideration while retaining a simple connectedness property?
(3) How do the cyclic orientations of multiple 2-simplices in covering spaces affect the
associated topological properties? These questions are addressed in this paper in relative
detail in view of geometric as well as algebraic topology. It is illustrated that the cyclically
oriented 2-simplices in covering spaces connected by twisted braid-paths give rise to the
oriented algebraic structure admitting Abelian groups. The algebraic structure introduces
the concept of a simplicial fiber where the non-commutative homotopic path-products pre-
serve the loop absorption property, forming a discrete variety of a fundamental group. The
homological formal sums computed under suitable weight assignments in reals generate
the non-trivial multiplicative group structures with a varying uniqueness property.

The rest of the paper is organized as follows. The preliminary concepts and a set of
existing classical results are presented in Section 2. The proposed definitions of topological
structures are presented in Section 3. The geometric as well as algebraic topological
properties are illustrated in Section 4. Finally, Section 5 concludes the paper.
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2. Preliminaries: Homotopy and Braid Structures

The Hurwitz braid groups Bn are essentially the fundamental groups in the configura-
tion spaces with multiple points in a complex plane [8]. The structures of braid groups can
be understood in view of geometry and its topological generalization. For example, Artin
considered that the braid groups are automorphic free groups of rank n given as Fn, which
later found applications in knot theory [8,9]. The braid groups can be formulated in a wide
variety, including the concepts of mapping classes and group algebra. The mapping class
braid groups introduce the concept of self-homeomorphism which is defined as follows [8].

Definition 1 (Self-homeomorphism). Let M, N be two compact, connected, and orientable
3-manifolds such that N ⊂ Mo. The self-homeomorphism f : M→ M is a homeomorphism such
that it point-wise fixes ∂M and also globally fixes N while preserving the respective orientations.

It is important to note that if we equip the manifolds M, N with a compact-open topol-
ogy, then a topological group is established. Let us denote the group of self-homeomorphisms as
Ghom(M, N) and let X be a topological space. The continuity of a function g : X → Ghom(M, N)
can be formulated by following the definition of topological continuity which is defined as
follows [8,10,11].

Definition 2 (Topological continuity). A function g : X → Ghom(M, N) from the topological
space X to the topological group of self-homeomorphisms Ghom(M, N) is continuous if, and only if,
there exists a continuous function g[X,M] : X×M→ M such that g[X,M](x, y) = (g(x), y).

Interestingly, there are several structural forms of braid groups; however, according to
Zariski, all these varieties are equivalent in nature [12]. The loop braid groups denoted as
LBn are in a different class and these structures are symmetric automorphisms of Fn. The
definition of a loop braid group LBn is presented as follows, where B3 signifies a 3-ball and
R is a set of real numbers [13].

Definition 3 (Loop braid groups). Let C∆ = C1 ∪C2 ∪ . . . .∪Cn be unknotted and oriented cir-
cles forming a trivial link of n components in R3 such that ∀Ci, Ck ⊂ C∆, [i 6= k]⇒ [Ci ∩ Ck = ∅] .
The loop braid group LBn is defined to be a mapping class group denoted as MCG

(
B3, C∆

)
.

The definition of loop braid groups employs the concepts of topological mapping
classes and the formulation of self-homeomorphism. If we consider that En is the configu-
ration space of n ≥ 1 Euclidean, unordered, and unlinked circles in B3, then it is shown
that En is topologically path-connected [14]. Interestingly this results in the formation of
homotopy equivalence classes as presented in the following theorem [15].

Theorem 1. The inclusion of En into a topological configuration space of every trivial link of the
smooth variety of n ≥ 1 components in R3 admits a homotopy equivalence class.

Note that the extended loop braids can have topological realizations giving rise to
a new topological structure called extended geometric ribbon braids. Moreover, there is
a relationship between the topological embeddings of algebraic curves and its invariant,
called braid monodromy. Let a plane be denoted as P2 and a curve in the plane be denoted
as K ⊂ P2. If we consider a line L ⊂ P2 such that L 6⊂ K and p ∈ L, then the triplet
(K, L, p) represents a braid monodromy [16]. Suppose a set of lines is called as pencil
represented by Lpcl where the lines pass through p ∈ L. The set Lpcl determines a free group
Fn on n number of braid strings admitting (K, L, p). Interestingly, the free group Fn has a
correspondence to the fundamental group in a complex topological space. This results into
the following homotopy invariance theorem [17].

Theorem 2. The homotopy type represented by P2\(K ∪ L) is invariant to the corresponding braid
monodromy.
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Note that the braid monodromy also determines the presentation of a fundamental
group of P2\(K ∪ L). If we consider that C is a complex space, then we can determine a set
of points in complex space as S = {zi : i = 1, 2, . . . n}, S ⊂ C and a closed disk D ⊂ C such
that S ⊂ Do. This results in the generation of a fundamental group and the corresponding
homotopy class which is presented as the following theorem [16].

Theorem 3. If zp ∈ ∂D is any point, then π1
(
C\S, zp

)
is a fundamental group and h ∈

π1
(
C\S, zp

)
is the homotopy class of the loop around ∂D with a counterclockwise orientation.

It should be observed that π1
(
C\S, zp

)
is isomorphic to the free group Fn.

3. Topological Structures and Definitions

Let a Hausdorff as well as compact normal topological space be represented as (X, τX).
Suppose Xcov is another compact Hausdorff topological space such that Xcov ∩ X = ∅.
If xp ∈ X is an arbitrary point and Np ⊂ X is an open neighbourhood of the point xp,
then the surjective function given by fc : Xcov → X is a covering map of Np. In this
paper we consider that the number of covering sections is finite, indicating that Xcov is
a compact space. Moreover, the sections of covering spaces maintain the property that
∀Ai, Ak ∈ f−1

c
(

Np
)
, Ai ∩ Ak = ∅ if i 6= k where i, k< +∞. The definitions of oriented

2-simplices, the simplicial fibers in covering spaces, and the corresponding twisted braid-
paths between 2-simplices within the covering spaces are presented in Sections 3.1–3.5.
Note that the covering sections are locally convex in Xcov. In order to gain insight about the
properties of the structures in view of homological formal sums, it is necessary to construct
homeomorphic embeddings of 2-simplices into the sections of covering spaces. Moreover,
the 2-simplices need to be orientated in appropriate directions. In this paper, the oriented
2-simplices indicate the cyclic orientations. In the remainder of the paper, |σ(2)

i | denotes

the closed topological space under the corresponding 2-simplex and 〈σ(2)
i 〉 denotes the

respective open topological space. The sets of real numbers, integers, and complex numbers
are denoted as R, Z and C respectively. If [ f ] and [g] are two path-homotopy classes, then
[ f ] ∗ [g] represents path-homotopy product and the equivalence relation [ f ] ∼=H [g] denotes
the path-homotopic equivalence between the two respective homotopy classes. First, we
present the definition of oriented 2-simplices.

3.1. Oriented 2-Simplices

Let Ai ∈ f−1
c
(

Np
)

be a section of respective covering spaces and
∆i = {bm : bm ∈ Ai, m = 1, 2, 3} be a set of points such that ∆i ⊂ (Ai)

o. The corresponding
2-simplices in Ai given as σ

(2)
i are generated by the convex hull of ∆i. It is called cyclically

oriented if σ
(2)
i ≡< (b1, b3), (b3, b2), (b2, b1) >, where (bm, bn) ⊂ σ

(2)
i is an oriented 1-face

of σ
(2)
i and as a result (bm, bn) 6= (bn, bm), m 6= n.
Note that in general the orientation of a 2-simplex is not cyclic where the 1-faces are

always directed. Thus, in view of geometric topology, the cyclic orientation of a 2-simplex
is a relaxed variety retaining the properties of the directed 1-faces.

3.2. Homotopic 2-Simplex

Let (W, τW) be a Hausdorff topological space. A oriented 2-simplex σ
(2)
i is defined as

a homotopic 2-simplex if, and only if, the following conditions are admitted by a contin-
uous injective topological embedding iσ : σ

(2)
i → (W, τW) with respect to the continuous

function g : [0, 1]→ (W, τW) .

∃bm ∈ ∆i, (g(0) = g(1)) ∼= iσ(bm),
hom(iσ(σ

(2)
i ), g([0, 1]))⇒ hom(iσ(σ

(2)
i ), S1),

[g] ∗ [g] ∼=H [g] ∗ [g],
[iσ(bm)] ∼=H [g].

(1)
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This is to emphasize that in this case the topological property hom
(

iσ

(
σ
(2)
i

)
, |σ(2)

i |
)

is
preserved and the orientation of the homotopic 2-simplex is also preserved by g(.), which
is considered to be positive in this case. However, the orientation of a homotopic 2-simplex
is called negative if [iσ(bm)] ∼=H [g].

Remark 1. Note that {bm} ∪ {bn} ∈ τX in the Hausdorff covering section Ai is closed (i.e., each
one-point subspace is closed) and the orientation of (bm, bn) ⊂ σ

(2)
i indicates that if p : [0, 1]→ Ai

is a continuous function such that p(0) = bm and p(1) = bn then ∀t ∈ [0, 1], p = p(1− t)
maintains the path-homotopic equivalence as [p] ∗ [p] ∼=H [bm]. In other words, if we consider a
continuous smooth function q : [0, 1]→ Ai such that ∀ta, tb ∈ [0, 1], (a < b)⇒ (ta < tb) and
bm ∈ q((0, 1)), bn = q(1), then bm < bn. Recall that the convex and closed topological subspace of
one oriented 2-simplex σ

(2)
i is denoted as |σ(2)

i | by following the notational conventions of geometric

topology. The corresponding open subspace is denoted by 〈σ(2)
i 〉.

Let the topological space Y containing the disjoint embeddings be given by icov : Xcov → Y
and iX : X → Y such that hom(Xcov, icov(Xcov)) and hom(X, iX(X)) properties are main-
tained. It is important to note that the locally homeomorphic embeddings retain the cover-
ing map as fcov : icov(Xcov)→ iX(X) . Moreover, it is considered that the embedding under
the inclusion map preserves the equivalence relation given as icov

(
〈σ(2)

k 〉
)
∼= 〈icov|σ(2)

k |〉.
If the topological space Y is a fibered space, then the concept of simplicial fibers can be
introduced in the corresponding simplicial structures in the respective embedded covering
spaces, which is defined as follows.

3.3. Simplicial Fibers

Let the two sections of covering spaces generated by f−1
c
(

Np
)

be given as Ai, Ak and

the two corresponding oriented 2-simplices be given as σ
(2)
i and σ

(2)
k , respectively. A fiber

µp×I ⊂ Y at iX
(

xp
)
∈ Y is called as a simplicial fiber if, and only if, µp×I ∩ icov

(
|σ(2)

i |
)
=

{ei} and µp×I ∩ icov

(
|σ(2)

k |
)
= {ek} such that ei ∈ icov

(
〈σ(2)

i 〉
)

and ek ∈ icov

(
〈σ(2)

k 〉
)

.

Remark 2. It is important to note that, in general, if σ
(2)
i and σ

(2)
k are two oriented 2-simplices,

then the continuous functions vi : S1 → 〈σ(2)
i 〉 and vk : S1 → 〈σ(2)

k 〉 need not be nullhomotopic
in nature. However, this flexibility is further constrained by enforcing nullhomotopy in order
to establish the simplicial fiber. As a result, the topological subspaces |σ(2)

i | and |σ(2)
k | are each

path-connected as well as simply connected where |σ(2)
i | ∩ |σ

(2)
k | = ∅.

Note that a simplicial fiber preserves the alignment of 2-simplices within the embed-
ded covering sections. If Ai, Ak ⊂ Xcov such that Ai, Ak ∈ f−1

c
(

Np
)

and |σ(2)
i |⊂ Ai,|σ

(2)
k | ⊂

Ak,then the bijection fσ(k,i) : icov(∆k)→ icov(∆i) is a simplicial map from σ
(2)
k to σ

(2)
i within

Y. A simplicial map supports the formation of the corresponding simplicial braid-paths
within the embedded topological subspaces. The definition of simplicial braid-paths under
an inclusion map is presented as follows.

3.4. Simplicial Braid-Paths

A braid-path between σ
(2)
i and σ

(2)
k under embeddings in the dense as well as path-

connected Y is a continuous function f : [0, 1]→ Y such that f (0) ∈ icov(∆k) and f (1) ∈(
fσ(k,i) ◦ icov

)
(∆k).

Remark 3. It is possible to represent the orientation of a homotopic 2-simplex within the cov-
ering spaces by a discrete assignment function fσ : σ

(2)
i → {−r ∈ R, r ∈ R} , where σ

(2)
i is an
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arbitrary 2-simplex. For example, if we consider that [iσ(bm)] ∼=H [g], then fσ

(
σ
(2)
i

)
= r, and if

[iσ(bm)] ∼=H [g], then fσ

(
σ
(2)
i

)
= −r.

It is important to note that the braid-path maintains the condition given by f (0) 6= f (1)
and as a result a set of twisted braid-paths involving the simplicial maps can be constructed
to suitably admit a variety of homological formal sums. The twisted braid-paths do not
alter the nature of simplicial braid-paths as well as the orientations of 2-simplices; however,
they consider the combinatorial forms of simplicial maps between embedded σ

(2)
i and σ

(2)
k

in the dense subspace.

3.5. Twisted Braid-Paths

Let σ
(2)
i and σ

(2)
k be two oriented 2-simplices in the respective covering sections Ai, Ak

within the covering spaces generated by f−1
c
(

Np
)
. If F = { fmn : [0, 1]→ Y; m, n ∈ Z+}

represents a set of simplicial braid-paths, then F is called as twisted braid-paths in
icov(Xcov) ⊂ Y if the following properties are maintained.

i = k + 1, m 6= n,
∩
∀mn

fmn = ∅,

fmn(0) = am ∈ icov(∆k),
fmn(1) = bn ∈ icov(∆i).

(2)

The resulting twisted as well as braid-paths connected algebraic structure in the
covering spaces in Y is represented as Ψik =

(
σ
(2)
i , σ

(2)
k , F

)
.

Example 1. The combinatorial numerical representations of the individual twisted braid-paths in
Ψik =

(
σ
(2)
i , σ

(2)
k , F

)
within the dense topological subspace are given as follows:

f12(0) = a1 ∈ icov(∆k), f12(1) = b2 ∈ icov(∆i),
f23(0) = a2 ∈ icov(∆k), f23(1) = b3 ∈ icov(∆i),
f31(0) = a3 ∈ icov(∆k), f31(1) = b1 ∈ icov(∆i).

(3)

Note that the twisted braid-paths in Ψik =
(

σ
(2)
i , σ

(2)
k , F

)
have order 3 between the 0-faces of two

oriented 2-simplices within the covering spaces.

4. Main Results

The main results are presented in this section in two parts. First, we present the
homotopy properties of the braid-path loops in the structure Ψik =

(
σ
(2)
i , σ

(2)
k , F

)
, which

gives rise to the discrete variety of fundamental groups. Next, we present the group
algebraic properties of homological formal sums in Ψik =

(
σ
(2)
i , σ

(2)
k , F

)
considering real-

valued weight assignments to the path components. It is important to note that in this
section we consider that the algebraic structure Ψik =

(
σ
(2)
i , σ

(2)
k , F

)
is established within

the topological space (Y, τY) through the suitable homeomorphic embeddings and as a
result the notational presentation of icov(.) is omitted for simplicity. In order to avoid
confusion, we will use Ψik|Y =

(
σ
(2)
i , σ

(2)
k , F

)
to remind that Ψik =

(
σ
(2)
i , σ

(2)
k , F

)
is indeed

in (Y, τY).

4.1. Homotopy Properties

The topological property of the connectedness of a space influences the admission
of algebraic structure Ψik|Y =

(
σ
(2)
i , σ

(2)
k , F

)
. The existence of Ψik|Y =

(
σ
(2)
i , σ

(2)
k , F

)
un-
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der homeomorphic embeddings requires that the topological space be at least connected.
The relatively stronger condition of topologically simple connectedness of the entire em-
bedding subspace ensures that Ψik|Y =

(
σ
(2)
i , σ

(2)
k , F

)
is successfully admitted within

the corresponding subspace of (Y, τY). Note that the weaker condition of topological
path-connectedness can also support Ψik|Y =

(
σ
(2)
i , σ

(2)
k , F

)
. However, in that case the

existence of a single point of separation {a} ∈ τY will not admit Ψik|Y =
(

σ
(2)
i , σ

(2)
k , F

)
if the respective single point also separates the embedding subspace E ⊂ Y containing
Ψik|Y =

(
σ
(2)
i , σ

(2)
k , F

)
. Moreover, a completely separated topological space Y = A ∪ B

with A ∩ B = A ∩ B = ∅ cannot always admit Ψik|Y =
(

σ
(2)
i , σ

(2)
k , F

)
. The following

theorem is presented considering the simple connectedness of the embedding subspace
E ⊂ Y in (Y, τY).

Theorem 4. If E ⊂ Y is a simply connected subspace of (Y, τY) such that |σ(2)
i | ∪ |σ

(2)
k | ⊂ E,

then Ψik|Y =
(

σ
(2)
i , σ

(2)
k , F

)
admits twisted discrete homotopy classes in E ⊂ Y.

Proof. Let E ⊂ Y be a simply connected topological subspace in (Y, τY). Suppose we
consider two topological spaces under oriented 2-simplices |σ(2)

i | ⊂ A and |σ(2)
k | ⊂ B in

the respective covering spaces A, B ∈ f−1
c
(

Np
)

for some yp ∈ Y such that A ∪ B ⊂ E. If

Ψik|Y =
(

σ
(2)
i , σ

(2)
k , F

)
is a twisted braid-path structure in E ⊂ Y, then we can construct a

set of continuous functions given by ∀ fmn ∈ F, fmn : [0, 1]→ E . As a result, the following
set of discrete path-homotopy loops can be generated by following the twisted braid-paths
at a1 ∈ ∆k of σ

(2)
k (here, the notation p(a1)

t represents twisted discrete path-homotopy loops
at the corresponding vertex a1 ∈ ∆k of a 2-simplex for some finite t ∈ Z+ in Y).

am ∈ ∆k, bn ∈ ∆i, t ∈ [1, 3],
p(a1)

t=1 ≡ [ f12] ∗ [(b2, b1)] ∗ [ f31] ∗ [(a3, a1)],
p(a1)

t=2 ≡ [(a1, a2)] ∗ [ f23] ∗ [(b3, b2)] ∗ [ f12],
p(a1)

t=3 ≡ [ f12] ∗ [(b2, b1)] ∗ [(b1, b3)] ∗ [(b3, b2)] ∗ [ f12].

(4)

However, if [a1] represents the left-identity and right-identity of a homotopy class,
then the following homotopy equivalence can be concluded.

[p(a1)
t=1 ]
∼=H [p(a1)

t=2 ]
∼=H [p(a1)

t=3 ]
∼=H [a1]. (5)

Similarly, the class of homotopy equivalence can be easily formulated considering that
the left-identity and right-identity of homotopic paths is located at [a2] which is presented
as follows.

[p(a2)
t=1 ]
∼=H [p(a2)

t=2 ]
∼=H [p(a2)

t=3 ]
∼=H [a2],

p(a2)
t=1 ≡ [(a2, a3)] ∗ [(a3, a1)] ∗ [ f12] ∗ [(b2, b1)] ∗ [(b1, b3)] ∗ [ f23],

p(a2)
t=2 ≡ [ f23] ∗ [(b3, b2)] ∗ [(b2, b1)] ∗ [ f31] ∗ [(a3, a1)] ∗ [(a1, a2)],

p(a2)
t=3 ≡ [ f23] ∗ [(b3, b2)] ∗ [ f12] ∗ [(a1, a2)].

(6)

Accordingly, the homotopy equivalence classes for [a3] of σ
(2)
k can be formulated

in Ψik|Y =
(

σ
(2)
i , σ

(2)
k , F

)
. Hence, the algebraic structure Ψik|Y =

(
σ
(2)
i , σ

(2)
k , F

)
admits

discrete twisted homotopy classes in σ
(2)
i and σ

(2)
k . �
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Lemma 1. If M = ∪
u∈{i,k}

{ fσ

(
σ
(2)
u

)
} ∪ {0}, then GM = (M,+) is an Abelian group if, and

only if, the orientations of the corresponding two homotopic 2-simplices are not equal.

Proof. The proof is relatively straightforward. Let the discrete assignment function be
given as fσ : σ

(2)
i → {−r ∈ R, r ∈ R} . Suppose the homotopic 2-simplices maintain the

conditions such that [iσ(bm ∈ ∆i)] ∼=H [g] and [iσ(am ∈ ∆k)] ∼=H [g] where the oriented
2-simplices σ

(2)
i and σ

(2)
k are generated by the convex hulls of ∆i and ∆k, respectively.

Evidently, one can conclude that fσ

(
σ
(2)
i

)
+ fσ

(
σ
(2)
k

)
= 0.

Hence, the algebraic structure GM = (M,+) is an Abelian group if M = ∪
u∈{i,k}

{ fσ

(
σ
(2)
u

)
}∪

{0}. �

An interesting observation can be made from Theorem 4: the vertices of 2-simplices
and a set of braid-paths support the formation of a discrete variety of fundamental groups
having twisted path-homotopy loops in multiple numbers. This observation is presented in
the following Theorem. Recall that we are denoting a twisted and discrete path-homotopy
loop at ai ∈ ∆k as p(ai)

t for t ∈ Z+ in Y.

Theorem 5. At every am ∈ ∆k of σ
(2)
k in Ψik|Y =

(
σ
(2)
i , σ

(2)
k , F

)
, there is a discrete variety of

fundamental group π1(Xam, am) where Xam =
{

p(am)
t : t = 1, 2, 3

}
.

Proof. Let σ
(2)
i , σ

(2)
k be two oriented 2-simplices in two respective sections of covering

maps containing a Ψik|Y =
(

σ
(2)
i , σ

(2)
k , F

)
algebraic structure within the covering space

in (Y, τY). Suppose am=1 ∈ ∆k of σ
(2)
k is a vertex such that the path-homotopy loops are

generated by the corresponding twisted braid-paths in Ψik|Y =
(

σ
(2)
i , σ

(2)
k , F

)
as presented

by Equation (4). The following path-homotopy equivalence relation and the associative
property of homotopy class path-products can be concluded from Equation (4).

[p(a1)
t ] ∼=H [a1], t = 1, 2, 3,

[p(a1)
1 ] ∗ ([p(a1)

2 ] ∗ [p(a1)
3 ]) = ([p(a1)

1 ] ∗ [p(a1)
2 ]) ∗ [p(a1)

3 ].
(7)

Moreover, we can derive the following path-homotopy equivalence relational proper-
ties as an extension.

p(a1)
t=1 ≡ [(a3, a1)] ∗ [ f31] ∗ [(b2, b1)] ∗ [ f12],

p(a1)
t=2 ≡ [ f12] ∗ [(b3, b2)] ∗ [ f23] ∗ [(a1, a2)],

p(a1)
t=3 ≡ [ f12] ∗ [(b3, b2)] ∗ [(b1, b3)] ∗ [(b2, b1)] ∗ [ f12],

[p(a1)
t ] ∗ [p(a1)

t ] ∼=H [p(a1)
t ] ∗ [p(a1)

t ] ∼=H [a1].

(8)

Thus, if we consider that Xa1 =
{

p(a1)
t : t = 1, 2, 3

}
, then π1(Xa1, a1) is a discrete

form of a fundamental group in Ψik|Y =
(

σ
(2)
i , σ

(2)
k , F

)
. Similarly, the discrete forms

of fundamental groups π1(Xa2, a2) and π1(Xa3, a3) can be formulated in the algebraic
structure Ψik|Y =

(
σ
(2)
i , σ

(2)
k , F

)
. Hence, in general the fundamental group π1(Xam, am) is

formed under the set of twisted braid-paths Xam =
{

p(am)
t : t = 1, 2, 3

}
at the respective

base points. �

The aforementioned property leads to an interesting observation. There exist two dis-
crete path-homotopy loops generated by braid-paths in the fundamental group π1(Xa1, a1)
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within Ψik|Y =
(

σ
(2)
i , σ

(2)
k , F

)
, where one loop absorbs the other one under a non-commutative

path-product operation. The following theorem illustrates this observation.

Theorem 6. In the fundamental group π1(Xa1, a1) within the structure Ψik|Y =
(

σ
(2)
i , σ

(2)
k , F

)
,

the braid-paths generated homotopy loop p(a1)
3 absorbs p(a1)

2 if, and only if, the homotopy path-
product is non-commutative.

Proof. Let us consider the fundamental group π1(Xa1, a1) generated by the twisted braid-
paths within the algebraic structure Ψik|Y =

(
σ
(2)
i , σ

(2)
k , F

)
. Recall that there exist two

twisted braid-paths with path-homotopy equivalence which is given as follows.

p(a1)
2 ≡ [(a1, a2)] ∗ [ f23] ∗ [(b3, b2)] ∗ [ f12],

p(a1)
3 ≡ [ f12] ∗ [(b2, b1)] ∗ [(b1, b3)] ∗ [(b3, b2)] ∗ [ f12],

[p(a1)
2 ] ∼=H [p(a1)

3 ] ∼=H [a1].

(9)

Let us denote [(a1, a2)] ∗ [ f23] ≡ [〈a1, b3〉] preserving the initial vertex a1 ∈ ∆k and
the final vertex b3 ∈ ∆i. Moreover, the cycle [(b2, b1)] ∗ [(b1, b3)] ∗ [(b3, b2)] is algebraically
denoted by

[
(b2, b1)] ∗ [(b1, b3)] ∗ [(b3, b2)] ≡ [∆(213)

i

]
involving σ

(2)
i . This results in the

construction of the following homotopy loops involving braid-paths.

p(a1)
2 = [〈a1, b3〉] ∗ [(b3, b2)] ∗ [ f12] ∼= [〈a1, b2〉] ∗ [ f12],

p(a1)
3 = [ f12] ∗ [∆

(213)
i ] ∗ [ f12].

(10)

This results in the following derivation.

[p(a1)
2 ] ∗ [p(a1)

3 ] = [〈a1, b2〉] ∗ [ f12] ∗ [ f12] ∗ [∆
(213)
i ] ∗ [ f12],

⇒ [p(a1)
2 ] ∗ [p(a1)

3 ] = [〈a1, b2〉] ∗ [∆
(213)
i ] ∗ [ f12],

[〈a1, b2〉] ∗ [∆
(213)
i ] ∗ [ f12] ∼= [ f12] ∗ [∆

(213)
i ] ∗ [ f12],

⇒ [p(a1)
2 ] ∗ [p(a1)

3 ] = [p(a1)
3 ],

⇒ [p(a1)
3 ] ∗ [p(a1)

2 ] 6= [p(a1)
3 ].

(11)

Hence, the twisted braid-paths generated discrete homotopy loops admit an absorp-
tion property if the homotopy path-product is non-commutative in nature. �

4.2. Properties of Homological Formal Sum

It is possible to assign numerically computable weights to the path-components of
a braid-paths generated homotopy loop as well as 1-faces of 2-simplices in the Ψik|Y =(

σ
(2)
i , σ

(2)
k , F

)
structure. Let us denote the 1-face path-components of an n-th 2-simplex

as αn ∈ p(a1)
1 , βn ∈ p(a1)

2 and γn ∈ p(a1)
3 for a braid-paths generated discrete fundamental

group π1(Xa1, a1) in Ψik|Y =
(

σ
(2)
i , σ

(2)
k , F

)
. In this case, an n-th 2-simplex indicates that

either n = i or n = k considering σ
(2)
i , σ

(2)
k . Suppose the weights are assigned by a

real-valued function given by w : Ψik|Y → R such that it maintains two properties: (1)
w(αn) = w(βn) = w(γn) = 1 if the orientations of corresponding 1-faces of σ

(2)
i , σ

(2)
k

are preserved in the braid-path homotopy loops and (2) w(αn) = w(βn) = w(γn) = −1
if the orientations of 1-faces are reversed. Moreover we assign unknown weights to
the braid-path components as w( f12) = x2, w( f23) = x3 and w( f31) = x1 within the
structure Ψik|Y =

(
σ
(2)
i , σ

(2)
k , F

)
if the orientations of the braid-path components are

preserved. Otherwise, if the orientations of the braid-path components are reversed then,
w( f12) = −x2, w( f23) = −x3 and w( f31) = −x1. Interestingly, the real-valued weight
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assignments form a multiplicative group algebraic structure Gp =
(

Xp(a1), w, ·
)

where
Xp(a1) represents a set of homological formal sums in π1(Xa1, a1), which is given as follows
(L denotes the maximum number of components in a path in a directed as well as oriented
homotopy loop).

yu ∈ p(a1)
t , u ∈ [1, L],

t, m = 1, 2, 3,

Xp(a1) = {hm : hm =
L
∑

u=1
(−1)u.w(yu)}.

(12)

This observation is presented in the following theorem.

Theorem 7. The real-valued weight assignments w : Ψik|Y → R to path components of a braid-
paths generated discrete π1(Xa1, a1) admit the smallest non-trivial multiplicative group Gp =(

Xp(a1), w, ·
)

, where Xp(a1) is a set of homological formal sums of homotopy loops of π1(Xa1, a1)

in Ψik|Y =
(

σ
(2)
i , σ

(2)
k , F

)
.

Proof. Let π1(Xa1, a1) be a discrete variety fundamental group in Ψik|Y =
(

σ
(2)
i , σ

(2)
k , F

)
generated by path-homotopy loops p(a1)

t , t = 1, 2, 3 involving the braid-path components.
Suppose the real-valued weight assignments by w : Ψik|Y → R are admitted such that
w(αn) = w(βn) = w(γn) = 1 for any 2-simplex in a π1(Xa1, a1) fundamental group (in
the case of orientation preservations of the corresponding 1-faces in a 2-simplex) and,
w(αn) = w(βn) = w(γn) = −1 (in the case of orientation reversals of the corresponding
1-faces in a 2-simplex). Moreover the real-valued weight assignments to braid-paths are
preserved as w( f12) = ±x2, w( f23) = ±x3 and, w( f31) = ±x1 (sign is positive if the
orientation is preserved, otherwise it is negatively signed). Note that we are considering
oriented 2-simplices σ

(2)
i , σ

(2)
k in the computation such that either n = i or n = k. Thus, the

following sets of equations can be derived, further generating homological formal sums in
the set Xp(a1).

∀yu ∈ p(a1)
t=1 , h1 =

4
∑

u=1
(−1)u.w(yu) = −x2 + 1− (−x1) + 1 =x1 − x2 + 2,

∀yu ∈ p(a1)
t=2 , h2 =

4
∑

u=1
(−1)u.w(yu) = −1 + x3 − 1 + (−x2) =x3 − x2 − 2,

∀yu ∈ p(a1)
t=3 , h3 =

5
∑

u=1
(−1)u.w(yu) = −x2 + 1− 1 + 1− (−x2) =1.

(13)

As a result, the discrete fundamental group π1(Xa1, a1) admits Xp(a1) = {hm : m = 1, 2} ∪
{1} generated by homological formal sums. Suppose the set Xp(a1) = {hm : m = 1, 2} ∪
{1}maintains the following additional condition under closed multiplication operation
· : (Xp(a1))

2 → Xp(a1) .
h1 · h2 = 1,
⇒ h−1

1 = h2,
⇒ h−1

2 = h1.
(14)

Hence, the structure Gp =
(

Xp(a1), w, ·
)

is the smallest non-trivial multiplicative
group under homological formal sums in the discrete variety fundamental group π1(Xa1, a1).
�

Example 2. Let us consider the group structure Gp =
(

Xp(a1), w, ·
)

and the corresponding weight
assignments to braid-path components as x1 = x2 = 1 and x3 = 7/2. Thus, a numerical solution
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is Xp(a1) = {0.5, 2, 1} admitting the multiplicative group structure. Note that the numerical values
in set Xp(a1) are not necessarily unique.

Corollary 1. The smallest non-trivial multiplicative group Gp =
(

Xp(a1), w, ·
)

admits several
possible sets of homological formal sums Xp(a1) in suitable combinations to support the group
structure.

The proof of the corollary is relatively straightforward in nature. Note that the values
of homological formal sums are influenced by the weight assignments to braid-paths and
as a result there exist multiple possible solutions to admit Gp =

(
Xp(a1), w, ·

)
successfully.

In other words, the numerical construction of Gp =
(

Xp(a1), w, ·
)

is not unique.

5. Conclusions

In view of geometric as well as algebraic topology, the homeomorphic embeddings
of two cyclically reverse oriented 2-simplices connected by twisted braid-paths in the
covering spaces admit an algebraic variety of a homotopic twisted structure. The structure
is oriented supporting the formation of Abelian groups and preserves various forms of
path-homotopy equivalence classes under homotopic path-products. The concept of a
simplicial fiber is introduced, allowing the computation of homological formal sums. The
resulting fundamental group formed within the algebraic structure is a discrete variety and
the non-commutative homotopic path-products exhibit a loop absorption property. The
homological formal sums computed by suitable weight assignments from a set of real num-
bers to path components in the homotopy loops admit a non-trivial multiplicative group
structure. However, the generated smallest non-trivial multiplicative group is not unique
and several groups can be formed by assigning suitable numerical weights. The concepts
presented in this paper may find possible applications in chemical sciences (molecular
structural analysis of DNA spirals and linkages), physical sciences (crystallography and
nuclear structural analysis), and in mathematical sciences.
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