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Abstract: In this paper, we study the turnpike phenomenon for trajectories of continuous-time
dynamical systems generated by differential inclusions, which have a prototype in mathematical
economics. In particular, we show that, if the differential inclusion has a certain symmetric property,
the turnpike possesses the corresponding symmetric property. If we know a finite number of
approximate trajectories of our system, then we know the turnpike and this information can be useful
if we need to find new trajectories of our system or their approximations.
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1. Introduction

In [1,2], A. M. Rubinov introduced a discrete disperse dynamical system which is
generated by a set-valued self-mapping of a compact metric space. This dynamical system
was investigated in [1–7]. It has a prototype in the economic growth theory [1,2,8,9]. In
particular, it is an abstract extension of the classical von Neumann–Gale model [1,2,8,9].
This dynamical system is described by a compact metric space of states and a transition
operator which is set-valued. Such dynamical systems correspond to certain models of
economic dynamics [1,2,8,9]. More precisely, in [1–3], the description of global attractors
for certain dynamical systems was obtained; the uniform convergence of trajectories to
global attractors was studied in [4] and the behavior of trajectories under the presence of
computational errors was analyzed in [5], while, in [6], analogous results were obtained for
systems with a Lyapunov function. These results are collected in our recent book [7].

In the present paper, we study the convergence and structure of trajectories of the
continuous-time analog of this dynamical system generated by a differential inclusion. In
particular, we show that, if the differential inclusion has a certain symmetric property, its
turnpike possesses the corresponding symmetric property.

We introduce a global attractor (turnpike) for our dynamical system which is the
closure of the set of all limit points of all trajectories; we show that all trajectories on an
infinite interval converge to this set and that all trajectories on finite and sufficiently large
intervals spend most of the time in a small neighborhood of the turnpike. If we know
a finite number of approximate trajectories of our system, then we know the turnpike
and this information can be useful if we need to find new trajectories of our system or
their approximations. We believe that our results can be extended to the case of perturbed
trajectories of our system.

It should be mentioned that the turnpike phenomenon holds for many problems in
various areas of research [7,9–16].

Let Rn be the n-dimensional Euclidean space equipped with the inner product

〈x, y〉 =
n

∑
i=1

xiyi, x = (x1, . . . , xn), y = (y1, . . . , yn)
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which induces the Euclidean norm ‖ · ‖ and let X be a nonempty closed set in Rn equipped
with the relative topology.

Let us denote, by N , the set of all natural numbers. For every point x ∈ Rn and every
positive real number r, let us put

B(x, r) = {y ∈ Rn : ‖x− y‖ ≤ r}, B0(x, r) = {y ∈ Rn : ‖x− y‖ < r}.

Let us suppose that F : X → 2Rn \ {∅}. We define

graph(F) = {(x, y) ∈ X× Rn : y ∈ F(x)}.

The mapping F is upper semicontinuous at a point x0 ∈ X if, for every open set N
which contains F(x0), there is an open neighborhoodM of the point x0 in the space X for
which F(M) ⊂ N.

The mapping F is upper semicontinuous if it is upper semicontinuous at each point
x0 ∈ X.

For the proof of the following result see Proposition 2 of [17].

Proposition 1. Let us assume that F is upper semicontinuous and that F(z) is closed for every
z ∈ X. Then, graph(F) is closed in X× Rn.

It is easy to see that the next result is true.

Proposition 2. Let us assume that the set graph(F) is closed in X× Rn, x0 ∈ X, V is a neighbor-
hood of the point x0 in the space X and that the set F(V) is bounded. Then, the mapping F is upper
semicontinuous at the point x0.

Let −∞ < T1 < T2 < ∞. A function x : [T1, T2] → X is called a trajectory if it is
absolutely continuous (a. c.) and

x′(t) ∈ F(x(t)), t ∈ [T1, T2] almost everywhere (a. e.). (1)

We denote, by A(T1, T2), the collection of all trajectories x : [T1, T2]→ X.
Let T1 ∈ R1. A function x : [T1, ∞) → X is a trajectory if, for every T2 > T1, its

restriction to the interval [T1, T2] belongs to A(T1, T2). we denote, by A(T1, ∞), the set of
all trajectories x : [T1, ∞)→ X.

A function x : R1 → X is a trajectory if, for each pair of numbers T2 > T1, its restriction
to the interval [T1, T2] belongs to A(T1, T2). We denote, by A(−∞, ∞), the collection of all
trajectories x : R1 → X.

In the sequel, we suppose that the following assumption holds.
(A1) The mapping F is upper semicontinuous and F(x) is a compact, convex set for

every point x ∈ X.
In view of Proposition 1, the set graph(F) is closed in X× Rn.

Proposition 3. The mapping F is bounded on bounded sets. In other words, for every positive
number M0, there is a positive number M1 such that

F(x) ⊂ B(0, M1) for every point x ∈ B(0, M0) ∩ X. (2)

Proof. Let M0 > 0. We show that there exists M1 > 0 such that (2) holds. Let us assume
the contrary. Then, for every k ∈ N , there is

xk ∈ B(0, M0) ∩ X, yk ∈ F(xk) (3)

such that
‖yk‖ > k. (4)
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In view of (3), we may assume, without loss of generality, that there is a limit

x = lim
k→∞

xk. (5)

Since the mapping F is upper semicontinuous, there is an open neighborhood U of
the point x in the space X such that, for each point x ∈ U, we have

F(xk) ⊂ F(x) + B(0, 1).

This contradicts (4) and completes the proof of Proposition 3.

In our study, we apply the following two theorems (see Theorem 4 on page 13 of [17]
and Theorem 1 on page 60 of [17], respectively).

Theorem 1. Let I ⊂ R1 be an interval, for every k ∈ N , xk : I → Rn be an a. c. function such
that, for each real number t ∈ I, the sequence {xk(t)}∞

k=1 is bounded and let a positive function
c ∈ L1(I) satisfy

‖x′k(t)‖ ≤ c(t)

for a. e. real numbers t ∈ I and every k ∈ N . Then, there are a subsequence {xki
}∞

i=1 and an a. c.
function x : I → Rn such that xki

converges to the function x uniformly over compact subsets of
the interval I and that the functions x′ki

converges weakly to the function x′ in L1(I; Rn) as i→ ∞.

Theorem 2. Let I ⊂ R1 be an interval, for every k ∈ N , xk : I → X and yk : I → Rn be Lebesgue
measurable functions such that, for a. e. real numbers t ∈ I and every open neighborhood N of zero
in the space Rn × Rn, there is k0(t, N) ∈ N such that, for every natural number k ≥ k0(t, N),

(xk(t), yk(t)) ∈ graph(F) + N.

Let us suppose that xk converges a. e. to the function x : I → Rn and yk ∈ L1(I; Rn)
converges to y weakly in L1(I; Rn) as k→ ∞. Then, for a. e. real number t ∈ I,

(x(t), y(t)) ∈ graph(F).

Proposition 3 implies the next proposition.

Proposition 4. Let us assume that T > 0 and x : [0, T]→ X is an a. c. function which satisfies

x′(t) ∈ F(x(t)), t ∈ [0, T] a. e..

Then, the function x is Lipschitz on [0, T].

In addition to (A1), the following assumption (A2) is assumed to be satisfied every-
where below.

(A2) For every positive number M, there is a positive number M0 such that, for every
positive number T and each function x ∈ A(0, T) which satisfies ‖x(0)‖ ≤ M, the equation
‖x(t)‖ ≤ M0 is valid for every number t ∈ [0, T].

Note that (A2) holds for models of economic growth which are prototypes of our
dynamical system [7,9].

The next result, which is deduced from Theorems 1 and 2, plays an important role in
our study.

Theorem 3. Let us assume that −∞ < T1 < T2 < ∞, for each k ∈ N , xk ∈ A(T1, T2) and
that the set {xk(T1) : k = 1, 2, . . . } is bounded. Then, there exist a subsequence {xik}

∞
k=1 and

a trajectory x ∈ A(T1, T2) such that xik converges to x as k → ∞ uniformly on [T1, T2] and x′ik
converges to x′ as k→ ∞ weakly in L1([T1, T2]; Rn).
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Proof. There exists M0 > 0 such that

‖xk(T1)‖ ≤ M0, k = 1, 2, . . . . (6)

By (6) and (A2), there is a positive number M1 for which

‖xk(t)‖ ≤ M1 for every number t ∈ [T1, T2] and every k ∈ N . (7)

It follows, from Proposition 3 and Equations (1) and (7), that there is a positive number
M2 for which

‖x′k(t)‖ ≤ M2 for a. e. t ∈ [T1, T2] and all k ∈ N . (8)

Theorem 1 and Equation (8) imply that there exist a subsequence {xki
}∞

i=1 and an a.
c. function x : [T1, T2]→ Rn such that xki

converges to x uniformly over [T1, T2] as i→ ∞
and x′ki

converges weakly to x′ in L1([T1, T2]; Rn) as i → ∞. Combined with Theorem 2,
this convergence implies that

x′(t) ∈ F(x(t)), t ∈ [T1, T2] a. e..

Theorem 3 is proved.

2. The Results

We begin with the next theorem. It will be proved in Section 3.

Theorem 4. Let C ⊂ X be a nonempty closed bounded set. Then, the following properties are
equivalent:

(1) There exists a function x ∈ A(0, ∞) such that x(0) ∈ C.
(2) For every k ∈ N , there exists a function xk ∈ A(0, Tk) such that

lim
k→∞

Tk = ∞

and xk(0) ∈ C for every k ∈ N .

Corollary 1. The following properties are equivalent:
(1) There exists a function x ∈ A(0, ∞).
(2) For every k ∈ N , there is a function xk ∈ A(0, Tk) such that

lim
k→∞

Tk = ∞

and
sup{‖xk(0)‖ : k = 1, 2, . . . } < ∞.

Corollary 2. Let ξ ∈ X. Then, the following properties are equivalent:
(1) There exists a function x ∈ A(0, ∞) such that x(0) = ξ.
(2) For every k ∈ N , there is a function xk ∈ A(0, Tk) such that

lim
k→∞

Tk = ∞

and xk(0) = ξ for all k ∈ N .

In the sequel, we assume that there exists a function x ∈ A(0, ∞).
We define

Ω(F) = {z ∈ X : for every positive number ε there is a function x ∈ A(0, ∞)
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for which lim inf
t→∞

‖z− x(t)‖ ≤ ε}. (9)

In view of (A2), Ω(F) 6= ∅. Evidently, Ω(F) is a closed subset of X. In the literature,
the set Ω(a) is called a global attractor of a. Note that, in [1,2], Ω(a) is called a turnpike set
of a.

For every point x ∈ Rn and every nonempty set E ⊂ Rn, we define

ρ(x, E) = inf{‖x− y‖ : y ∈ E}.

The following proposition is proved in Section 3.

Proposition 5. For every function x ∈ A(0, ∞),

lim
s→∞

ρ(x(s), Ω(F)) = 0.

The following theorem is proved in Section 4.

Theorem 5. Let ε, M be positive real numbers. Then, there is a positive number T(M, ε) such
that for every function x ∈ A(0, T) which satisfies

‖x(0)‖ ≤ M, T > T(M, ε)

there is a number a ∈ [0, T −M] for which

ρ(x(s), Ω(F)) ≤ ε for all s ∈ [a, a + M].

The following proposition is proved in Section 5.

Proposition 6. Let ξ ∈ Ω(F). Then, there exists x ∈ A(−∞, ∞) such that x(0) = ξ and

sup{‖x(t)‖ : t ∈ R1} < ∞.

The following theorem, which is proved in Section 6, is our main result.

Theorem 6. The following properties are equivalent:
(1) If x ∈ A(−∞, ∞) satisfies

sup{‖x(t)‖ : t ∈ R1} < ∞,

then x(t) ∈ Ω(F) for all t ∈ R1.
(2) For each ε, M > 0, there exists L > 0 such that, for each x ∈ A(0, T) which satisfies

T > 2L and ‖x(0)‖ ≤ M, the inequality

ρ(x(t), Ω(F)) ≤ ε

holds for all t ∈ [L, T − L].

Properties (1) and (2) usually hold for models of economic dynamics, which are
prototypes of our dynamical system [1,2,8,9]. In particular, it holds for the von Neumann–
Gale model generated by a monotone process of convex type which was studied in [18].

Property (2) is the turnpike property, which is well known in mathematical economics.
It was discovered by Samuelson in 1948 (see [19]) and further analyzed for optimal tra-
jectories of models of economic dynamics. See, for example, [2,8,9] and the references
mentioned there. Recently, it was shown that the turnpike phenomenon holds for many
important classes of problems arising in various areas of research [7,9–16]. For related
infinite horizon problems, see [9,20–27].
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The next result is proved in Section 7.

Proposition 7. Let us assume that property (1) of Theorem 6 holds and that x ∈ A(0, ∞) satisfies
x(0) ∈ Ω(F). Then, x(t) ∈ Ω(F) for all t ≥ 0.

The following theorem is our second main result, which is also proved in Section 7. It
shows that, if the starting point of the trajectory is closed to the turnpike, then the trajectory
leaves the turnpike only when t is closed to the right endpoint T of the domain.

Theorem 7. Let us suppose that property (1) of Theorem 6 holds and that ε, M are positive real
numbers. Then, there exist positive real numbers δ, L such that, for every function x ∈ A(0, T)
satisfying T > L and

‖x(0)‖ ≤ M and ρ(x(0), Ω(F)) ≤ δ

the inequality
ρ(x(t), Ω(F)) ≤ ε

is valid for every t ∈ [0, T − L].

Now, we show that, if the set-valued mapping F has a certain symmetric property,
then the turnpike Ω(F) possesses the corresponding symmetric property. Let us assume
that A : Rn → Rn is a linear invertible mapping such that A2 is the identity mapping in Rn.
Clearly, A = A−1. Let us assume that A(X) = X and

A(F(x)) = F(Ax)), x ∈ X.

Let x ∈ A(0, ∞). Then, for a. e. t ≥ 0,

(Ax(t))′ = Ax′(t) ∈ A(F(x(t)) = F(Ax(t))

and Ax ∈ A(0, ∞). This implies that

A(Ω(F)) ⊂ Ω(F).

Since A2 is the identity mapping in Rn, the inclusion above implies that

Ω(F) = A2(Ω(F)) ⊂ A(Ω(F)) = Ω(F).

Thus, A(Ω(F)) = Ω(F).

3. Proofs of Theorem 4 and Proposition 5

Proof of Theorem 4. Clearly, (1) implies (2). Let us assume that (2) holds and that, for
every k ∈ N , xk ∈ A(0, Tk) satisfies

lim
k→∞

Tk = ∞

and xk(0) ∈ C for all k ∈ N . By Theorem 3 and the relations above, extracting subsequences
and using the diagonalization process, we obtain that there exist a subsequence {xki

}∞
i=1

and x ∈ A(0, ∞) such that xki
converges to x as i→ ∞ uniformly on [0, p] for every p ∈ N .

Thus, (1) holds and (2) implies (1). Theorem 4 is proved.

Proof of Proposition 5. Let x ∈ A(0, ∞). By (A2),

sup{‖x(t)‖ : t ∈ [0, ∞)} < ∞. (10)

Evidently, we only need to verify that

lim
s→∞

ρ(x(s), Ω(F)) = 0.



Symmetry 2021, 13, 2326 7 of 11

Let us assume the contrary. Then, there exist ε > 0 and a sequence of positive numbers
tk → ∞ as k→ ∞ such that

ρ(x(tk), Ω(F)) > ε, k = 1, 2, . . . . (11)

In view of (10), we may assume that the sequence {x(tk)}∞
k=1 converges. Clearly, its

limit belongs to Ω(F). This contradicts (11) and proves Proposition 5.

4. Proof of Theorem 5

Let us assume that the theorem is not true. Then, for every k ∈ N , there exist

Tk > M + k, xk ∈ A(0, Tk) (12)

for which
‖xk(0)‖ ≤ M (13)

and, for every a ∈ [0, Tk −M],

sup{ρ(xk(t), Ω(F)) : t ∈ [a, a + M]} > ε. (14)

In view of (A2) and (3.13), there exists a positive number M0 for which

‖xk(t)‖ ≤ M0, t ∈ [0, Tk], k ∈ N . (15)

By Theorem 3 and Equations (12) and (15), extracting subsequences and using the
diagonalization process, we obtain that there exist a subsequence {xkj

}∞
i=1 and x ∈ A(0, ∞)

such that, for every p ∈ N ,

xkj
converges to x as j→ ∞ uniformly on [0, p]. (16)

By Proposition 5,
lim
s→∞

ρ(x(s), Ω(F)) = 0.

Therefore, there is a positive number T0 such that, for every real number t ≥ T0,

ρ(x(t), Ω(F)) ≤ ε/4. (17)

By (16), there is a natural number k > T0 + M for which

‖xk(t)− x(t)‖ ≤ ε/2, t ∈ [0, T0 + M].

Combined with (17), the equation above implies that

ρ(xk(t), Ω(F)) ≤ 3ε/4, t ∈ [T0, T0 + M].

This contradicts (14) and proves Theorem 5.

5. Proof of Proposition 6

By definition (9), for each k ∈ N , there is a function xk ∈ A(0, ∞) for which

lim inf
t→∞

‖xk(t)− ξ‖ ≤ 1/k. (18)

By (18), we may assume, without loss of generality, that

‖xk(0)‖ ≤ ‖ξ‖+ 1, k = 1, 2, . . . . (19)
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Assumption (A2) and (19) imply that there is a positive number M1 for which

‖xk(t)‖ ≤ M1, t ∈ [[0, ∞), k = 1, 2, . . . . (20)

Let k ∈ N . By (18), there is a real number tk for which

tk > k, ‖xk(tk)− ξ‖ ≤ 1/k. (21)

We define

yk(t) = xk(t + tk), t ∈ [−tk, ∞). (22)

Clearly,
yk ∈ A(−tk, ∞). (23)

Equations (20) and (22) imply that

‖yk(t)‖ ≤ M1, t ∈ [−tk, ∞). (24)

By (21)–(24), extracting subsequences and using the diagonalization process, we obtain
that there exist a subsequence {ykj

}∞
i=1 and x ∈ A(−∞, ∞) such that, for every p ∈ N ,

ykj
converges to x as j→ ∞ uniformly on [−p, p]. (25)

Equations (21), (22) and (25) imply that

x(0) = lim
j→∞

ykj
(0) = lim

j→∞
xkj

(tkj
) = ξ.

By (24) and (25), ‖x(t)‖ ≤ M1 for all t ∈ R1. Proposition 6 is proved.

6. Proof of Theorem 6

Clearly, (2) implies (1). Let us assume that property (1) holds. We verify that property
(2) is also valid.

Let us assume the contrary. Then, there are positive real numbers ε, M and, for each
k ∈ N , there exist xk ∈ A(0, Tk) such that

Tk > 2k, (26)

‖xk(0)‖ ≤ M, (27)

sup{ρ(xk(t), Ω(F)) : t ∈ [k, Tk − k]} > ε. (28)

Assumption (A2) and (27) imply that there is a positive number M1 for which

‖xk(t)‖ ≤ M1, t ∈ [0, Tk], k = 1, 2, . . . . (29)

Let k ∈ N . By (28), there is a number

τk ∈ [k, Tk − k] (30)

such that
ρ(xk(τk), Ω(F)) > ε. (31)

We define
yk(t) = xk(t + τk), t ∈ [−τk, ∞). (32)

It follows, from (26), (29), (30) and (32), that

yk ∈ A(−τk, ∞),
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‖yk(t)‖ ≤ M1, t ∈ [−τk, ∞). (33)

By (33) and Theorem 3, extracting subsequences and using the diagonalization process,
we obtain that there exist a subsequence {ykj

}∞
i=1 and x ∈ A(−∞, ∞) such that, for every

p ∈ N ,
ykj

converges to x as j→ ∞ uniformly on [−p, p]. (34)

Property (1) implies that
x(t) ∈ Ω(F), t ∈ R1. (35)

Equations (32) and (34) imply that

x(0) = lim
j→∞

ykj
(0) = lim

j→∞
xkj

(τkj
).

Combined with (31), the equation above implies that

ρ(x(0), Ω(F)) ≥ ε.

This contradicts (35). The contradiction we reached proves that property (2) holds.
Thus, (1) implies (2). Theorem 6 is proved.

7. Proofs of Proposition 7 and Theorem 7

Proof of Proposition 7. Proposition 6 implies that there exists y ∈ A(−∞, ∞) such that

y(0) = x(0),

sup{‖y(t)‖ : t ∈ R1} < ∞.

We define
x(t) = y(t), t ∈ (−∞, 0].

Clearly, x ∈ A(−∞, ∞). By (A2) and the equation above,

sup{‖x(t)‖ : t ∈ R1} < ∞.

It follows, from property (1) of Theorem 6, that x(t) ∈ Ω(F) for every t ∈ R1. Proposi-
tion 7 is proved.

Proof of Theorem 7. In view of Theorem 6, there is L0 > 1 such that the following property
holds:

(i) for every function x ∈ A(0, T) satisfying T > 2L0 and ‖x(0)‖ ≤ M, the equation

ρ(x(t), Ω(F)) ≤ ε

is valid for every t ∈ [L0, T − L0].
Let us assume that our theorem does not hold. Then, for each k ∈ N , there is

xk ∈ A(0, Tk) for which
Tk > k + 2L0, ‖xk(0)‖ ≤ M, (36)

ρ(xk(0), Ω(F)) ≤ 1/k (37)

and
sup{ρ(xk(t), Ω(F)) : t ∈ [0, Tk − k− 2L0]} > ε. (38)

Assumption (A2) and (36) imply that there is a positive number M1 for which

‖xk(t)‖ ≤ M1, t ∈ [0, Tk], k = 1, 2, . . . . (39)
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Let k ∈ N . In view of (38), there is

τk ∈ [0, Tk − k− 2L0] (40)

such that

ρ(xk(τk), Ω(F)) > ε. (41)

Property (i) and Equations (36), (40) and (41) imply that

τk ≤ L0. (42)

By (36), (39) and Theorem 3, extracting subsequences and using the diagonalization
process, we obtain that there exist a subsequence {xkj

}∞
i=1 and x ∈ A(0, ∞) such that for

every p ∈ N ,
xkj

converges to x as j→ ∞ uniformly on [0, p]. (43)

In view of (37) and (43),
x(0) ∈ Ω(F).

Combined with Proposition 15, the inclusion above implies that

x(t) ∈ Ω(F), t ∈ [0, ∞). (44)

By (43), there exists j ∈ N such that

‖x(t)− xkj
(t)‖ ≤ ε/2, t ∈ [0, 2L0]

and, in view of (42) and (44),

ρ(xkj
(τkj

), Ω(F)) ≤ ‖xkj
(τkj

)− x(τkj
)‖ ≤ ε/2.

This contradicts (41) and completes the proof of Theorem 7.
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