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Abstract: This study suggests a control Lyapunov-based optimal integral terminal sliding mode
control (ITSMC) technique for tracker design of asymmetric nonholonomic robotic systems in the
existence of external disturbances. The design procedure is based on the control Lyapunov function
(CLF) approach. Hence, the output tracking problem is solved by combining the ITSMC with optimal
control. The CLF synthesizes a nonlinear optimal control input for the nominal system. Once the
control system’s states lie far away from the operating point, it is activated to drive them toward
the equilibrium point optimally. However, on the condition that the system perturbations are the
main factor, the ITSMC would be designed to take over in the vicinity of the equilibrium point.
Accordingly, the control goals, such as robustness and precise control, are warranted in the perturbed
system. The usefulness of the suggested method is demonstrated with a wheeled mobile robot via a
simulation study.

Keywords: nonholonomic system; asymmetry; optimal control; sliding mode control; robotics;
finite-time control

1. Introduction

Nonholonomic systems, such as wheeled mobile robots, are typically characterized
by nonlinear differential equations with nonintegrable constraints on their velocities [1].
They are commonly encountered in mechanical and engineering problems with additional
conditions constraining and restricting their motion. The stimulating instances of the non-
holonomic systems contain tricycle-type mobile robots, surface vessels, rigid spacecrafts,
cars pulling several trailers, a knife-edge structure, a vertical rolling wheel, etc. Designing
feedback controls for nonholonomic robotic systems would be a challenging task. This
is because of the fact that these dynamical/mechanical systems cannot be stabilized by
any continuous feedback control, are not globally feedback linearizable, and suffer from
the singularity manifold problem in the neighborhood around the origin. The optimal
tracking control problem is mainly concerned with finding the best possible strategy to
track the reference trajectory by the system output’s system, which results in minimizing
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or maximizing a particular performance index [2]. Optimal control design schemes are typ-
ically developed with two different points of view: the maximum principle of Pontryagin
and Bellman’s dynamic programming, which finally solves the Hamilton–Jacobi–Bellman
(HJB) problem. Generally, the HJB condition does not have a smooth solution. In the
past half-century, many studies have shown that solving the HJB equation is equivalent
to providing a method to solve Hamiltonian systems or the Riccati equation. There are
many works in nonlinear control that are based on too many simplifying assumptions [3]
or using series other than iterative processes, such as the Chebyshev technique [4], power
series [5], Walsh functions [6], and so on. These methods are approximate and based on an
initial guess, which is restricted to stabilize the nonlinear systems [7,8].

Sliding mode control (SMC) has been mostly considered in the control issue of dy-
namical systems subjected to uncertainties and disturbances [9–12]. The difficulty in the
control of nonholonomic systems, for instance, nonholonomic mobile robots, is that there
are external disturbances and parameter uncertainties in their modeling in the real world.
By considering the essential characteristics of the wheeled mobile robots, such as actual
dynamics, localization errors, inertia restrictions, and power limits of input actuators, the
dynamical equations of these nonlinear systems are described as challenging mathematical
models. Moreover, external disturbances such as wind gusts or gravity have strong effects
on the system and are required to be taken into account in the controller design; however,
it is not possible to exactly measure the external disturbances. Despite the uncertain terms
and external disturbances, the SMC can be a powerful and robust control technique that
provides the desired performance [13–15]. The conventional SMC does not assure the
state’s convergence to a closed-loop system in finite time. Hence, for achieving the men-
tioned property, the terminal sliding mode (TSM) control methodology has been presented
and applied to numerous applications [16–18]. The easiness implementation, converging
in finite time, and tracking with high precision, would be superior features of the TSM
method. The optimal sliding mode control (OSMC) consists of the optimal control concept
and the SMC strategies to design an integral sliding manifold [19,20], where the sliding
surface consists of an integral part. The system’s robustness against uncertainties would
be guaranteed utilizing an integral sliding mode (ISM) controller [21]. It can be shown
that the optimal controller design problem is equivalent to finding the HJB solution [22].
However, in nonlinear dynamical systems, the HJB equation may be difficult or impossible
to solve. Basically, Sontag’s formula [23] applies the directional information provided with
a CLF and then adjusts it satisfactorily to solve the HJB problem. Even though the SMC
idea and the optimal control are some external control approaches, it is still possible to
combine them. The cooperated control system would operate in such a way to satisfy the
following: (1) in the zone where the nominal part of the dynamical system is dominant,
the system response is particularly affected by optimal control; (2) the control task will be
performed through the TSM in the case that the variations become dominant. Specifically,
such an integrated control technique would be beneficial when the external disturbance is
considerably near to the equilibrium point. Moreover, the nominal part of the dynamical
system may be described by some radially unbounded functions concerning the state
vector [24]. A main drawback of the TSM, however, is the chattering phenomenon, which
has the potential to degrade the system performance. This can be mitigated by using
smooth dynamics within the boundary layer.

To the best of our knowledge, none of the traditional literature has combined integral
TSM with optimal control techniques for designing tracking control law in asymmetric,
nonholonomic robotic systems. Thus, in this study, a disturbed third-order asymmetric
nonholonomic robotic system is taken in chained form. Then, an optimal integral TSM
control policy is presented. Hence, the chief novelties of the current research are itemized
as:

- Optimal control and integral terminal SLC are combined to design output regulators
for a class of asymmetric nonholonomic robotic systems in an optimal sense.
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- A design that guarantees both robustness against modelled and unmodelled distur-
bances and optimizes performance.

- A control synthesis that assures the SMC’s existence around the switching manifold
in finite time while eliminating the chattering problem.

The residue of the current research is structured as follows: Section 2 articulates the
problem description and assumptions. The main control approach is derived in Section 3.
Simulation outcomes demonstrating the performance of the planned approach are given in
Section 4. Some concluding remarks are presented in the last section.

2. Problem Formulation

In chained form, the third-order asymmetric nonholonomic robotic system is consid-
ered as follows: .

x1 = u1,
.
x2 = u2,
.
x3 = f (x) + x2u1 + d

(1)

The vector x = [x1, x2, x3]
T signifies the state’s variables, u1, u2 ∈ R describe the input

signals, d ∈ R is the external disturbance, f (x), x2 are the nominal terms of the system
and x2 6= 0. The nonholonomic model (1) is the third-order equation (with some changes)
of the chained-form n-dimensional nonholonomic system, which is described in [25].
The schematic view of the third-order asymmetric nonholonomic system is illustrated
in Figure 1. The nonholonomic systems have nonintegrable constraints (see the survey
paper [26] and references therein for the introductory examples). The main problem for
the asymptotical stability of nonholonomic structures is the uncontrollability of their first-
order approximation and non-existence of the smooth (or even continuous) state-feedback
controller [27,28].
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Assumption 1. It is assumed that the external disturbance (d) and its time derivative (
.
d) are

bounded functions, and their upper bounds are known.

Suppose that the vector xd = [x1d, x2d, x3d]
T contains some desired responses and is

found utilizing the following differential equations [29]:

.
x1d = u1d,
.
x2d = u2d,
.
x3d = f (xd) + x2du1d

(2)

The variables u1d and u2d are the input signals of the reference model. Let us define
the tracking error as xe = x− xd. Then, the error equations are found as:

.
x1e = u1 − u1d,
.
x2e = u2 − u2d,
.
x3e = x2eu1d + (x2e + x2d)(u1 − u1d) + f (x)− f (xd) + d.

(3)
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The main control aim is to synthesize an optimal and robust tracking control law for
the asymmetric nonholonomic robotic system (1).

3. Controller Design

The proposed design procedure entails three stages: (i) synthesizing an optimal con-
troller law for the nominal dynamical system, (ii) in the existence of exterior disturbances,
an ITSM control law is designed to ensure robustness, and (iii) combining the controllers of
(i) and (ii). The overall control input u1 can be written as:

u1 = uop + u2, (4)

where uop ∈ R is the optimal control input aiming at stabilizing the nominal system, and
u2 ∈ R is the ITSMC law synthesized to ensure the system’s robust performance under the
disturbances.

(A) Optimal control law design

Define the performance criterion J as:

J =
∫ ∞

0
(p(x) + uop

2)dt, (5)

where p(x) is a positive semi-definite continuously differentiable function, and ( f (x), p(x))
is zero-state detectable, with the desired solution as a state-feedback control input. Neglect-
ing the external disturbances in (1) yields:

.
x = f (x) + x2uop, (6)

where x ∈ R3 are the states, and the vector function f (x) ∈ R3 has continuous partial
derivatives regarding x. It is assumed that the pair ( f (x), p(x)) is zero-state detectable.
So, one can select a CLF to stabilize the nonlinear system and then synthesize a feedback
controller uop, where the time-derivative of the CLF is a negative-definite function.

The presence of a suitable Lyapunov function for the nonlinear system (6) is a neces-
sary/sufficient condition for the satisfaction of the stability of the system. For stabilization
of the nonlinear system (6), it is required to choose a Lyapunov function first and then
attempt a feedback control law such that it makes the time-derivative of the Lyapunov
function negative definite. The Lyapunov stability satisfies the stability of the nonlinear
system without control inputs, and it is employed for the closed-loop control systems.
However, the notion of the CLF controller is to find a Lyapunov candidate function for the
open-loop system and then design a feedback control loop that constructs the Lyapunov
derivative negative. If one can find a suitable CLF, then it is also possible to design an
appropriate stabilizer for the nonlinear system.

In the nonlinear system, the CLF-based controller is synthesized by choosing a Lya-
punov function. Then, a feedback law is found in such a way that the time-derivative of
the Lyapunov candidate becomes a negative one [30]. Accordingly, a stabilizing control
input uop would be designed when one can find a CLF. Considering the Lyapunov function
V1 as a positive-definite and radially unbounded function, the time derivative of V1 along
with the system dynamics (6) is expressed as:

.
V1 =

∂V1

∂x
.
x = L f V1 + Lx2 V1uop, (7)

where L f V1 = ∂V1
∂x f , Lx2 V1 = ∂V1

∂x x2 and L is the Lie derivative operator. The function V1 is
a CLF for any x 6= 0, if Lx2 V1 = 0 yields L f V1 < 0.

Using the standard converse theorem, one can conclude that if (6) is stabilizable, a
CLF exists. Moreover, if a CLF exists for the system (6), an asymptotically stabilizing
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controller that stabilizes (6) also exists. For such a nonlinear system, Sontag [16] proposed
a CLF-based controller as follows:

uop =

 −
[

a(x)+
√

a
b(x)Tb(x)

]
b(x)T , b(x) 6= 0

0, b(x) = 0
(8)

with a = a(x)2 + p(x)b(x)Tb(x) and

a(x) = L f V1, (9)

b(x) = Lx2 V1. (10)

Theorem 1. The control input uop (8) stabilizes the nominal parts of the nonholonomic system (6)
and minimizes the performance criterion (5).

Proof. Define the HJB equation [31]:

L f V1
∗ − 1

4
(Lx2 V1

∗)T Lx2 V1
∗ + p(x) = 0, (11)

where V1
∗ would be a solution of the HJB equation, with:

V1
∗ = in f

uop

∫ ∞

t

(
p(x) + uop

2
)

dτ. (12)

The following optimal control law can be defined [19] if a continuously differentiable
and positive-definite solution exists for the HJB equation (11):

u∗ = −1
2

Lx2 V1
∗. (13)

Defining a scalar function λ such that V1
∗ = λV1 yields the optimal control law:

u∗ = −1
2
(λLx2 V1)

T . (14)

Note that λ can be specified by substituting V1
∗ = λV1 in (11):

λL f V1 −
1
4

λ2(Lx2 V1)
T Lx2 V1 + p(x) = 0. (15)

Solving (15) and using (9) and (10) yields:

λ = 2

 a(x) +
√

a(x)2 + p(x)b(x)Tb(x)

b(x)Tb(x)

. (16)

Substituting (16) into (14) yields the control law u∗, defined by:

u∗ = −

 a(x) +
√

a(x)2 + p(x)b(x)Tb(x)

b(x)Tb(x)

b(x)T . (17)

Then, the control law u∗ is equal to the optimal controller uop presented in Sontag’s
formula (8). Thereby, uop minimizes the performance index (5). �
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Remark 1. Considering (7) and replacing uop by (8), using the CLF property, i.e., L f V1 < 0 when

Lx2 V1 = 0, it can be determined that
.

V1 is negative for uop = 0. On the other hand, for uop 6= 0,
one can obtain from (7) and (8) that:

.
V1 = −

√
a(x)2 + p(x)b(x)2 < −

∣∣∣∣√a(x)2 + p(x)b(x)2
∣∣∣∣ < 0. (18)

Thus, it is verified that the control law (8) minimizes the criterion (5) and stabilizes the
nominal system (6).

Remark 2. A necessary condition for CLF-based optimal control design is the full knowledge about
the system under consideration. Thus, the effectiveness of the optimal controller degrades when
systems are affected by perturbations in the vicinity of the equilibrium.

To circumvent this problem, one can combine the aforementioned optimal control
design with an SMC approach to guarantee robustness under external disturbances.

(B) ITSMC control design

In what follows, we propose suppressing the disturbances affecting the nonlinear
system (1) via an ITSMC design and then incorporating both control inputs into a switching
controller.

We define the recursive TSM structure as

σ1 = x2e + x3e = 0,
σ2 =

.
σ1 + ρ1σ1

p1/q1 = 0,
σ3 =

.
σ2 + ρ2σ2

p2/q2 = 0,
(19)

The constants qi and pi, pi < qi and ρi (i = 1, 2) are some positive odd integers. The
terms σi’s (i = 1, 2, 3) are the TSM surfaces.

Taking the time derivative of σi (i = 1, 2, 3), we have:

.
σ1 =

.
x2e +

.
x3e = u2 − u2d + x2eu1d + f (x)− f (xd) + d,

.
σ2 =

..
σ1 + ρ1

d
dt

(
σ1

p1/q1
)

,
.
σ3 =

..
σ2 + ρ2

d
dt

(
σ2

p2/q2
)

.
(20)

Thus, the finite-time convergence property of the TSM implies that the switching
surfaces σ1, σ2, and σ3 would reach zero in finite time. Considering the reachability
condition of a conventional ISM, one has

.
σ1 < −ρsgn(σ1), (21)

where ρ > 0 and the function sgn(σ1) are defined as:

sgn(σ1) =


1, σ1 > 0
0, σ1 = 0
−1. σ1 < 0

(22)

and using (20) and (21), it yields:

u2 < u2d − x2eu1d − f (x) + f (xd)− d− ρsgn(σ1). (23)

The existence of the sign function in the switching controller u2 implies that the chat-
tering phenomenon is unavoidable. One way to circumvent this problem is by considering
the nonsingular terminal sliding manifold κ [32,33]:

κ = σ1 + δ
.
σ1

α/β, (24)
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where α and β with 1 < α
β < 2 are positive odd integers, δ is the positive switching gain

and σ1 is the integral sliding surface. Using (20), one obtains:

.
σ1 = u2 − u2d + x2eu1d + f (x)− f (xd) + d = u2 + ζ + d, (25)

where ζ = −u2d + x2eu1d + f (x)− f (xd). An improved reaching condition for the nonsin-
gular terminal sliding manifold κ is proposed as follows:

.
κ = −η1sgn(κ)− ε1κ, (26)

where η1 > 0 and ε1 > 0.
Computing the derivative of the terminal sliding surface (24) gives:

.
κ =

.
σ1 + δ α

β

.
σ1

α/β−1 ..
σ1

= δ α
β

.
σ1

α/β−1
(

β
δα

.
σ1

2−α/β +
..
σ1

)
.

(27)

From the positiveness of the odd parameters α and β, it can be shown that:

.
σ1

α/β−1 > 0, f or
.
σ1 6= 0

.
σ1

α/β−1 = 0. f or
.
σ1 = 0,

(28)

Furthermore, from (27) and (28), the term δ(α/β)
.
σ1

α/β−1 in (27) can be replaced by
the new positive variable η2 > 0 for

.
σ1 6= 0. Hence, Equation (27) can be written as:

.
κ = η2(

β

δα

.
σ1

2−α/β +
..
σ1). (29)

Equaling the values of
.
κ from (26) and (29) can be expressed as:

β

δα

.
σ1

2−α/β +
..
σ1 = −ηsgn(κ)− εκ, (30)

where η = η1/η2 > 0 and ε = ε1/η2 > 0 and ε is a parameter selected to define the
convergence rate of the sliding surface. Then, Equation (30) can be rewritten as:

..
σ1 = −ηsgn(κ)− εκ − β

δα

.
σ1

2−α/β. (31)

Differentiating (25) with respect to time gives rise to:

..
σ1 =

.
u2 +

.
ζ +

.
d. (32)

Using (31) and (32) yields the following switching controls:

u2 = −
∫ t

0

[
ηsgn(κ) + εκ +

β

δα

.
σ1

2−α/β +
.
ζ + µ sgn(κ)

]
dτ. (33)

where µ ≥
∣∣∣ .
d
∣∣∣.

Theorem 2. The finite-time convergence of the nonlinear system (1) would be ensured by selecting
the terminal sliding manifold (24) and designing the control law:

u1 = uop + u2, (34)
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where uop and u2 are defined as

uop =

 −
[

a(x)+
√

a(x)2+p(x)b(x)Tb(x)

b(x)Tb(x)

]
b(x)T , b(x) 6= 0

0 b(x) = 0
(35)

u2 = −
∫ t

0

[
(η + µ)sgn(κ) + εκ +

β

δα

.
σ1

2−α/β +
.
ζ

]
dτ (36)

with µ ≥
∣∣∣ .
d
∣∣∣.

Proof. In order to prove the convergence of the nonsingular terminal sliding manifold κ,
the Lyapunov candidate function is defined as:

V2 =
1
2

κ2 (37)

Differentiating V2 yields:
.

V2 = κ
.
κ. (38)

Substituting (27) and (32) into (38) yields:

.
V2 = κ

[ .
σ1 +

αδ
β

.
σ1

α/β−1 ..
σ1

]
= κ

[ .
σ1 +

αδ
β

.
σ1

α/β−1(
.
u2 +

.
ζ +

.
d)
]
.

(39)

From (33), one can obtain:

.
V2 = κ

[ .
σ1 +

αδ
β

.
σ1

α/β−1
(
−ηsgn(κ)− εκ − β

δα

.
σ1

2−α/β −
.
ζ − µ sgn(κ) +

.
ζ +

.
d
)]

≤ κ
[

αδ
β

.
σ1

α/β−1(−ηsgn(κ)− εκ)
]
− αδ

β

.
σ1

α/β−1(µ|κ| −
∣∣∣ .
d
∣∣∣|κ|)

≤ αδ
β

.
σ1

α/β−1[−η|κ| − εκ2], (40)

whereas δ > 0 and 1 < α/β < 2, it follows that
.
σ1

α/β−1 > 0 for any
.
σ1 6= 0 and

.
σ1

α/β−1 = 0
only for

.
σ1 = 0. Hence, it is concluded from (40) that:

.
V2(κ) ≤ −η2[ε|κ|2 + η|κ|]

≤ −αV(κ)− βV(κ)η < 0,
(41)

where η = 1/2, α = 2η2ε and β =
√

2η2η. Thus, it is confirmed that the terminal sliding
manifold κ would be converged to zero in finite time for any initial condition. Subsequently,
the tracking error convergence to the origin would be guaranteed in finite time for the
nonlinear system (1). �

4. Computer Simulations

Wheeled mobile robots are progressively used in industrial robotic systems, especially
when an autonomous motion is required for smooth surfaces. Most of the considered
models of wheeled mobile robots are in accordance with the laboratory-scale mobile
robots that have a light weight. For this purpose, the dynamics of the wheeled mobile
robots are ignored, and only the kinematics of these robots are usually considered. The
kinematics of a wheeled mobile robot is a simplified model and does not correspond to the
reality of the moving vehicle, which obtains time-varying unknown mass and friction [34].
The stabilization/tracking control of nonholonomic wheeled mobile robots with motion
restrictions is, in general, challenging. The control of nonholonomic wheeled mobile robots
cannot be implemented by the linear control techniques, and the dynamic equations of
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these systems cannot be transformed into the linear control system structures. The design
of the control law using the dynamical model of wheeled mobile robots, where parametric
uncertainties in the physical parameters are obviously considered, stimulates researchers to
investigate this field [35]. Actually, because of both the richness and hardness of dynamics
of wheeled mobile robots, such nonlinear control systems have interested researchers in
studying various control methods.

The suggested optimal integral finite-time control approach is implemented on the
wheeled mobile robot, with its equations represented by:

.
x1 = u1,
.
x2 = u2,
.
x3 = x1 + x2

2 + x3 + x2u1 + sin(0.1πt),
(42)

The nonlinear function and disturbance are f (x) = x1 + x2
2 + x3 and d = sin(0.1πt),

for which we define the following state and control transformations [25]:

x1 = θ
x2 = −xsin θ + ycos θ
x3 = xcos θ + ysin θ
.
u1 = w2.
u2 = w1 − (xcos θ + ysin θ)w2

(43)

where x and y are locations of the center of mass (CAM), θ represents the heading angle,
w1 is the forward velocity of the CAM, and w2 is the angular velocity.

A schematic view of the considered wheeled mobile robot is shown in Figure 2.
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The reference model is taken as:
.
x1d = u1d,
.
x2d = u2d,
.
x3d = f (xd) + x2du1d,

(44)

The nonlinear term is selected as f (xd) = x1d + x2
2d + x3d, and we Define the tracking

errors xie = xi − xid(i = 1, 2, 3) such that:

.
x1e = u1 − u1d,
.
x2e = u2 − u2d,
.
x3e = x2eu1d + (x2)(u1 − u1d) + f (x)− f (xd) + d.

(45)

To evaluate the closed-loop performance, the required parameters are selected as:
β = 1, ε = 0.001, p1 = 1, q1 = 1, p2 = 5, q2 = 5, ρ1 = 1, ρ2 = 1, α = 2, η = 0.1, δ = −1
and µ = 0.1. The initial states are xe(0) = [1, 0,−1], u1(0) = −2, u2(0) = 2. The input
signals of the reference model are taken as u1d = e−t, and u2d = e−2t. The performance
criterion J is considered as J =

∫ ∞
0 (xT I3x + uop

2)dt, where x = [x1, x2, x3], and I3 is the
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3× 3 identity matrix. The function p(x) is p(x) = [x1, x2, x3]

 1 0 0
0 1 0
0 0 1

 x1
x2
x3

. The

control Lyapunov function is defined by V1 = 1
2
(

x2
1 + x2

2 + x2
3
)
. The functions a(x) and

b(x) are a(x) = x3
(
x1 + x2

2 + x3
)

and b(x) = x1 − x2x3. Then, it yields the CLF-based
suboptimal controller defined by:

uop =

 −
[

x3(x1+x2
2+x3)+

√
φ

(x1−x2x3)
2

]
(x1 − x2x3), b(x) 6= 0

0, b(x) = 0
(46)

where φ = x3
2(x1 + x2

2 + x3
)2

+
(
x2

1 + x2
2 + x2

3
)
(x1 − x2x3)

2. Moreover, the overall control
law is defined as:

u1 = uop + u2

= −
[

x3(x1+x2
2+x3)+

√
φ

(x1−x2x3)
2

]
(x1 − x2x3)−

∫ t
0

[
(η + µ)sgn(κ) + εκ − β

δα

.
σ1

2−α/β +
.
ζ
]
dτ.

(47)

Figure 3 depicts the dynamics of the error signals. Note that this figure illustrates the
superior tracking performance and robustness of the responses in the presence of external
disturbances. The sliding surfaces are exposed in Figure 4, which demonstrates the quick
convergence of the sliding surfaces to the origin. The dynamics of the control efforts u1 and
u2 and the trajectories of the desired control inputs are depicted in Figure 5. It is shown
that the control inputs are smooth and are able to overcome the nonlinearities and external
disturbances. As a result, it can be observed from these figures that the proposed control
method can satisfy the superior tracking responses in the existence of external disturbances.
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Figure 3. Tracking errors in a wheeled mobile robot.
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Figure 5. Applied control inputs in a wheeled mobile robot (black solid lines are the applied controls,
red dashed lines are the desired inputs).

For the robustness analysis, the initial conditions of the tracking errors and control
inputs are considered as xe(0) = [1,−2,−3], u1(0) = −1, and u2(0) = 2. The external
disturbance term is set as d = 0.3sin(0.2

√
0.5t). Time responses of the tracking errors,

switching surfaces, and control input signals are shown in Figures 6–8. It can be seen from
Figure 6 that the tracking errors converge to the origin suitably, without any steady-state
error. Moreover, it can be seen from Figures 7 and 8 that the sliding surfaces and control
inputs converge to zero without any chattering problem. All of the results exhibit that
the responses are robust in the new condition, with different initial states and external
disturbance values.
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Figure 7. Sliding surfaces of wheeled mobile robot (in the new condition).

For more studies on the robustness of the control method, a band-limited white noise
(with noise power 0.001, sample time 1 millisecond) is added to the states of the system.
Figure 9 shows the measurement noise signal. This noise signal shows that the responses
of the system seem somewhat noisy. Time responses of the tracking errors, sliding surfaces,
and control inputs are shown in Figures 10–12. In the time responses of Figure 10, it
can be seen that the tracking error signals are convergent to the origin. However, these
responses experience some light effects of measurement noises. Furthermore, the noisy
responses can be observed in the sliding surfaces (Figure 11) and control inputs (Figure 12);
nevertheless, the sliding surfaces and control signals oscillate around zero, which shows
that the responses do not diverge to infinity (the responses remain stable). Hence, the
advised control method has acceptable robust performance in the existence of exterior
disturbances and measurement noise.
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signals, red dashed lines are the desired inputs).
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Figure 10. Tracking errors (in the presence of measurement noises).



Symmetry 2021, 13, 2367 14 of 16

Symmetry 2021, 13, x FOR PEER REVIEW 14 of 16 
 

 

 
Figure 10. Tracking errors (in the presence of measurement noises). 

 
Figure 11. Sliding surfaces (in the presence of measurement noises). 

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

2

t(sec)

x 1e

0 0.5 1 1.5 2 2.5 3 3.5 4
-4

-2

0

2

t(sec)

x 2e

0 0.5 1 1.5 2 2.5 3 3.5 4
-4

-2

0

2

t(sec)

x 3e
0 0.5 1 1.5 2 2.5 3 3.5 4

-1

0

1

2

t(sec)
σ 1

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5

10

t(sec)

σ 2

0 0.5 1 1.5 2 2.5 3 3.5 4
-500

0

500

t(sec)

σ 3

Figure 11. Sliding surfaces (in the presence of measurement noises).
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5. Conclusions

A control Lyapunov-based optimal integral terminal sliding mode control approach is
planned for a class of asymmetric nonholonomic robotic systems with external disturbances.
The design procedure entailed synthesizing an optimal control law based on the CLF for the
nominal system, then deriving an ITSMC approach to ensure robustness against modelled
and unmodelled disturbances. To ensure both finite-time stability and robustness, the
optimal control input is combined with the integral TSM. Apart from the robustness
features, the suggested methodology has the benefit of being optimum and chattering-free,
thereby being better suited for practical implementations to common systems, such as
surface vessels, wheeled robots, space crafts, etc. For the extension of the proposed work,
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the event-triggered optimal finite-time tracking controller design method for perturbed
nonholonomic robotic systems will be considered in future research.
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