
symmetryS S

Article

Energetic Particle Superdiffusion in Solar System Plasmas:
Which Fractional Transport Equation?

Gaetano Zimbardo 1,2,*, Francesco Malara 1,2 and Silvia Perri 1,2

����������
�������

Citation: Zimbardo, G.; Malara, F.;

Perri, S. Energetic Particle

Superdiffusion in Solar System

Plasmas: Which Fractional Transport

Equation? Symmetry 2021, 13, 2368.

https://doi.org/10.3390/sym13122368

Academic Editor: Markus Büscher

Received: 9 November 2021

Accepted: 30 November 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Physics Department, University of Calabria, Ponte P. Bucci, Cubo 31C, 87036 Rende, Italy;
francesco.malara@fis.unical.it (F.M.); silvia.perri@fis.unical.it (S.P.)

2 Istituto Nazionale di Astrofisica (INAF), 84I, 00136 Rome, Italy
* Correspondence: gaetano.zimbardo@fis.unical.it

Abstract: Superdiffusive transport of energetic particles in the solar system and in other plasma
environments is often inferred; while this can be described in terms of Lévy walks, a corresponding
transport differential equation still calls for investigation. Here, we propose that superdiffusive
transport can be described by means of a transport equation for pitch-angle scattering where the time
derivative is fractional rather than integer. We show that this simply leads to superdiffusion in the
direction parallel to the magnetic field, and we discuss some advantages with respect to approaches
based on transport equations with symmetric spatial fractional derivates.

Keywords: anomalous transport; fractional derivatives; solar energetic particles; Lévy walks

1. Introduction

The random motion of particles in homogeneous media can often be described by
diffusive propagation, such that the mean square displacement of the particle position
grows linearly in time, 〈∆x2〉 ∝ t, where ∆x = x(t)− x0, and where, for the moment, we
consider one dimension only. On the other hand, many physical systems exhibit anoma-
lous transport, meaning that the mean square displacement grows nonlinearly in time, i.e.,
〈∆x2〉 ∝ tγ, with γ < 1 for subdiffusion and γ > 1 for superdiffusion [1–4]. In astrophysics
and space physics there are several indications of superdiffusive transport of energetic
particles, which come from the observations of nonrelativistic solar electrons [5], from the
analysis of energetic particle profiles observed by spacecraft at shock crossings [6–10], from
the analysis of electron transport at the Coma cluster of galaxies [11], from the analysis of
the extended precursor of supernova remnants [12,13], and from the radio-derived energy
spectra of galaxy cluster merger shocks [14,15]. Furthermore, we notice that many observa-
tions of solar energetic particles are consistent with very weak pitch-angle scattering and
long (even larger than one astronomical unit) mean free paths, so that “scatter free” propa-
gation is also stemming out from measurements. Typically, pitch-angle scattering is due to
the interaction of charged particles with low-frequency magnetohydrodynamic turbulence
in the case of ions [16,17], and with whistler mode waves in the case of electrons [18,19],
and the variability of the statistical properties of such fluctuations (i.e., intensity, spectral
extension, spectral anisotropy) can lead to several different transport regimes.

Superdiffusive propagation can be appropriately described by the continuous time
random walk model [1,4,20,21]; the concept of Lévy walks, which involves a coupling
between the free path lengths and the time needed to cover the free paths (resulting in a time
cost for long displacements), turns out to be pivotal to avoid some divergences associated
with Lévy flights (see below). Based on the Lévy walk model, Perri and Zimbardo [22,23]
have extended the theory of diffusive shock acceleration (DSA) to the case of superdiffusive
shock acceleration (SSA) in a consistent way, and SSA has been applied to the interpretation
of energetic particle acceleration in the heliosphere and at galaxy merger shocks [8,15,24].
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On the other hand, a complete description of superdiffusion also requires the avail-
ability of a transport equation, such as, e.g., a Fokker–Planck equation. Indeed, the normal
diffusion equation, here in one dimension,

∂ f
∂t

=
∂

∂x
Dxx

∂ f
∂x

(1)

readily implies normal diffusion, with 〈∆x2〉 = 2Dxxt. In order to obtain a transport equa-
tion describing anomalous diffusion, fractional time and/or spatial derivatives are to be
used [1–3,25–28], and the transport equation is sometimes termed fractional Fokker–Planck
equation. Fractional derivatives are integrodifferential operators which take into account
the non-Markovian, nonlocal character of anomalous transport. Fractional transport equa-
tions have been introduced by several authors, with fractional time derivatives usually
describing subdiffusion [1,3,25], and fractional spatial derivatives usually describing su-
perdiffusion [2,3,25]. The relation with persistent and antipersistent processes, as described
by the Hurst exponent, has been considered, too [29].

In this paper, we address the problem, never discussed so far, of whether particle
superdiffusion (i.e., the superdiffusive spreading in coordinate space) should be described
by fractional derivatives in space (as commonly assumed) or fractional derivatives in time.
We discuss the problem of the diverging moments of the solutions that stem from the
fractional derivative in space, i.e., those corresponding to Lévy flights. We show how this
problem is not encountered if a time fractional equation in velocity space is introduced
and the Lévy walk properties are implemented by considering pitch-angle scattering only.
Thus, the latter approach allows us to describe superdiffusion in coordinate space. This
may be surprising, as time fractional derivatives are usually associated with subdiffusion.

In addition, this work tries to build a bridge between the solar and heliospheric
communities, interested in energetic particle pitch-angle scattering, and the mathematical
physics community, interested in fractional differential equations. We believe that this
approach sheds some light on the microscopic dynamics of superdiffusion in space and
astrophysical plasmas.

2. Spatial Fractional Derivatives and Lévy Flights

The diffusion Equation (1) consistently leads to normal diffusion, with a diffusion
coefficient approximately given by

Dxx '
〈`2〉
〈τ〉 (2)

where 〈`2〉 is the mean square free path length, and 〈τ〉 is the mean scattering time (or
travel time). On the other hand, anomalous diffusion is due to the fact that either 〈`2〉
and/or 〈τ〉 are not finite, so that the central limit theorem does not hold. In particular, this
means that both ` and/or τ do not have a typical value. This happens when the probability
distribution of the values of ` and τ has power-law tails with small exponents such that
〈`2〉 and/or 〈τ〉 diverge, so that long displacements and long travel times are possible.
These possibilities are taken into account by fractional derivatives [1,3,25–27,30]; in the
time domain, they can be defined as

∂β f (t)
∂tβ

≡ C
0 Dβ

t f (t) =
1

Γ(1− β)

∫ t

0

∂ f (t′)
∂t′

dt′

(t− t′)β
. (3)

with 0 < β < 1 for the fractional time derivative in the Caputo form [25,31], which exploits
the non-Markovian property by considering ∂ f /∂t′ also in times earlier than the current
time t. Here, Γ is Euler gamma function. In the spatial domain, fractional derivatives can
be defined by
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∂α f (x)
∂|x|α =

1
π

sin
(π

2
α
)

Γ(1 + α)
∫ ∞

0

f (x + ξ)− 2 f (x) + f (x− ξ)

ξ1+α
dξ , (4)

with 0 < α < 2 for the symmetric fractional derivative in Riesz’s form (see also [30]), which
clearly shows the nonlocal character of transport, since the distribution function at positions
x + ξ and x− ξ is involved in the integral. It should be noted that several other forms of
fractional derivatives can be defined [32], and that the Caputo form is a favored choice for
time derivatives since it allows us to take into account the initial conditions [25,33]. Then, a
fully fractional transport equation can be written as [3,25,28]

C
0 Dβ

t f (x, t) = Dα,β
∂α f (x, t)

∂|x|α . (5)

Dimensional analysis shows that the mean square displacement should scale as

〈∆x2〉 ∝ t2β/α (6)

so that by varying α and β we can obtain a variety of anomalous transport regimes [1–3,25].
In particular, if the spatial derivatives are integer, i.e., if α = 2, subdiffusion with

〈∆x2〉 ∝ tβ (7)

and β < 1 is found [1,3]. Therefore, subdiffusion is readily described by fractional time
derivatives. On the other hand, the scenario is somewhat more involved for superdiffusion:
for integer time derivative, β = 1, and fractional spatial derivative, we obtain

∂ f (x, t)
∂t

= Dα
∂α f (x, t)

∂|x|α . (8)

Let us search for solutions by Fourier transforming the x coordinate. Then, in Fourier space
we obtain

∂ f̂ (k, t)
∂t

= −Dα|k|α f̂ (k, t) , (9)

in agreement with the general rule for the Fourier transform of Riesz derivatives [25,27,29].
We can solve with respect to time to find

f̂ (k, t) = exp[−Dα|k|αt] , (10)

which, for α < 2, is the Fourier transform of a symmetric Lévy distribution. Backtransform-
ing in the limit |x| � (Dαt)1/α yields [3,9,23].

f (x, t) ≈ Γ(α + 1)
π

sin
(π

2
α
) Dαt
|x|α+1 , (11)

So we can see that the probability density f (x, t), also called the propagator, has
power-law tails, f (x, t) ∼ t/|x|α+1, typical of Lévy distributions. In particular, a Lévy
distribution has tails much longer than a Gaussian distribution. However, if we would like
to compute the mean square displacement of particles starting at x0 = 0, so that ∆x = x(t),

〈∆x2〉(t) =
∫ ∞

−∞
x2 f (x, t)dx ∝

∫ ∞

−∞

x2

|x|α+1 dx , (12)

we would find, for α ≤ 2, that 〈∆x2〉 diverges for any time t. This is the well-known prop-
erty of Lévy distribution, i.e., that moments of order δ ≥ α are diverging [1,20,21], so that su-
perdiffusion, i.e., 〈∆x2〉 ∝ t2/α, is not recovered. Processes described by Equations (8)–(11)
are called Lévy flights. They are appropriate to describe a number of systems [2,3], but
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cannot describe the propagation of particles with finite mass, since Lévy flights may imply
an infinite velocity: ”For such massive particles, a finite velocity of propagation exists,
making long instantaneus jumps impossible” [1]. Therefore, in spite of the formal appeal of
Equation (8), this spatial fractional equation has some limits in describing superdiffusion,
and one has to use a coupled scheme called Lévy walks [4,20,34].

3. Time Fractional Derivatives and Lévy Walks

Superdiffusion of material particles, i.e., of particles having mass, can be described
by a statistical process called Lévy walk [4,20,34]. In this process, the random walk of
a particle is described by a symmetric probability density Ψ(`, τ) of making a free path
of length ` (positive or negative) in a time τ given by Ψ(`, τ) = 1

2 ψ(τ)δ(|`| − vτ), where
ψ(τ) is a power-law tailed distribution of times, ψ(τ) ∼ 1/τα+1. The long tails of ψ(τ)
make for the nonlocal, non-Markovian character of Lévy walks. Here, the essential point is
that the free path length, |`|, is related to the travel time, τ, by the delta coupling, so that
|`| = vτ. This means that longer free paths require longer times; that is, particles move at
constant velocity (further models where |`| = vτ0(τ/τ0)

ν can be introduced [21], but here,
we restrict ourselves to the more common case).

Motion at constant speed avoids the divergence of 〈∆x2〉, and indeed superdiffusion
with 〈∆x2〉 ∝ t3−α is found for Lévy walks [4,20,21,23,34]. Nevertheless, it is not imme-
diate to write a fractional transport equation for Lévy walks in coordinate space (see,
however, [2,35]).

In the current paper, we propose an alternative scheme, where a transport equation in
velocity space is introduced, with the time derivative being fractional. We start from the
cosmic ray transport equation, which can be written as a Fokker–Planck equation in phase
space [27,36–42]; averaging over position, we have (e.g., [43], Equation (2))

∂ f
∂t

=
∂

∂pi
Dpi pi

∂ f
∂pi

(13)

We introduce spherical coordinates in momentum space p = (p, θ, φ). In magnetized
plasmas such as those of the solar system, the polar angle θ represents the angle between
the magnetic field and the momentum vector, that is, the pitch angle. Following common
usage, we also introduce the pitch-angle cosine µ = cos θ, obtaining

∂ f
∂t

=
1
p2

∂

∂p

(
p2Dpp

∂ f
∂p

)
+

∂

∂µ
Dµµ

∂ f
∂µ

+
∂

∂φ
Dφφ

∂ f
∂φ

. (14)

Further, we assume that f (p, µ, φ) is gyrotropic, so that ∂ f /∂φ = 0. Then, we can write

∂ f
∂t

=
1
p2

∂

∂p

(
p2Dpp

∂ f
∂p

)
+

∂

∂µ
Dµµ

∂ f
∂µ

. (15)

This equation describes the diffusive evolution of f in momentum (and, as a conse-
quence, velocity) space. The first term on the right-hand side (r.h.s.) implies diffusion in
energy, and corresponds to second-order Fermi acceleration, while the second term on
the r.h.s. represents pitch-angle scattering. We now impose the condition characterizing
Lévy walks versus Lévy flights, i.e., that v = |v| = const for each particle displacement. Of
course, this also means |p| = const (except for ultrarelativistic particles, which, however,
are less relevant to solar system plasmas). Then, Fermi acceleration is not to be expected
and the first term on the r.h.s., i.e., Dpp, is to be set to zero. We may notice that if Fermi
acceleration would be active, with the increase of speed in time it would be possible to
have transport regimes that are not only superdiffusive but even superballistic [44,45].

Therefore, with the constraint v = const on particle motion, we are left with

∂ f
∂t

=
∂

∂µ
Dµµ

∂ f
∂µ

, (16)
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corresponding to the well-known pitch-angle diffusion equation [38,46,47]. We emphasize
that this equation is consistent with motion at constant speed, so that the particle velocity
diffuses on a constant velocity shell, i.e., a constant energy shell. This embodies a particle
random walk at constant speed where only the velocity direction is changing—this is just
one of the properties of Lévy walks, but long-range correlations are also needed.

With proper boundary conditions, Equation (16) describes normal “diffusion” in µ
space. To obtain anomalous pitch-angle diffusion, we make the fundamental assumption
of the present paper, i.e., we replace the integer time derivative by a fractional time
derivative [31]:

∂β f
∂tβ

=
∂

∂µ
Dµµ

∂ f
∂µ

. (17)

This choice is motivated by the fact that the particle pitch-angle scattering times, in
the presence of magnetic turbulence or magnetic rotational discontinuities, are found to be
characterized by power-law probability distributions [48–52]. Those probabilities exhibit a
power-law behaviour over more than three decades both in the experimental data measured
in the solar wind [48,50] and in the numerical simulations of particle transport either in
a three-dimensional spectrum of magnetic fluctuations [49] or in the numerical study of
the effects of magnetic rotational discontinuities [51]. Such power-law distributions of
scattering times correspond to a fractional time derivative in the Caputo form [1,25,27,31],
and the presence of very long scattering times substantiates the non-Markovian character
of transport.

For stationary, homogeneous turbulence, i.e., Dµµ independent of time, Equation (17)
can easily be solved by separation of variables. We can write the solutions in the form

f (µ, t) = g(t)h(µ) (18)

and we find for the time-depending function g(t)

C
0 Dβ

t g(t) = −Ag(t) (19)

where A is the separation constant. The solution of this time-fractional, linear, differential
equation is given by the Mittag-Leffler functions Eβ of index β:

g(t) = g(0)Eβ[−Atβ] = g(0)
∞

∑
n=0

(
−Atβ

)n

Γ(βn + 1)
(20)

see [1,31,53]. The Mittag-Leffler functions reduce to an exponential for β → 1, and have
a power-law decay for large t otherwise (see Figure 1). The diffusion coefficient Dµµ

can depend on µ in several ways [47,54]. For sufficiently strong turbulence, an isotropic
scattering process in pitch angle can be assumed [54], i.e., Dµµ = (1− µ2)D0, and the full
solution can be expressed in terms of Legendre polynomials Pl(µ) as [1,31,47]

f (µ, t) =
1
2
+

∞

∑
l=1

2l + 1
2

Pl(µ0)Pl(µ)Eβ[−D0l(l + 1)tβ] , (21)

where µ0 represents the initial pitch angle. For long times, the leading terms are

f (µ, t) =
1
2
+

3
2

P1(µ0)P1(µ)Eβ[−2D0tβ] (22)

which decay as 1/2D0tβ, i.e., much more slowly than in the case of an exponential decay,
towards an isotropic distribution.
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Figure 1. Plots of the Mittag-Leffler function for a few values of β.

We now consider the motion along the magnetic field, that is, along the z direction,
considering that vz = vµ. Transport along this direction can be expressed in terms of
the velocity autocorrelation function 〈vz(t)vz(0)〉 = v2〈µ(t)µ0〉. The average can be ob-
tained from the probability density f (µ, t), and, remembering that P1(µ) = µ and the
orthogonality condition for Legendre polynomials, one readily finds [31,47]

〈vz(t)vz(0)〉 = v2µ2
0Eβ[−2D0tβ] . (23)

Equation (23) corresponds to a basic result, i.e., that the velocity autocorrelation
function does not decay exponentially, but, for long times, it decays as a power law in time,

〈vz(t)vz(0)〉 '
v2µ2

0
Γ(1− β)

1
2D0tβ

(24)

with 0 ≤ β ≤ 1. The latter result can be derived by considering the Laplace transform of
Mittag-Leffler functions of index β, i.e., sβ−1/(sβ + 2D0), then taking the limit for small s,
which corresponds to long times t, and finally taking the Laplace back-transform [33,53].
Equation (24) implies that the memory of the initial velocity, vµ0, is retained for long times.
Then, the mean square displacement along the z direction can be obtained by means of the
generalized Taylor–Green–Kubo formula [55]

〈∆z2〉 = 2t
∫ t

0
dt′〈vz(t′)vz(0)〉 = 2v2µ2

0t
∫ t

0
dt′Eβ[−2D0t′β] (25)

whose long time limit is

〈∆z2〉 '
v2µ2

0
Γ(1− β)

1
D0

t2−β

1− β
. (26)

Finally, for β < 1 we have superdiffusion along z with anomalous diffusion exponent
given by

γ = 2− β . (27)

Thus, we can see that the assumption of a fractional time derivative for the pitch-
angle diffusion equation leads rather directly to superdiffusion along the magnetic field.
We notice that the above results can also be obtained by means of a fractional Langevin
equation with a power-law tailed memory kernel [56].
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4. Discussion and Conclusions

In this paper, we have discussed the topic of superdiffusive propagation of energetic
particles, which is frequently observed in solar system plasmas and also inferred for
remote astrophysical systems such as supernova remnant shocks and galaxy cluster shocks.
Anomalous transport can be described by fractional differential equations, and we derive
the well-known result that a diffusion equation with fractional spatial derivatives has,
as solutions, the Lévy distribution. These functions have long power-law tails, but the
lack of a coupling between free path length and travel time leads to the divergence of
the mean square displacement at any given time. Therefore, a different approach, based
on Lévy walks, is needed. Here, we propose to use a transport equation in velocity
space, as commonly used for the description of cosmic ray transport. The condition of
constant velocity, necessary for Lévy walks, is implemented by setting to zero the diffusion
coefficient Dpp in momentum modulus p. This yields the well-known pitch-angle diffusion
equation. The anomalous character of transport is implemented by changing the normal
time derivative to a fractional time derivative of order β < 1, which leads to subdiffusion
in pitch-angle, but superdiffusion for motion along the z direction, i.e., along the magnetic
field. Indeed, the time fractional differential equation can be solved by separation of
variables, and the solution of the temporal part is given in terms of the Mittag-Leffler
functions. Therefore, an exact solution is obtained both for short and for long times; then,
for long times, a power-law decay of the velocity autocorrelation function is obtained.
When this is inserted in the Taylor–Green–Kubo formula, superdiffusion along z is readily
obtained.

Another approach to superdiffusive transport equations is based on the fact that the
delta coupling δ(|`| − vτ) of Lévy walks implies a definite relation between the proba-
bility distributions of free path lengths and of travel times, that is, they should have the
same exponent, and this leads to fractional derivatives of the same order in space and
time. Indeed, a fractional material derivative was proposed by Sokolov and Metzler [35],
where a single fractional operator encompasses both spatial and time derivatives. Use of
the Fourier–Laplace transforms allows us to recover the Lévy walk propagator and the
ensuing properties [2,35]. Still, we believe that the approach presented here for studying
superdiffusion clearly identifies the assumptions needed to describe Lévy walks by means
of fractional differential equations, and is somewhat simpler than the approach based on
the fractional material derivative.

It is important to point out that other approaches to fractional transport equations
have been used for solar energetic particles and cosmic rays. For instance, Refs. [26,27] use
a Fokker–Planck equation in energy space where the time derivative is integer, while the
energy equation is fractional, and this allows us to obtain a power-law energy spectrum.
This is not possible with the present approach since we neglect changes in momentum
amplitude (that is, in energy). In a recent study, Ref. [57] used a continuous time random
walk model in momentum space to study particle acceleration, and power-law energy
distributions were also derived.

To study the acceleration of particles, future research will consider how to derive su-
perdiffusive shock acceleration from a fractional transport equation considering derivatives
in both coordinate and momentum space.
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