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Abstract: In 1959, E. G. Gray described two different types of synapses in the brain for the first
time: symmetric and asymmetric. Later on, symmetric synapses were associated with inhibitory
terminals, and asymmetric synapses to excitatory signaling. The balance between these two sys-
tems is critical to maintain a correct brain function. Likewise, the modulation of both types of
synapses is also important to maintain a healthy equilibrium. Cerebral circuitry responds differently
depending on the type of damage and the timeline of the injury. For example, promoting symmet-
ric signaling following ischemic damage is beneficial only during the acute phase; afterwards, it
further increases the initial damage. Synapses can be also altered by players not directly related
to them; the chronic and long-term neurodegeneration mediated by tau proteins primarily targets
asymmetric synapses by decreasing neuronal plasticity and functionality. Dopamine represents
the main modulating system within the central nervous system. Indeed, the death of midbrain
dopaminergic neurons impairs locomotion, underlying the devastating Parkinson’s disease. Herein,
we will review studies on symmetric and asymmetric synapses plasticity after three different stressors:
symmetric signaling under acute damage—ischemic stroke; asymmetric signaling under chronic and
long-term neurodegeneration—Alzheimer’s disease; symmetric and asymmetric synapses without
modulation—Parkinson’s disease.

Keywords: Alzheimer’s disease; asymmetric synapses; dopamine; GABAergic transmission; gluta-
matergic transmission; Parkinson’s disease; stroke; symmetric synapses; tau

1. Introduction

At the end of the 1950′s, E. G. Gray used electron microscopy to define two differ-
ent types of synapses in the central nervous system (CNS): asymmetric and symmetric
synapses [1]. Based on his achievements, asymmetric (or type I) synapses are defined by
a postsynaptic density (PSD), thicker than the presynaptic fraction, whereas symmetric
(or type II) synapses present a PSD similar in width to the presynaptic membrane. Subse-
quently, asymmetric and symmetric synapses were correlated to excitatory or inhibitory
signaling, respectively [2]. Although controversial [3], nowadays this terminology is still
being used to identify excitatory and inhibitory synapses along CNS.

As mentioned, the PSD is a high-density fraction in the postsynaptic membrane with
different roles such as mediating the apposition of pre- and post-synaptic membranes,
clustering postsynaptic receptors or coupling the activation of these receptors to cellular
signaling [4–6]. The PSD in asymmetric synapses is composed of membrane proteins (e.g.,
α-amino-3-hidroxi-5-metilo-4-isoxazolpropionic receptor [AMPAR], N-methyl-D-aspartate
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receptor [NMDAR], metabotropic receptors, ion channels and adhesion molecules), scaffold
proteins (such as the postsynaptic density protein 95 [PSD-95]), and signaling proteins [6,7].
PSD-95 is the most abundant scaffold protein in postsynapses, where it plays a crucial role
in organization by interacting with adhesion molecules, glutamate receptors and signaling
proteins through its PDZ domain [8,9]. Accordingly, high levels of PSD-95 are correlated
with larger PSDs and enhanced synaptic strength [10]. In contrast, symmetric synapses
display a different composition in their PSD, where gamma-aminobutyric acid (GABA)
A (GABAA, ionotropic) and GABA B (GABAB, metabotropic) receptors are responsible
for mediating inhibitory responses. Interestingly, the number of GABAA receptors at
the membrane usually determines the strength of the inhibitory synaptic signaling [11].
Similarly to PSD-95, gephyrin plays an important role in the structure of the inhibitory PSD
by clustering GABA receptors and acting as a scaffold protein [12,13]. Both asymmetric
and symmetric PSDs are not fixed but constantly changing, reflecting the high plasticity
presents in this network. The strength of these synapses can be modified in a bidirectional
way by mechanisms such as long-term potentiation (LTP) or long-term depression (LTD),
among others [14]. Likewise, modulatory neurotransmitters can also influence and regulate
synaptic transmission [15].

LTP and LTD are well-known forms of synaptic plasticity. Most of our knowledge
about LTP/LTD came from reports of asymmetric synapses, where NMDA-mediated
LTP/LTD is the most studied [14]. In excitatory synapses, LTP is induced only when both
pre- and post-synaptic neurons are active, and it is mandatory that the postsynaptic neuron
is already depolarized at the moment glutamate binds to NMDARs. This is important
because it is needed to reach the highest calcium influx to activate intracellular signaling
pathways underlying these synaptic modifications [16]. Contrary to LTP, LTD is generally
induced by repeated activation of the presynaptic neuron without postsynaptic activity,
that leads to a smaller NMDA-mediated calcium influx and synaptic endocytosis of AM-
PARs [16,17]. Regarding inhibitory transmission, LTP/LTD mechanisms are also present in
inhibitory synapses throughout the brain [18]. Inhibitory LTP or LTD needs the presence of
glutamatergic synapses, and therefore, the activation of corresponding glutamate receptors
to trigger the underlying cellular mechanisms [19].

Neuromodulators are compounds that modify synaptic transmission by regulating
the excitability of both pre- and post-synaptic neurons and the response of receptors
to neurotransmitters [20]. Within neuromodulators, dopamine (DA) is one of the most
studied because its functions are of such importance that deficits in dopaminergic (DAergic)
signaling lead to neurological disorders [15]. Midbrain DAergic neurons represent the main
source of DA in the CNS, the substantia nigra pars compacta (SNc) and the ventral tegmental
area being two important centers providing significant amount of DA to the basal ganglia
(BG) and forebrain [21]. Through the activation of metabotropic receptors (D1-D5), DA can
modify the excitability of neurons by regulating the voltage- or ligand-gated channels [15],
as well as regulating the function and trafficking of GABA receptors, NMDARs, and
AMPARs [22]. In this way, DA is able to affect different synaptic dynamics [23].

Both asymmetric and symmetric synapses have important roles in shaping the struc-
tural and functional outcomes of the brain. Therefore, the balance between excitation and
inhibition is capital for a normal cerebral function. Here, we take advantage of Gray’s defini-
tions to review recent advances in the understanding of synaptic alterations at asymmetric
and/or symmetric signaling under three different conditions: symmetric signaling follow-
ing acute damage—stroke; asymmetric signaling in long-term neuronal degeneration—
Alzheimer’s disease; both signaling with no modulation—Parkinson’s disease.

2. Ischemic Stroke

Stroke is becoming one of the most common causes of death in developed countries,
representing the main cause of long-term disability due to the limited capacity of human
brain to repair. Ischemic stroke, the occlusion of a blood vessel leading to a lack of blood
flux, has fatal consequences even in short-term blockages and it represents the 85% of total
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cases in Europe [24,25]. Following the insult, two large areas can be distinguished: the
ischemic core, necrotic tissue with irreparable damage; and the peri-infarct, or penumbra,
an area containing hypoperfused tissue that is still viable for several hours and can be
salvaged by restoration of the blood flow. Over the next few hours to days, this peri-
infarct tissue undergoes secondary damage by the activation of the ischemic cascade which
eventually leads to neuronal death. The response to the damage varies depending on
which cerebral area is affected, the cortex and hippocampus arising as two of the most
susceptible areas [26,27]. The timeline of neuronal death differs among these two areas,
with cortical neurons displaying a quick death in comparison with hippocampal neurons
that show a delayed death occurring 3–5 days following the insult [26]. This exposes the
complexity of neuronal connections since every cortical microcircuit responds differently
after damage, and the outcome following treatment may not be the same throughout the
different cortical layers [28,29].

Two different phases can be distinguished from the onset of an ischemic insult, and
each one shows how the imbalance between excitatory and inhibitory signaling can nega-
tively affect neuronal/functional outcome [30]. During the acute phase, under a hypoxic
environment, there is a massive presynaptic release of glutamate that overactivates postsy-
naptic NMDARs. This leads to the entry of large amounts of Ca2+ during the first minutes to
hours, which stimulates a variety of cellular processes that ultimately produce irreparable
neuronal damage and cell death (Figure 1) [25,30]. Recently, Tanaka et al. [31] reported in-
creased levels of glutamate by using MALDI mass spectrometry imaging in the peri-infarct
area of a mouse model. In addition to this, the astrogial-mediated reuptake of glutamate is
reduced following injury, further increasing extracellular levels of glutamate [26]. In such
a situation, the enhancement of GABA signaling counterbalances the excitatory inputs
promoting neuroprotection (Figure 1) [32]. Conversely, during the post-acute/chronic
phase, GABA signaling is highly increased and limits neural repair by decreasing neuronal
excitability and impairing LTP [33,34]. This occurs simultaneously with a rearrangement
of cortical networks underlying neuronal plasticity by enhancing the ability to induce LTP
throughout prolonged excitatory signaling during the first week post stroke [33,35,36].
Therefore, treatments blocking GABA signaling during this phase may represent promising
therapies to help in the recovery of patients following stroke [28,34,37,38].

Overall, avoiding the transformation of the penumbra into infarcted tissue is a key
target to overcome neuronal damage, and it may improve the outcome of patients after
stroke. Besides, it seems pivotal to understand how and when the switch from acute
to post-acute/chronic phase occurs in humans in order to tackle the distinct cellular
mechanisms underlying neuronal damage over time. Achievements in this field will allow
the translation from animal models to human.
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Figure 1. Glutamate-mediated excitotoxicity in ischemic stroke. (A) Following ischemic injury, the massive release of
glutamate (orange spheres) leads to the entry of large amount of Ca2+, increasing neuronal excitability and activating the
Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates both GABAA and GABAB receptors,
decreasing their availability; (B) The potentiation of symmetric signaling through agonists (light-blue spheres) of either
GABAA or GABAB receptor, or GABA itself (dark-blue spheres), counteracts the glutamate-mediated excitotoxicity by
hyperpolarizing the neuron and activating pro-survival second messengers that altogether leads to neuroprotection.

2.1. GABA Receptors

GABA signaling through the GABAA receptor is more relevant than the same mediated
by GABAB receptors in the pathophysiology of stroke. Therefore, we will focus primarily on
GABAA receptors, only citing the most relevant information regarding GABAB receptors.

The different subunits forming ionotropic GABAA receptors determine the properties
and location of receptors. These changes in subunit composition are responsible for the
synaptic and extrasynaptic location of GABAA receptors, which mediate phasic (synaptic)
and tonic (extrasynaptic) inhibition, respectively [32]. During phasic inhibition, GABA
released from presynaptic terminals reaches the postsynaptic membrane where it binds to
GABAA receptors and triggers an inward chloride current, leading to the hyperpolarization
of the neuron. This cellular mechanism represents a transient response defined by a rapid
desensitization of the synaptic GABAA receptors and the removal of extrasynaptic GABA
by GABA transporters (GATs). On the other hand, tonic inhibition mediates a continuously
inhibitory current controlling the neuronal membrane potential and thus its fire potential.
Such GABAergic signaling is triggered when extrasynaptic GABAA receptors with high
affinity and slow desensitization for GABA respond to either ambient GABA levels outside
the synapse or synaptic spillover of GABA. Regarding metabotropic GABAB receptors,
they are the mainly regulators of presynaptic glutamate release in excitatory neurons; they
also control the activity of postsynaptic glutamate receptors [39].



Symmetry 2021, 13, 2333 5 of 24

In the GABAA receptors, trafficking to and from the plasma membrane only occurs
at the extrasynaptic space, lateral diffusion being the main mechanism controlling their
synaptic pool, and therefore the strength of symmetric signaling [32]. Based on their loca-
tion, the clustering of GABAA receptors is modulated by gephyrin (synaptic site) or radixin
(extrasynaptic site), and both scaffold proteins are positively regulated by phosphorylation,
strengthen the clustering at the membrane [32,40,41]. Mele and colleagues [40] suggested
that the dephosphorylation of α1 subunit-containing GABAA receptors is directly involved
in their internalization, likely by losing the link with gephyrin, following in vitro ischemic
damage. Likewise, it has been proposed that the calcium-mediated activation of calpain
leads to the cleavage of the gephyrin lattice and subsequent reduction in the synaptic clus-
tering of GABAA receptors in hippocampal neurons from rats under in vitro excitotoxic
conditions [42]. Hence, ischemic conditions lead to decreased levels of phosphorylated
GABAA receptors, as well as GABAB receptors, suggesting that this is the reason underlying
the ischemia-induced endocytosis of receptors. Moreover, this decrease could also explain
why GABAB receptors cannot counteract the glutamate-mediated overexcitation [43,44].

Immediately after an ischemic event, large amounts of glutamate contribute to a
strong activation of NMDARs that downregulates the expression of both GABAA and
GABAB receptors through a phosphorylation process activated by high levels of Ca2+

(Figure 1) [32,43–46]. Accordingly, phasic GABA signaling is reduced in the first weeks
after stroke [28,40]. This situation further increases neuronal depolarization and subsequent
cellular damage. Recently, two proteomic studies have revealed increased levels of the
GABA aminotransferase GABT, as well as reduced levels of GABA receptors and the
excitatory amino acid transporter EAA2, in the infarct core area from postmortem tissue
samples of stroke patients [47,48]. These results validate results from animal models
by showing overall decreased GABAergic signaling (elevated catabolism of GABA and
reduced GABA receptors) and increased glutamatergic signaling (reduced removal from
synaptic cleft by EAA2). That is why the enhancement of GABA signaling at this point can
exert a neuroprotective role by decreasing the cellular excitability (Figure 1). Indeed, an
early study by Costa and coworkers [49] revealed that the coactivation of both GABAA
and GABAB receptors promoted neuroprotection in an in vitro model of ischemic stroke.
Similarly, the activation of either GABAA or GABAB receptors separately also has pro-
survival outcomes. Several studies have reported that the remaining GABAB receptors
can be activated between days 1–3 post stroke and this promotes neuroprotection [42,50].
Since the 1990′s, the neuroprotective role of enhancing phasic GABA signaling at the acute
phase has been studied throughout pharmacological treatments in both in vitro and in vivo
models [39,51]. Likewise, some studies suggest the benefits of enhancing phasic GABA
signaling during the chronic phase of stroke in humans [52,53]. It has been reported that
the phasic GABA signaling is increased in cortical pyramidal neurons during the chronic
phase of stroke [29]. Pharmacological boost of α1 subunit-mediated currents at 3 days post
stroke promotes functional recovery by targeting cortical plasticity [29].

Although glutamate is excitotoxic during the acute phase following stroke, it plays
a beneficial role during the recovery phase by inducing LTP [33,34]. Indeed, studies in
humans have suggested that the stimulation of the penumbra cortex by boosting local
excitability as soon as 7 days post stroke improves functional outcome [54]. However,
there is an increase in extrasynaptic levels of GABA due to the reduction in the amount of
astrogial GABA transporters on day 7 post stroke in mice [28]. This event hyperpolarizes
neurons at the penumbra area and negatively modulates the induction of LTP [32,34,55].
Indeed, a recent study using magnetic resonance spectroscopy showed that patients with a
low excitatory–inhibitory ratio post stroke had a worse motor outcome [56]. The application
of pharmacological treatments negatively targeting either all α subunits or only α5 subunit-
mediated tonic GABA currents at 3 days post stroke has shown significant behavioral
recovery in mouse models [28,34,37]. Interestingly, it has been reported that there is
a possible role of extrasynaptic GABAC receptors, a well-known subclass of GABAA
receptors, in these increased tonic currents during post-acute and chronic phases. The
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application of antagonists targeting GABAC receptors from day 3 post stroke improved the
motor function of injured mice [38]. These results together suggest that the time window
for the administration of an extrasynaptic GABAA receptor blocker without affecting its
initial neuroprotective role is around 3 days after the infarct, at least in mice.

Overall, the potentiation of symmetric signaling immediately after ischemic stroke
counteracts the prominent excitatory cellular state promoting neuronal survival. Based
on murine models, the acute phase lasts 3 days, and one of the most important questions
to be solved is the exact duration of this phase in humans in order to replicate the results
from animal models to patients. In contrast, during the postacute and chronic phase, the
rise in tonic GABAergic signaling has to be blocked in order to achieve a better functional
outcome. Curiously, the potentiation of phasic inhibition is beneficial during the recovery
state. It would be interesting to combine pro-GABA drugs during the acute phase and then
change them progressively to both prophasic signaling and antitonic currents.

2.2. Cation–Chloride Cotransporters

Ionotropic GABAergic signaling is primarily supported by the chloride ion gradient
across the plasmatic membrane [57]. In mature neurons, the regular GABAA-mediated
transmission leads to hyperpolarization by allowing the entry of Cl− ions that increases the
intracellular concentration of chloride ([Cl−]i) (Figure 2) [26,57]. The maintenance of [Cl−]i
mainly depends on cation–chloride cotransporters, where Na+-K+-2Cl− cotransporters
(NKCCs) and K+-Cl− cotransporters (KCCs) are the most important in the CNS [26,58].
The isoform NKCC1 is the only one expressed in the CNS, and its function is to increase
the [Cl−]i. In contrast, the isoform KCC2 is the main one responsible for decreasing [Cl−]i
in mature neurons [26,58].
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Figure 2. Role of NKCC1 and KCC2 cotransporters in the effect of Cl− flow through GABAA receptor. (Health). In a normal
situation, the expression of both cotransporters leads to a higher [Cl−]e compared to the [Cl−]i. This results in neuronal
hyperpolarization when GABAA receptors are activated; (Injury) After damage, there is an osmotic stress that activates the
WNK pathway. This ultimately ends in the phosphorylation of both cotransporters with different outcomes, the expression
of KCC2 decreases, whereas the expression of NKCC1 increases; leading to a higher [Cl−]i compared to the [Cl−]e, which
results in depolarizing GABAA receptor-mediated responses.

It has been well-documented that under some pathological conditions, [Cl−]i can be
dysregulated, leading to a depolarizating effect mediated by GABAA receptors (Figure 2) [59].
This is primarily motivated by a high expression of NKCC1 and a low expression of
KCC2, leading to a higher [Cl−]i compared to the extracellular concentration of chloride
([Cl−]e) [57,58,60]. The main cellular cascade involved in the regulation of NKCC1 and
KCC2 following osmotic stress (low [Cl−]i) is the With-No-Lysine (K) (WNK) pathway,
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which ultimately phosphorylates both NKCC1 and KCC2 with opposite outcomes: NKCC1
is activated whereas KCC2 is inhibited (Figure 2) [61,62].

There is compelling evidence showing an increase in neuronal NKCC1 expression
immediately after ischemic stroke, an event that contributes to cellular hyperexcitability and
cell death [45,60,63–66]. Wang and colleagues [60] have shown that NKCC1 is significantly
upregulated in cortical neurons from 3 h to 48 h following focal cerebral ischemia in a rat
model. Acute pharmacological treatment using bumetanide, an NKCC1 inhibitor drug,
revealed a neuroprotective effect by increasing neuronal survival in an in vitro model of
stroke [45]. This is concordance with previous in vivo results showing a reduction in the
infarction volume as well as in the ischemic necrotic cell death, especially remarkable
when bumetanide was applied preinjury [60,63,67,68]. A recent study has shown that the
inhibition of NKCC1 from day 7 post stroke enhanced axonal sprouting from uninjured
neurons, resulting in a significant behavioral improvement [66].

As previously shown, stroke triggers the WNK signaling pathway leading to both the
activation of NKCC1 and the inhibition of KCC2 via phosphorylation (Figure 2) [62,69].
Indeed, the activation of the WNK signaling pathway significantly increased the activity of
NKCC1 in cortical and striatal neurons at 6 and 24 h after ischemic stroke in mice [65]. These
findings suggest that blocking the activation of the WNK cascade offers a new therapeutic
target to improve the outcome following stroke by targeting NKCC1 activation [62,69–72].

Contrary to what it was seen for NKCC1, the amount of KCC2 at both mRNA and protein
levels was downregulated in both rat and mouse models of ischemic stroke [45,64,66,73,74].
Curiously, whereas the KCC2 levels in the plasma membrane are notably reduced 3 h
post ischemia [74], there is a progressive decrease in the levels of total KCC2 given that
it is significant on days 1 and 7 post stroke, but not at 2 h after injury [64]. Therefore,
a relationship between a maintained expression of KCC2 overtime and the long-term
survival rate of neurons has been proposed [64], which was recently supported [26,74].
In this study, hippocampal pyramidal neurons had regular levels of KCC2 and did not
display damage signals at 6 h post stroke, but they started to degenerate when KCC2
levels decreased at 48 h after stroke [26]. In a similar way, an acute blockage of upstream
pathways inhibiting KCC2 showed an increased neuronal survival following an ischemic
incident in mice [74]. Therefore, all these evidences seem to point at the upregulation
of KCC2 as a therapeutic target to provide protection against stroke-induced cell death.
However, similar to the manipulation of GABA signaling, it is a challenge to decipher the
timing between acute and recovery phase in humans, and hence, to find the correct point at
which to change KCC2 expression/activity from increased to decreased in order to achieve
further functional outcome after ischemic stroke [26].

In summary, blocking NKCC1 during the first hours post stroke has a remarkable
effect on neuronal outcome by reducing necrotic death. Likewise, increasing KCC2 levels
displays a beneficial role at least during the acute phase, which raises the interesting
question of what would happen if KCC2 was manipulated during the post-acute/chronic
phase, since higher levels of KCC2 would induce GABA-mediated hyperpolarization
leading to a tonic currents-like effect.

3. Alzheimer’s Disease

Alzheimer’s disease (AD) is clinically characterized as a progressive impairment of
memory and cognitive disabilities, and is the most common neurodegenerative disorder of
the elderly in developed countries. The two classical hallmarks of AD are amyloid plaques
(extracellular deposits of amyloid-β peptide [Aβ]) and neurofibrillary tangles (NFTs, intra-
cellular filamentous aggregates of tau) [75], the tau pathology being more correlated with
neurodegeneration and cognitive impairments than the plaque pathology [76].

Although tau has been considered an axonal microtubule-associated protein for many
years [77], recent advances have demonstrated that tau plays important roles as a synaptic
protein, since changes in its structure or expression affect synaptic plasticity [78–82].
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One of the most characteristic symptoms of AD is memory loss [83]. The hippocampus
is the main area responsible for the storage, maintenance and processing of memory, where
synaptic plasticity, both LTP and LTD, play an essential role [84]. Herein, we will review
the most recent advances in the role of tau at asymmetric synapses in both health and
pathological conditions.

3.1. Physiological Tau in Synapses

Although the presence of tau in dendrites and synapses was firstly thought to occur
only during neuronal development or under pathological conditions [85], accumulating
evidence is reporting physiological tau at dendrites and postsynapses [78,79,83,86,87],
including human brains [88]. This location of tau at the somatodendritic domain can be at-
tributed to a local translation [89] or diffusion from the axonal domain [90]. Curiously, there
is also a natural translocation of tau from dendrites to the postsynaptic area of asymmetric
synapses following LTP [91]. Tau can also be transported from pre- to post-synaptic termi-
nals during neuronal activity in both physiological and pathological conditions [92–94].
As previously mentioned, synaptic tau plays different roles besides microtubule dynamics
and axonal transport, and it is implicated in the formation, maintenance and plasticity
of synapses as well as in neuronal signaling [86,95–97]. Indeed, tau is a key mediator in
the increased spine density driven by brain-derived neurotrophic factor (BDNF) [95]. Of
relevant physiological importance is the complex that tau forms with both the kinase Fyn
and PSD-95, since it can interact with NMDA or AMPA receptors, connecting tau with
glutamatergic receptors [86,87,98–100]. In fact, non-phosphorylated tau contributes to the
induction of LTP [79,91,101].

Tau undergoes different posttranslational modifications (e.g., phosphorylation or
acetylation) at different regulatory sites that affect the function of the protein [102]. Glyco-
gen synthase kinase-3 beta (GSK3β) represents one of the most prominent tau kinases,
and its function is strongly influenced by patterns of neuronal activity that ultimately
induce synaptic plasticity. There is a bidirectional pathway whereby physiological GSK3β-
mediated phosphorylation of tau is needed to induce hippocampal LTD [79], but also LTD-
inducing stimuli cause GSK3β-mediated phosphorylation of tau in an NMDA receptor-
dependent manner [78,79,87]. Concretely, tau has a main influence in the NMDA-triggered
trafficking of AMPA receptors from synapses by promoting their internalization through
the GSK3β/protein interacting with C kinase-1 (PICK1) pathway, which is key for LTD
induction [79,103–105]. This suggests that only the induction of LTD is associated with
the phosphorylation of tau as a downstream target of the GSK3β activity, since tau loss-of-
function experiments blocked the induction of LTD but not LTP [78], and GSK3β activity is
inhibited during the induction of LTP [106].

3.2. Pathogenic Tau in Synapses

Although tau is necessary at the postsynaptic area, it also acts as a mediator of AD-
related synaptic deficits [107]. In fact, a recent proteomic study performed in post-mortem
tissue from AD patients has revealed that hyperphosphorylated tau directly interacts with
proteins that regulate synaptic plasticity [108]. However, these tau-associated synaptic
pathologies can be seen even before the formation of NFTs [109,110], and they may be
caused by different mechanisms.

The hyperphosphorylation of tau causes most of the pathological synaptic features
seen in AD by increasing the mislocalization of tau from the axonal compartment to the
somatodendritic compartment, where it aggregates into oligomers [80,111]. Indeed, AD
brains show decreased levels of protein phosphatase 2 (PP2A), a phosphatase implicated
in the regulation of AMPARs in membrane. Accordingly, treatments increasing PP2A
levels improve the functional outcome in animal models of AD [110]. The increase in
hyperphosphorylated tau at dendrites triggers different pathways underlying pathological
synapse weakening. For example, it has been reported that there is a specific pruning of
asymmetric synapses that is carried out by microglia and induced by hyperphosphorylated
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tau [80,82]. Besides, aberrant tau is critically involved in the turnover and trafficking of
NMDA and AMPARs related to the blockade of asymmetric LTP. Tau mediates the lateral
movement of NMDARs from synapses to extrasynaptic regions [112], and the hyperphos-
phorylation of tau at serine 396 has been suggested as an enhancer of this diffusion [79,113].
Likewise, different aberrant types of tau decrease the synaptic clustering of both NMDA
and AMPA receptors [101,114–117]. Recently, the use of the mass spectrometry has allowed
the detection of significant decreases in AMPARs and NMDARs located at the PSD fraction
in a mouse model of AD [80]. Overall, the induction of LTP at asymmetric synapses is
compromised, which ultimately ends in the loss of dendritic spines [118]. A new study
from Mijalkov et al. [81] has revealed that the loss of dendritic spines in AD individuals
occurs at clustered locations and not as a random loss. This fact, added to the reduction
in the miniature excitatory postsynaptic currents (mEPSCs) by a postsynaptic decrease
in AMPA clustering [114], results in a compromised asymmetric synaptic transmission.
The main player underlying this hyperactive LTD is again GSK3β, leading to aberrant
phosphorylation of tau at the somatodendritic compartment and not at the axon, as thought
at first [87,119,120].

A recent and surprising achievement came from the study of Park and coworkers [100]
where they described the link between NMDARs, tau/PSD-95 complex and the neuronal
nitric oxide synthase by which hyperphosphorylated tau disrupts this association and
leads to endothelial dysfunction. This study highlights the complexity behind tauopathies,
including AD, where many proteins involved in synapse weakening can also be playing
other roles underlying brain dysfunction. Currently, several epigenomic studies on human
AD tissue have revealed that different brain regions affected by tau pathology undergo
histone acetyl changes that dysregulate transcription [108,121,122]. Following these lines,
another new and promising line of investigation points at the relationship between tau
aggregates and different RNA molecules, due to the fact that they can be found together
in the cytosol and the nucleus [123]. Large concentrations of tau oligomers have a direct
effect on nuclear speckles by altering its composition, organization and dynamics [123],
which opens a new window to study how these tau-driven alterations in RNA processing
can impact neurotransmitter receptor dynamics [124].

Another mechanism that can cause the misfolding of tau and subsequent formation
of its pathogenic version is the extracellular deposition of Aβ [125]. A striking study
from Fani and colleagues [126] has shown that extracellular Aβ oligomers are able to
principally activate extrasynaptic NMDARs, but also AMPARs to a lower extent. This is
carried out by interacting with the lipid membrane that perturbs its mechanical properties,
leading to alterations in the mechanosensitivity of receptors (Figure 3) [126]. Since GSK3β
kinase can be activated by NMDARs [87], it would not be strange to speculate that this
mechanosensitivity-mediated activation of NMDARs can increase GSK3β activity and
promote tau hyperphosphorylation (Figure 3). In fact, GSK3β kinase is also the main factor
connecting extracellular Aβ with intracellular tau since the inhibition of GSK3β blocks
the increase in phosphorylated tau and therefore prevents the Aβ-induced impairment of
LTP [101,127]. Similarly to what is described above, treatments with Aβ oligomers enlarge
the dendritic/synaptic location of phosphorylated tau [91], but only when tau it is already
phosphorylated [128]. Other kinases can be also implicated in the aberrant function of
tau induced by Aβ. For example, Wu et al. [129] obtained proteomic data suggesting that
Aβ activates cyclin-dependent kinase 5 (CDK5) which eventually phosphorylates tau at
synaptic sites.
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Figure 3. Aberrant tau phosphorylation mediated by Aβ oligomers and seeding. (1) The interaction of Aβ oligomers with
the plasma membrane provokes the activation of NMDA receptors and subsequent entry of Ca2+, and this activates the
GSK3β hyperphosphorylating tau; (2, 3) Aberrant tau can diffuse via plasma membrane to the extracellular space and
corrupt healthy tau in another neuron, promoting its hyperphosphorylation (4, 5).

Tau aggregates have the ability of recruiting and misfolding naïve monomeric tau,
and so they corrupt healthy tau, spreading the neuronal damage in a process called seeding
(Figure 3) [130]. This process has a major relevance since it has been recently discovered
that the seeding of synaptic tau starts much before the pathology can be detected in human
AD brains [94,131]. Interestingly, Dujardin et al. [132] have recently found that a higher
seeding activity alarmingly correlates with the rate of clinical AD progression. Moreover,
this seeding activity was significantly linked to the phosphorylation at several sites, as
shown by mass spectrometry results [132]. Two major routes are involved in the dissemi-
nation of corrupted tau: (1) travelling between neurons through synapses, and (2) direct
translocation to the extracellular space crossing the plasma membrane [94,125,133]. Similar
to extracellular Aβ oligomers, extracellular tau oligomers trigger seeding and cause the
aggregation of monomeric intracellular tau and its posterior mislocation to the somato-
dendritic compartment [134]. This mechanism is likely involved in the high inhibition
of hippocampal LTP seen by Ondrejcak et al. [135]. Promisingly, a new pharmacological
treatment promotes the microglial-mediated engulfment of extracellular tau oligomers and
therefore blocks the spreading of tau pathology within neurons [82]. This achievement
opens new lines of investigation addressing the blockage of aberrant tau dissemination
once it is released to the extracellular space.

The upregulation of tau acetylation represents a novel mechanism promoting cog-
nitive decline in AD patients [136]. The acetylation of different lysines may involve
distinct pathological mechanisms, such as accumulation of toxic forms of tau and the
enhancement of tau oligomerization, which can have a significant effect on the encoding
of hippocampal-dependent memory, among other outcomes [119,136]. For example, the
acetylation at specific residues, such as K280/K281, has dual and negative outcomes, the
loss of microtubule-regulatory function and the gain of aberrant tau aggregation [137].
Related to the ability of tau for extracellular release and subsequent spreading, an interest-
ing study from Caballero and coworkers [138] has revealed that acetylation reduces tau
degradation and increases its extracellular location in AD brains.
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4. Parkinson’s Disease

Parkinson’s disease (PD) is a chronic neurodegenerative disease involving the death
of the nigral dopaminergic neurons by the combination of different factors, e.g., ambient,
genetics, oxidative stress and/or aging [139–141]. The progressive disappearance of DA
modulation in the basal ganglia (BG) leads to the characteristic motor symptoms of PD, i.e.,
akinesia, bradykinesia, resting tremor, and rigidity [141]. Adaptive changes at the synaptic
level following DA depletion play a main role in the development of these symptoms.

The BG are composed of interconnected subcortical regions participating in a large
variety of brain functions, such as motor programming and execution, and action selection,
among others [142]. The mammalian BG comprise the striatum (STR), the external and
internal segments of the globus pallidus (GPe and GPi, respectively), the subthalamic
nucleus (STN), and the substantia nigra pars compacta and pars reticulate (SNc and SNr,
respectively) (Figure 4) [142]. DAergic innervations provided by SNc neurons are essential
for controlling BG functions, e.g., modulation of synaptic properties (Figure 4) [143].
Therefore, the degeneration of DA neurons leads to synaptic alterations underlying the
appearance of PD motor symptoms [143,144].

Both symmetric and asymmetric synapses are present along the different BG nuclei,
and they are modulated by DAergic terminals. Following DA denervation, both synapses
suffer major changes that underlie motor symptoms of PD. Here, we will present the
synaptic symmetry in the different BG nuclei and how it changes after the death of DA
neurons.

4.1. Symmetric Synapses

The majority of the nuclei are inhibitory, so GABAergic innervations represent the
main system to regulate the firing rate and the pattern of neuron responses within the BG,
such as hyperpolarizing the membrane potential that resets the pacemaking activity of
neurons [145–147].

4.1.1. The Striatum—STR

The STR comprises the largest integrating nucleus for cortical and thalamic inputs
(see next subsection “asymmetric synapses” for more information). The main cell population
in the STR is the GABAergic spiny projection neurons (SPNs), with several classes of other
GABAergic and cholinergic interneurons [148,149]. SPNs process afferent information to
BG in direct (d) or indirect (i) pathways, that are defined by two different types of SPNs:
dSPNs and iSPNs, respectively (Figure 4) [150,151]. dSPNs expresses D1 receptors and
project directly to SNr/GPi, whereas GPe and STN relay the information from iSPNs-
expressing D2 receptors to SNr/GPi (Figure 4) [150,151]. Accordingly, these different
pathways give rise to opposite motor outputs, the release of GABA and a subsequent
decrease in the activity of SNr/GPi neurons through the activation of dSPNs that reduces
tonic inhibitory outputs to downstream motor regions and promotes movement; and the
activation of iSPNs that produces an excitatory effect on SNr/GPi neurons by disinhibiting
mechanisms and results in inhibiting movement [152].

4.1.2. The External Segment of the Globus Pallidus—GPe

The GPe is composed of two main subtypes of neurons, the prototypic and arkypallidal
neurons [153]. The first projects downstream to STN and SNr nuclei, and upstream to
the STR; whereas the latter exclusively projects to the STR, being the most important
source of GABA (Figure 4) [154]. Projections from GPe neurons to the cortex and thalamus
have been also reported [155]. The inhibition provided by prototypic neurons is key
to reset the autonomous activity of STN neurons [156]. Likewise, GPe neurons are the
receivers of GABAergic extrinsic innervations from iSPNs (the majority of them) and dSPNs,
intrinsic innervations from collaterals of prototypic neurons to other GPe neurons, and
interconnections between prototypic neurons (Figure 4) [157,158]. Moreover, arkypallidal
neurons integrate signals from dSPNs, iSPNs and STN [158]. Both short-term facilitation
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(STF) and short-term depression (STD) can be found at extrinsic synapses, while intrinsic
synapses present STD [159,160].

4.1.3. The Substantia Nigra Pars Reticulate—SNr

The SNr operates as an integrating nucleus, as each SNr neuron receives afferents
from different origins such as dSPNs, the GP and the STN (Figure 4). Symmetric synapses
from STR and GPe display opposite mechanisms as STR–SNr inhibitory postsynaptic
currents (IPSCs) exhibit STF, whereas GP–SNr IPSCs are influenced by STD [161]. SNr
neurons display a significant level of spontaneous firing rate that allows a tonic inhibition
of downstream motor areas (Figure 4) [162,163]. They present a high collateralization and
receive solid inhibitory inputs, acting through both ionotropic (GABAA) and metabotropic
(GABAB) receptors, even during a strong activation [164–166]. Four types of GABAergic
neurons projecting to different targets can be found in the SNr, the thalamus being the one
that receives the majority of SNr innervations [167,168].

4.1.4. Healthy and Pathological DA Modulation in Symmetric Synapses

STR is the main target of nigral DAergic innervation [144]. As previously mentioned,
dSPNs and iSPNs express D1 and D2 receptors, respectively, which gives rise to opposite
motor outputs following DA release. Upon DA release, dSPNs increase their activity
through D1 receptor activation, whereas D2 receptors mediate the decreased activity of
iSPNs (Figure 4) [169,170]. The resulting effect is the overactivation of the direct pathway
compared to the indirect one, disinhibiting the thalamus and initiating movement. There-
fore, DA modulates synaptic and intrinsic properties of STR neurons by activating distinct
DA receptors (Figure 4). Recently, an interesting study has revealed that astrocytic GATs
play a critical role in the regulation of striatal DA release by removing extrasynaptic GABA
spillover, decreasing tonic inhibition, and therefore, promoting DA release [171]. Indeed,
there is an inadequate reduction in GATs that further impairs DA output at early steps of
the disease [171]. Following full DA depletion, the overall activity of dSPNs decreases and
there is a loss of spine density [152]. Consequently, this disinhibits GABAergic projections
from SNr/GPi neurons [172]. In contrast, the lack of DA increases the excitability of iSPNs
by eliminating the inhibition through D2 receptors, even when there is also a reduction
in spine density (Figure 4) [152,170]. Furthermore, the lack of DA has been also related
to a higher GABA production, as shown by a nuclear magnetic resonance spectroscopy
study in the striatum of a rat model [173]. Altogether, this disinhibits STN activity lead-
ing to a higher excitation of SNr/GPi [170,174]. The resulting outcome is the imbalance
between direct and indirect pathways shown by the reduction in motor outputs (paucity
and slowness of movements), exposing the capital need of having a coordinated striatal
activity [175,176].

DA modulates the excitability of GPe neurons, the D2 receptor being the one that
is present in all GPe neurons, although prototypical neurons show higher levels of D2
receptors than arkypallidal neurons [177]. Accordingly, activation of presynaptic D2
receptors reduces the GABAergic pallidosubthalamic innervations, decreasing the strength
of this connection [178]. Under the parkinsonian state, the activity of prototypic cells is
likely disrupted by the hyperactivity of iSPNs, as previously mentioned (Figure 4) [179,180].
However, this is not an obstacle to see an increased GPe–STN GABAergic transmission in a
NMDA-mediated manner [181,182]. Similarly, the GABAergic inhibition from arkypallidal
neurons to STR is increased under DA depletion, even when their excitability is reduced
(Figure 4) [183,184]. As previously stated, both STF and STD can be seen in striato-pallidal
and pallido-pallidal synapses, respectively [159,160]. Besides their opposite roles, STF
and STD also have the difference that only the STF strength is modulated by presynaptic
D2 receptors, resulting in a decreased GABA release [185]. Additionally, GABAergic
transmission can be regulated by reducing the amplitude of GABAA-mediated postsynaptic
currents through the activation of D4 receptors. Similarly, intrinsic connections can also
reduce the postsynaptic firing rate [186]. Only the study from Stefani and colleagues [187]
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shed light on action mechanisms underlying the reduced excitability seen in GPe neurons.
There, the authors showed that the activation of D2 receptors inhibits GPe excitability in a
protein-kinase-C-dependent manner.
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Figure 4. Basal ganglia network in normal condition and its changes during PD. (Normal) In the healthy brain, cortical
asymmetric inputs activates both GABAergic (blue) and glutamatergic (brown) neurons in the STR and STN, respectively.
The information from cortical efferents to the SNr/GPi can be transmitted through 3 different ways: the direct (d), indirect
(i), and hyperdirect (h). Then, the SNr/GPi regulates the outcome of downstream motor control areas. Dopaminergic
projections (green) from the SNc modulate cellular activity through distinct DA receptors (DA Rs). (Disease) Following
the degeneration of DAergic neurons, there is an imbalance due to the hyperactivity of the indirect pathway and the
hypoactivity of the direct pathway, leading to the disinhibition of both the STN and GPi/SNr (red), and resulting in an
enhanced inhibition of downstream motor regions.

Functions of the SNr are also modulated by DA through the expression of different
receptors in SNr neurons (Figure 4). Although D1 receptors are the ones more expressed,
the presence of D4 and D5 receptors has been also reported [188–190]. The study by
Zhou et al. [191] revealed that the activation of D1 receptors depolarizes SNr neurons, and
therefore excites them. In contrast, the pharmacological blockade of D1 or D2 receptors
leads to the hyperpolarization of SNr neurons, and this is similar to what was seen in
recordings from rodents with DA depletion [192,193]. For STR–SNr synapses, there is an
increase in IPSCs amplitude that is likely driven by both dysfunctional GABAB receptors
and a presynaptic reduction in GABA release [194]. Regarding synaptic regulation, presy-
naptic D4 receptor activation reduces the transmission in GPe–SNr connections, whereas
presynaptic D1 receptors mediate the increase in GABAergic signaling [195,196].
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4.2. Asymmetric Synapses
4.2.1. The STR

The STR integrates cortical and thalamic excitatory information, making contact with
the spine heads of GABAergic SPNs (Figure 4) [149,197]. Within the STR, cortical and
thalamic terminals can be differentiated by the distinct expression of vesicular glutamate
transporter 1 (vGLUT1) and vesicular glutamate transporter 2 (vGLUT2), respectively [198].
These excitatory inputs are key to hyperpolarizing SPN neurons, which subsequently
allows the firing of their action potentials (APs) [199,200]. Both dSPNs and iSPNs express
AMPA and NMDA receptors, as well as metabotropic glutamate receptors (mGluRs) that
mediates synaptic transmission and LTP/LTD [201]. In dSPNs, the activation of NMDA
and D1 receptors is responsible for the LTP induction, whereas LTD induction is mediated
by muscarinic acetylcholine M4 and mGluR5 receptors [202,203]. On the other hand, LTP
induction in iSPNs is mediated by the activation of NMDA and A2A receptors, whereas
LTD is induced by postsynaptic D2 receptors and mGluR5 receptors [202].

4.2.2. The Subthalamic Nucleus—STN

Similarly to STR, the STN receives monosynaptic inputs from the cerebral cortex
through the hyperdirect pathway (Figure 4) [197]. Subsequent AMPAR/NMDA-mediated
postsynaptic excitatory currents (EPSC), along with GPe inhibition, regulate the ability of
STN neurons to fire APs spontaneously [182]. These antagonistic inputs regulate the firing
rate and pattern of STN transmission, and changes in the firing pattern are considered a
hallmark of PD [204,205]. In contrast to the inhibitory STR, STN neurons are glutamatergic
and project simultaneously to the GPe and SNr/GPi (Figure 4). Concretely, activation of
STN provides two different outcomes: strong and sustained excitation of prototypic cells
leading to the disinhibition of SPNs, and briefly, excitation of arkypallidal, implying a short
time inhibition onto SPNs (Figure 4) [158,206]. Regarding SNr, STN innervations represent
the main excitatory inputs, triggering monosynaptic EPSCs and increasing GABAergic
signaling in downstream motor areas [162,207].

4.2.3. Healthy and Pathological DA Modulation in Asymmetric Synapses

DAergic innervation in the STR is involved in two capital aspects: regulating LTP
of cortiostriatal synapses, and also regulating the functional specificity of STR neurons
in response to cortical and thalamic afferents [208]. Accordingly, DAergic denervation
promotes the loss of cortico- and thalamo-striatal terminals, leading to a dysregulation of
activity between direct and indirect pathways as well as important changes in LTP and
LTD (Figure 4) [151,208,209]. Indeed, the death of nigral DAergic neurons reverses the
strength of thalamic inputs to dSPNs and iSPNs by enhancing thalamostriatal inputs only
to iSPNs, therefore driving asymmetric activation of basal ganglia (Figure 4) [210]. As
previously mentioned, LTP and LTD are present in striatal SPNs, and this bidirectional
synaptic plasticity is altered in the parkinsonian state [209,211]. Without DA, dSPNs lose
LTP due to the absence of D1 receptor activation, similar to the lack of LTD in iSPNs
because of a lack of D2 receptor activation [202]. These PD-associated changes give rise to a
scenario where dSPNs only exhibit LTD and iSPNs only exhibit LTP, leading to a disruption
between dSPNs and iSPNs activity [211].

DA release has a main role in the function of STN neurons by regulating synaptic
transmission as well as the strength of cortico-subthalamic inputs, therefore, lacking DA
modulation has dramatic consequences in locomotion [204,212]. D2 and D5 receptors are
the ones with high levels of expression on the STN neuron membrane, and the activation
of each one has different outcomes for their firing rate (Figure 4) [15,213]. Previous results
have revealed that D2 activation increases the firing discharge of STN neurons by depo-
larizing the membrane potential [214]. The activation of D5 receptors, however, triggers
different conductance depending on the mode of discharge of STN neurons [215]. Hyper-
polarized STN neurons fire bursts of APs, and D5 activation prolongs burst duration [216].
In depolarized STN neurons, D5 activation increases the firing rate of single and tonic
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APs [217]. More recently, it has been shown that the activation of D5 receptors in STN
neurons can modulate cortical inputs by depressing AMPAR-mediated EPSC [214].

Following DAergic denervation, STN neurons lose their autonomous pacemaking due
to both increased inputs from iSPNs to GPe neurons that disinhibits STN neurons, and
excessive activation of NMDARs [218] even when the cortical glutamatergic innervations
is significantly reduced (Figure 4) [219–221]. This fact, and probably alterations in other
channels such as the potassium/sodium hyperpolarization-activated cyclic nucleotide-
gated ion channel 2 (HCN2) [222], allows a pathological hyperactive state for STN neurons
with rhythmic and synchronous bursts of APs [223]. Under this state, there also is a
strengthened connection between GPe and STN that is mediated by an excessive activation
of NMDARs in the STN [176,181]. Although this can be contradictory, it can be explained
since STN neurons activity is off-phase to GPe activity and in-phase to cortical activity [224]
so it is expected that GPe–STN inhibitory inputs are less effective in suppressing cortical
excitation [225].

Regarding SNr, dopamine receptors D1 and D2 have opposite roles modulating EPSC
amplitude: the D1 receptor acts as an enhancer, while the D2 receptor decreases it [226].
The presence of LTD at STN–SNr synapses, induced by the activation of postsynaptic D1
receptors, has also been reported. During this LTD, endocytosis of AMPARs mediated
by NMDARs depresses EPSC amplitude [214]. In the absence of dopamine, STN–SNr
LTD is completely depleted leading to an increased synaptic transmission in the STN–SNr
circuitry [227,228].

5. Conclusions

Both asymmetric and symmetric synapses have important roles in shaping the struc-
tural and functional outcomes of the brain. Therefore, the balance between excitation and
inhibition is capital for a correct cerebral function. Besides, even after a particular damage,
the progression of the disease defines the response of circuitries; something beneficial at
the beginning becomes negative later. In this regard, it has been described that promoting
symmetric signaling following cerebral ischemia is beneficial only during the acute phase;
afterwards, it further increases the initial damage. Synapses can be also altered by players
not directly related to them; in Alzheimer’s Disease, the chronic and long-term neurode-
generation mediated by tau targets primary asymmetric synapses, decreasing neuronal
plasticity and functionality. Indeed, the death of midbrain dopaminergic neurons impairs
locomotion, underlying Parkinson’s disease. Since symmetric and asymmetric synapses
play an important role in the pathophysiology of several neurological disorders, such as
stroke, Alzheimer’s or Parkinson’s Disease, further studies are needed to elucidate the
underlying molecular mechanisms that could lead to the development of new therapeutic
targets for these devastating diseases.
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