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Abstract: This paper investigates the fixed-time formation (FixF) control problem for second-order
multi-agent systems (MASs), where each agent is subject to disturbance and the communication
network is general directed. First, a FixF protocol is presented based on the backstepping technique,
where the distributed cooperative variable structure control method is utilized to handle the bounded
disturbances. Then, to remove the dependence of control gains on the global information, a practical
adaptive FixF control is presented, where the MASs can achieve formation with a bounded error
within fixed time. Finally, a numerical example is presented to validate the theoretical result.
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1. Introduction

Formation control is one of the most actively investigated topics on the cooperation
of multi-agent systems (MASs), such as multiple vehicle [1] and quadrotor aircraft [2].
Generally speaking, each agent is driven to satisfy predefined relative state constraints
with respect to its neighbors in a formation control task.

A key point in the study of the formation control problem is the convergence rate,
which indicates how efficient a proposed control protocol could be. The formation tracking
problem for the general linear MASs was studied in [3] over fixed and switching topologies,
where the formation can be achieved asymptotically. Compared to the asymptotic con-
trollers, designing a formation controller with finite-time convergence is more desirable as
it indeed guarantees faster convergence rate as well as improved system performance [4–6].
The formation control problems with finite-time convergence rate for linear and nonlinear
first-order MASs were studied in [6,7] over undirected and directed graphs, respectively,
while in [1,8], such problems were studied for multiple vehicles and multiple nonholonomic
mobile robots, where the dynamics of the systems in [1,8] were second-order. The authors
of [9] proposed the adaptive formation control protocol for double integrator disturbed
MASs with a general directed networks, which is fully distributed.

Having evolved from finite-time stability, fixed-time stability (FixS) [10] inherits the
advantage of finite-time convergence. Meanwhile, the convergence time is uniformly
bounded with respect to the initial conditions. After that, FixS was well studied for single
systems [11], and extended to single integrator [12–15] and double integrator MASs [16–26].
Specifically, the works in [23–26] all studied the leader–follower FixF control problem.
Compared with the leader–follower case, it is more challenging to study the leaderless
formation control problem because the agreed trajectory is not known in advance, and
thus is not available to any agent. Furthermore, disturbances usually exist in real control
networked systems [27,28].

Note that the communication topology discussed in most of the above-mentioned
works is undirected. It is nontrivial to generalize these results to the formation problem
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with general directed topologies. The main challenge lies in the asymmetry property of
directed topologies. In addition, global information is usually utilized in the control design
in most existing works. Bearing the observation in mind, we will discover the FixF control
problem for a kind of disturbed second-order MASs, where the communication graph is
directed. We summarized the main contribution as follows. First, a FixF control protocol is
proposed by utilizing the backstepping technique. The distributed cooperative variable
structure control is utilized to handle the bounded disturbances. Then, to remove the
dependence of control gains on the global information, a practical adaptive FixF control is
presented, where the MASs can achieve formation with a bounded error within fixed time.

The rest of the paper consists of seven parts in total. Some concepts in graph theory
and problem statement are provided in Section 2. Main results are given in Section 3.
Section 4 provides a numerical example to verify the effectiveness of the theoretical results,
and the paper is concluded in Section 5.

2. Preliminaries and Problem Statement

Before continuing, necessary notations used in this paper are introduced below.
Notations: The transposition of a vector or a matrix is marked by the superscript T; the

eigenvalues of the symmetric and real matrix Q are arranged as λ1(Q) ≤ λ2(Q) ≤ · · · ≤
λN(Q). For any s ∈ R, sign(s) is the signum function. We further define s[k] = sign(s)|s|k

and A[k] = (a[k]ij )n×m, where A = (aij)n×m. Symbol ‖x‖ denotes the 2-norm of x ∈ Rn;
denote IN = {1, 2, · · · , N}.

2.1. Graph Theory

The concepts for graph are given below, which can be found in [29].
A directed graph is denoted as G = (V,E,A) with V = {ν1, ν2, · · · , νN}, E ∈ V×V

being the node set and edge set, respectively, and A = (aij)N×N is the adjacency matrix
of the graph G with non-negative elements. An edge eij rooted at spacecraft j and ending
at spacecraft i is denoted by (i, j). The weight aij > 0 ⇐⇒ (i, j) ∈ E. Furthermore, it
is assumed that no self-loop exists. The corresponding Laplacian matrix L = (lij)N×N is
defined by lij = −aij for i 6= j and lii = ∑N

j=1 aij for i ∈ IN . DenoteNi = {j|aij > 0, j ∈ IN}
and N−i = {j|aji > 0, j ∈ IN} the inner and outer neighbors of agent i, respectively,
and |Ni| is the number of the inner neighbors of agent i.

Assumption 1. The graph G is strongly connected.

2.2. Supporting Lemmas

First, we record the following lemma about the properties of directed graphs.

Lemma 1. [30,31] Suppose Assumption 1 holds. Denote L ∈ RN×N the Laplacian matrix
associated with the graph G. Then, L1N = 0, and there exists a vector γ = (γ1, · · · , γN)

T with
∑N

i=1 γi = 1 and γi > 0, i ∈ IN such that γT L = 0. Furthermore, let the matrix L̂ = ΓL + LTΓ

with Γ = diag(γ). Let ϑ ∈ RN be any positive vector. Then, minzTϑ=0, zTz=1 zT L̂z > λ2(L̂)
N ,

where λ2(L̂) > 0 is the second smallest eigenvalue of L̂.

One lemma for FixS and several lemmas about some inequalities are introduced,
which will be used to prove the main result.

Lemma 2. [10] We consider the system

ż = g(t, z(t)), z(0) = z0, (1)

with its equilibrium point being the origin. If there exists a continuous radially unbounded function
(CRUF) W(z(t)) such that W(z(t)) = 0⇔ z(t) = 0 and Ẇ(z(t)) ≤ −c1Wr1 − c2Wr2 for some
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positive constants c1, c2, r1, and r2 satisfying 0 < r1 < 1 < r2. Then, the system (1) is said FixS
with the settling time estimated by T(z0) ≤ 1

c1(1−r1)
+ 1

c2(r2−1) .

Lemma 3. [32] Consider the system (1). If there exists a CRUF W(z(t)) such that Ẇ(z(t)) ≤
−c1Wr1 − c2Wr2 + s for some positive constants c1, c2, s, r1, and r2 satisfying 0 < r1 < 1 < r2.
Then, the system is practical FixS, and the residual set of the solution of system (1) is given by
{limt→T z|W(z) ≤ min{c−1/r1

1 (s/(1− θ))1/r1 , c−1/r2
2 (s/(1− θ))1/r2}} with θ ∈ (0, 1). The

time needed to reach the residual set is bounded as T(z0) ≤ 1
c1θ(1−r1)

+ 1
c2θ(r2−1) .

Lemma 4. [33] For z1, z2 ∈ R, 0 < r ≤ 1, it always holds that |z[r]1 − z[r]2 | ≤ 21−r|z1 − z2|r.

Lemma 5. [34] For z1, z2, · · · , zn ≥ 0 and l > s ≥ 1, it holds that
(

∑n
i=1 zl

i

) 1
l
≤
(

∑n
i=1 zs

i

) 1
s

≤

n
1
s−

1
l

(
∑n

i=1 zl
i

) 1
l
.

Lemma 6. [35] Given z1, z2 ∈ R, c, d > 0, it holds that |z1|c|z2|d ≤ c
c+d |z1|c+d + d

c+d |z2|c+d.

Lemma 7. [36] For z ∈ RN , and α > 1 > β > 0, the following inequalities hold:

(
N

∑
k=1

(zα+1
k + zβ+1

k )

) α+β
α+1

≤
N

∑
k=1

(zα
k + zβ

k )
2,

(2N)
1−α
α+1

(
N

∑
k=1

(zα+1
k + zβ+1

k )

) 2α
α+1

≤
N

∑
k=1

(zα
k + zβ

k )
2.

2.3. Problem Formulation

We consider the second-order MASs with disturbances.

ṗi = vi,

v̇i = ui + di(t), i ∈ IN
(2)

where pi, vi ∈ R represent the position and the velocity states of the ith agent, di(t) ∈ R
stands for the disturbance, and ui ∈ R is a control input.

Definition 1. Formation information can be represented by a time-dependent vector H = (h1, ..., hN)
T .

The FixS formation for the second-order MASs (2) is said to be achieved if there exists a settling
time T(p(0), v(0)), which is uniformly bounded with regard to the initial state, viz, there exists a
fixed constant Tmax with T ≤ Tmax, such that

limt→T−(pi − hi)− (pj − hj) = 0,
limt→T−(vi − ḣi)− (vj − ḣj) = 0,
pi − hi = pj − hj, vi − ḣi = vj − ḣj, t ≥ T,
i, j ∈ IN .

(3)

Here, T(p(0), v(0)) is simplified as T.

The following assumptions are introduced which will be used in the proof of the
main result.
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Assumption 2. Suppose that the unknown disturbances di(t), i ∈ IN are bounded:

|di(t)| ≤ d̄, i ∈ IN , (4)

where d̄ > 0 is a constant.

Assumption 3. Suppose the second derivative of H = (h1, ..., hN)
T is bounded, that is,

|ḧi| ≤ h̄, (5)

where h̄ > 0 is a constant.

In the following, we will design a distributed control protocol by invoking local
information to drive the system (2) to achieve the formation with fixed-time convergence.

3. Main Results
3.1. Fixed-Time Formation Control Protocol

In this subsection, a FixF control protocol will be designed via backstepping method.
Let p̃i = pi − hi and ṽi = vi − ḣi. The error dynamics can be given:

˙̃pi = ṽi,
˙̃vi = ui + d̃i(t), i ∈ IN ,

(6)

where d̃i = di − ḧi, satisfying |d̃i| ≤ d̄ + h̄.
Define τi = ∑N

j=1 aij( p̃i − p̃j), σi = τ̇i = ∑N
j=1 aij(ṽi − ṽj), τ = (τ1, τ2, · · · , τN)

T , σ =

(σ1, σ2, · · · , σN)
T , p̃ = ( p̃1, p̃2, · · · , p̃N)

T and ṽ = (ṽ1, ṽ2, · · · , ṽN)
T . Then, we have τ = Lp̃

and σ = τ̇ = Lṽ.
The formation control protocol design procedure is illustrated as follows.
(1) First, we consider the following systems:

τ̇ = Lṽ. (7)

A virtual control input for system (7) is designed as

v∗i = ṽi + l1τ
[α]
i , i ∈ IN , (8)

where α > 1 and l1 > 0. Furthermore, a virtual control law for v∗i is designed as

v̄i = −l2τ
[β]
i , i ∈ IN , (9)

where 1
2 < β < 1 and l2 > 0.

For further analysis, we construct a Lyapunov function candidate as follows:

V0 =
N

∑
k=1

(
l1γk

1 + α
|τk|1+α +

l2γk
1 + β

|τk|1+β

)
,

where γk, k ∈ IN is given in Lemma 1.
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The time derivative of V0 can be computed as follows:

V̇0 =
N

∑
k=1

(
l1γkτ

[α]
k + l2γkτ

[β]
k

)
τ̇k

=(l1τ[α] + l2τ[β])TΓτ̇

=(l1τ[α] + l2τ[β])TΓLṽ

=(l1τ[α] + l2τ[β])T(ΓL⊗ I3)(v∗ − v̄− l1τ[α] − l2τ[β])

=(l1τ[α] + l2τ[β])T(ΓL⊗ I3)(v∗ − v̄)− 1
2
(l1τ[α] + l2τ[β])T L̂(l1τ[α] + l2τ[β]), (10)

where the definition of L̂ can be found in Lemma 1, v∗ = (v∗1 , v∗2 , · · · , v∗N)
T and v̄ =

(v̄1, v̄2, · · · , v̄N)
T .

As inspired by the work in [9], we introduce the following indicative function:

I(x) =

{
1, x = 0,

1
l1|x|α−1+l2|x|β−1 , x 6= 0,

with x ∈ R. By Lemma 1, one obtains γTτ =

γT Lp̃ = 0. It follows that

0 = γTτ =
N

∑
k=1

γkτk =
N

∑
k=1,τk 6=0

γk
(l1τ

[α]
k + l2τ

[β]
k )

l1|τk|α−1 + l2|τk|β−1 +
N

∑
k=1,τk=0

γk(l1τ
[α]
k + l2τ

[β]
k ). (11)

Thus, (l1τ[α] + l2τ[β])Tγ̂ = 0, where γ̂ =

(
I(τ1)γ1, · · · , I(τN)γN

)T

. One can observe

that γ̂ is a positive vector. By Lemma 1, we have

(l1τ[α] + l2τ[β])T L̂(l1τ[α] + l2τ[β]) >
λ2(L̂)

N
(l1τ[α] + l2τ[β])T(l1τ[α] + l2τ[β]). (12)

On the other hand,

(l1τ[α] + l2τ[β])T(ΓL⊗ I3)(v∗ − v̄)

≤ ε

2
(l1τ[α] + l2τ[β])T(ΓLLTΓ⊗ I3)(l1τ[α] + l2τ[β]) +

1
2ε

N

∑
k=1

(v∗k − v̄k)
2

≤ ε

2
λmax(ΓLLTΓ)||l1τ[α] + l2τ[β]||2 + 21−2β

ε

N

∑
k=1
|ξk|2β, (13)

where ξk = v∗k
[ 1

β ] − v̄
[ 1

β ]

k , ε > 0, and |v∗k − v̄k| ≤ 21−β|ξk|β is utilized based on Lemma 4 to
derive the last inequality. From (10)–(13), one obtains

V̇0 ≤−
1
2

(
λ2(L̂)

N
− ελmax(ΓLLTΓ)

)
||l1τ[α] + l2τ[β]||2 + 21−2β

ε

N

∑
k=1
|ξk|2β. (14)

(2) Design of control law ui, i ∈ IN .
Consider the dynamics of v∗i :

v̇∗i = ˙̃vi + αl1|τi|α−1σi = ui + d̃i + αl1|τi|α−1σi.

Then, the control protocol ui is designed as follows:

ui =− k1ξ
[2α−1]
i − k2ξ

[2β−1]
i − k3sign(ξi)− αl1|τi|α−1σi, (15)
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where 1
2 < β < 1 < α, l1 > 0, and the constant coefficients k1, k2, and k3 will be given in

the next Theorem.
To this end, we summarize the main result and provide the corresponding stabil-

ity analysis.

Theorem 1. Consider the second-order disturbed MASs (2). If the Assumptions 1–3 hold, then the
FixF can be achieved under control protocol (15) with the control gains selected as

k1 > 0, k2 > 21−2βε−2 + c̄2k, k3 ≥ d̄ + h̄,

0 < ε <
λ2(L̂)

N(λmax(ΓLLTΓ) + 2c̄1k)
, (16)

where c̄1k = 1
2 l

1
β

2 Πk +
1
2 l

1
β

2 ∑j∈N−k
τj, c̄2k = l

1
β

2 (3 × 21−2βΠk + 22−2βπk|Nk|) + 21−2βl
1
β

2

∑j∈N−k
πj with Πk = ∑j∈Nk

akj, πk = maxj∈Nk{akj}, and Γ is given in Lemma 1.

Proof. Consider the Lyapunov function candidate

V = V0 + ε
N

∑
k=1

Vk, (17)

with

V0 =
N

∑
k=1

(
l1γk

1 + α
|τk|1+α +

l2γk
1 + β

|τk|1+β

)
,

Vk =
∫ v∗k

v̄k

(
s[

1
β ] − v̄

[ 1
β ]

k

)
ds, k ∈ IN , (18)

where γk is defined in Lemma 1. It is not difficult to verify that V is differentiable, positive
definite, and proper. Denote v∗ = (v∗1 , · · · , v∗N)

T and v̄ = (v̄1, · · · , v̄N)
T .

The time derivative of Vk is given as

V̇k =−
dv̄

[ 1
β ]

k
dt

(v∗k − v̄k) + ξk v̇∗k

=l
1
β

2 τ̇k(v∗k − v̄k) + ξk v̇∗k

=l
1
β

2

N

∑
j=1

akj(ṽk − ṽj)(v∗k − v̄k) + ξk v̇∗k . (19)

Let Πk = ∑j∈Nk
akj and πk = maxj∈Nk{akj}, then one obtains

∣∣∣∑N
j=1 akj(ṽk − ṽj)

∣∣∣ ≤
Πk|ṽk|+ πk ∑j∈Nk

|ṽj|.
Based on Lemma 4, one obtains

|ṽk||v∗k − v̄k|

=|v∗k − v̄k − l1τ
[α]
k − l2τ

[β]
k ||v

∗
k − v̄k|

≤3
2
|v∗k − v̄k|2 +

1
2
|l1τ

[α]
k + l2τ

[β]
k |

2

≤3× 21−2β|ξk|2β +
1
2
|l1τ

[α]
k + l2τ

[β]
k |

2, (20)
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and

|ṽj||v∗k − v̄k|

=|v∗j − v̄j − l1τ
[α]
j − l2τ

[β]
j ||v

∗
k − v̄k|

≤|v∗j − v̄j||v∗k − v̄k|+ |l1τ
[α]
j + l2τ

[β]
j ||v

∗
k − v̄k|

≤|v∗k − v̄k|2 +
1
2
|v∗j − v̄j|2 +

1
2
|l1τ

[α]
j + l2τ

[β]
j |

2

≤22−2β|ξk|2β + 21−2β|ξ j|2β +
1
2
|l1τ

[α]
j + l2τ

[β]
j |

2. (21)

From (19)–(21), one obtains that∣∣∣∣ N

∑
k=1

akj(ṽk − ṽj)

∣∣∣∣|v∗k − v̄k|

≤
(

Πk|ṽk|+ πk ∑
j∈Nk

|ṽj|
)
|v∗k − v̄k|

≤(3 · 21−2βΠk + 22−2βπk|Nk|)|ξk|2β + πk ∑
j∈Nk

21−2β|ξ j|2β

+
1
2

Πk|l1τ
[α]
k + l2τ

[β]
k |

2 +
1
2

πk ∑
j∈Nk

|l1τ
[α]
j + l2τ

[β]
j |

2. (22)

Furthermore,

N

∑
k=1

V̇k ≤
N

∑
k=1

(
l

1
β

2

∣∣∣∣ N

∑
j=1

akj(ṽk − ṽj)

∣∣∣∣|v∗k − v̄k|+ ξk v̇∗k

)

≤
N

∑
k=1

(
l

1
β

2
(
Πk|ṽk|+ πk ∑

j∈Nk

|ṽj|
)
|v∗k − v̄k|+ ξk v̇∗k

)

≤
N

∑
k=1

(c̄1k|l1τ
[α]
k + l2τ

[β]
k |

2 + c̄2k|ξk|2β + ξk v̇∗k ), (23)

where c̄1k =
1
2 l

1
β

2 Πk +
1
2 l

1
β

2 ∑j∈N−k
πj and c̄2k = l

1
β

2 (
3Πk

22β−1 +
πk |Nk |
22β−2 ) + 21−2βl

1
β

2 ∑j∈N−k
πj.

From (14) and (23), it follows that

V̇ ≤−
N

∑
k=1

c1k|l1τ
[α]
k + l2τ

[β]
k |

2 +
N

∑
k=1

(21−2βε−1 + εc̄2k)|ξk|2β + εξT v̇∗, (24)

where c1k =
λ2(L̂)

2N − 1
2 ελmax(ΓLLTΓ)− εc̄1k.

Taking the control protocol (15) into consideration and v̇∗i = ui + d̃i + αl1|τi|α−1σi,
one has

V̇ ≤−
N

∑
k=1

c1k|l1τ
[α]
k + l2τ

[β]
k |

2 −
N

∑
k=1

(k̄1|ξk|2α + k̄2|ξk|2β)−
N

∑
k=1

(k3 − |d̃i|)|ξi|, (25)

where k̄1 = εk1 and k̄2 = εk2 − 21−2βε−1 − ε maxk∈IN{c̄2k}.
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Thus, the parameters can be chosen as

0 <ε <
λ2(L̂)

N(λmax(ΓLLTΓ) + 2c̄1k)
,

k2 > 21−2βε−2 + max
k∈IN
{c̄2k},

k3 ≥ d̄ + h̄,

such that c1k, k̄1, k̄2 and k3 − |d̃i| are all positive.
Then, from (25), one obtains

V̇ ≤−
N

∑
k=1

c1k(l2
1 |τk|2α + 2l2l2|τk|α+β + l2

2 |τk|2β)−
N

∑
k=1

(k̄1|ξk|2α + k̄2|ξik|2β)

≤− c0

N

∑
k=1

(|τk|α + |τk|β)2 − k0

N

∑
k=1

(|ξk|α + |ξk|β)2, (26)

where c0 = mink∈IN{c1kl2
1 , c1kl1l2, c1kl2

2} and k0 = mink∈IN{k̄1/3, k̄2/3}. The last inequal-
ity is because k̄1|ξk|2α + k̄2|ξk|2β ≥ k0(3|ξk|2α + 3|ξk|2β) ≥ k0(|ξk|2α + |ξk|2β + 2|ξk|α+β)
due to 2α < α + β < 2β.

On the other hand, from (18) one has

V0 ≤ l0
N

∑
k=1

(|τk|1+α + |τk|1+β)

V̄0 = ε
N

∑
k=1

Vk ≤ ε
N

∑
k=1
|ξk||v∗k − v̄k| ≤ ε

N

∑
k=1

21−β|ξk|1+β ≤ a0

N

∑
k=1

(|ξk|1+α + |ξk|1+β), (27)

with l0 = maxk∈IN

{
l1γk
1+α , l2γk

1+β

}
and a0 = 21−βε.

According to Lemma 7 and from (26), (27), one has

V̇ ≤− c0

2lr1
0

Vr1
0 −

c0

2lr2
0
(2N)

1−α
1+α Vr2

0 −
k0

2ar1
0

V̄r1
0 −

k0

2ar2
0
(2N)

1−α
1+α V̄r2

0

≤− c̄0Vr1 − k̄0Vr2 , (28)

where the Lemma 5 is utilized for the last inequality by noting V = V0 + V̄0, c̄0 =

min
{

c0
2l

r1
0

, k0
2a

r1
0

}
and k̄0 = 21−r2(2N)

1−α
1+α min

{
c0

2lr2
0

, k0
2ar2

0

}
with r1 = α+β

α+1 , r2 = 2α
α+1 .

Because 0 < r1 < 1 < r2, by using Lemma 2, it can be obtained that V(t) converges to
0 within a fixed T satisfying T ≤ 1

c̄0(1−r1)
+ 1

k̄0(r2−1) . Furthermore, V(t) = 0⇒ τk = 0, ṽk =

0⇒ x̃k = x̃j, which means the FixF is achieved. The proof is completed.

Remark 1. We claim that the control input (15) is globally bounded. In fact, from (26) in the paper,
one obtains that τk and v̄k are bounded, which implies that v∗k , ξk, k ∈ IN are bounded. From (8),

we have ṽk = v∗k − l1τ
[α]
k , which means that ṽk is bounded. Besides, σk is bounded by noting that

σk = τ̇k = ∑N
k=1 akj(ṽk − ṽj). By noting the expression of controller uk (15), it is known that the

control input is globally bounded.

Remark 2. From Theorem 1, it can be observed that the parameters l1, l2 in (8), (9) and k1 in (15)
can be chosen as any positive numbers. However, from (16), it can be seen that the control gains
k2 relies on the global information, viz., the spectrum of the Laplacian matrix and the outer degree.
To remove such constraint, a new adaptive practical fixed-time controller will be proposed in the
next subsection.



Symmetry 2021, 13, 2295 9 of 15

3.2. Adaptive Practical Fixed-Time Formation Control Protocol

In this subsection, an adaptive practical FixF controller will be designed to adjust the
control gain online.

An adaptive FixF control protocol is designed as follows:

ui =− k1ξ
[2α−1]
i − wiξ

[2β−1]
i − k3sign(ξi)− αl1|τi|α−1σi, (29)

where k1, l1 are any positive constants, k3 ≥ d̄ + h̄, 1
2 < β < 1 < α, and τi, σi, ξi are

defined in the above subsection. Moreover, wi, i ∈ IN are dynamic control gains, which are
defined as

ẇi = |ξi|2β − `wi, wi(0) = wi0, i ∈ IN . (30)

Theorem 2. Consider the second-order disturbed system (2). Suppose the Assumptions 1–3 hold
and k3 > d̄ + h̄, then the FixF can be achieved under control protocol (29).

Proof. Consider the Lyapunov function candidate

W = V +
1
2

ε
N

∑
k=1

w̃2
k , (31)

in which V is defined in (17) and w̃k = wk − ŵk with ŵk being some positive constants to
be designed later.

Following the same procedures in the proof of Theorem 1, one obtains

V̇ ≤−
N

∑
k=1

c1k|l1τ
[α]
k + l2τ

[β]
k |

2 +
N

∑
k=1

(21−2βε−1 + εc̄2k)|ξk|2β + εξT v̇∗,

≤−
N

∑
k=1

c1k|l1τ
[α]
k + l2τ

[β]
k |

2 −
N

∑
k=1

((εwk − 21−2βε−1 − εc̄2k)|ξk|2β + εk1|ξk|2α). (32)

The last inequality is due to −∑N
k=1(k3 − |d̃i|)|ξi| ≤ 0.

One can choose ŵk = 21−2βε−2 + c̄2k + ε−1k̄2 and let k̄1 = εk1. Then, following the
same steps in the proof of Theorem 1, one has

Ẇ ≤−
N

∑
k=1

c1k|l1τ
[α]
k + l2τ

[β]
k |

2 −
N

∑
k=1

(k̄1|ξk|2α + k̄2|ξk|2β)− ε`
N

∑
k=1

w̃kwk

≤− c̄0Vr1 − k̄0Vr2 − ε`
N

∑
k=1

w̃kwk, (33)

where c̄0, k̄0, r1 and r2 are designed as before.
Because −w̃kwk = −w̃k(w̃k + ŵk) = −w̃2

k − w̃kŵk ≤ − 1
2 w̃2

k +
1
2 ŵ2

k and Vr1 + Vr2 ≥ V,
one obtains

Ẇ ≤− c̄0Vr1 − k̄0Vr2 − ε`
N

∑
k=1

w̃kwk

≤−min{c̄0, k̄0}V −
1
2

ε`
N

∑
k=1

w̃2
k +

1
2

ε`
N

∑
k=1

ŵ2
k

≤−min{c̄0, k̄0, 1}W +
1
2

ε`
N

∑
k=1

ŵ2
k . (34)
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By noticing that ŵk are constants, it can be concluded that W is bounded, which
implies w̃k is bounded, viz., there exists a constant ∆ such that ∑N

k=1 ŵ2
k ≤ ∆.

Moreover,

Ẇ ≤− c̄0Vr1 − k̄0Vr2 − ε`
N

∑
k=1

w̃kwk

≤− c̄0Vr1 − k̄0Vr2 − 1
2

ε`
N

∑
k=1

w̃2
k +

1
2

ε`
N

∑
k=1

ŵ2
k

≤− c̄0Vr1 − c̄0

(
1
2

ε
N

∑
k=1

w̃2
k

)r1

− k̄0Vr2 − k̄0

(
1
2

ε
N

∑
k=1

w̃2
k

)r2

+ c̄0

(
1
2

ε
N

∑
k=1

w̃2
k

)r1

+ k̄0

(
1
2

ε
N

∑
k=1

w̃2
k

)r2

− 1
2

ε`
N

∑
k=1

w̃2
k +

1
2

ε`
N

∑
k=1

ŵ2
k

≤− c̄0Wr1 − 21−r2 k̄0Wr2 + s, (35)

where

s =

{
1
2 ε`∑N

k=1 ŵ2
k , if c̄0

(
1
2 ε ∑N

k=1 w̃2
k

)r1
+ k̄0

(
1
2 ε ∑N

k=1 w̃2
k

)r2 − 1
2 ε`∑N

k=1 w̃2
k ≤ 0

c̄0εr1 ∆r1 + k̄0εr2 ∆r2 + 1
2 ε`∑N

k=1 ŵ2
k , otherwise

.

Based on Lemma 3, we can conclude that the system in (6) is practical FixS. Fur-
thermore, we calculate the residual set as {limt→T z|W(z) ≤ min{c̄−1/r1

0 (s/(1− θ))1/r1 ,
(21−r2 k̄0)

−1/r2(s/(1− θ))1/r2} with θ ∈ (0, 1). The time needed to reach the residual set is
bounded as T ≤ 1

c̄0θ(1−r1)
+ 1

21−r2 k̄0θ(r2−1)
. The proof is completed.

Remark 3. By invoking the tools of Kronecker product, the theoretical result obtained here can be
extended to MASs with multidimensional dynamics directly.

Remark 4. In this work, some practical factors are considered such as disturbance, convergence
time, and the dependence of global information. In fact, there are many other practical but important
factors worth considering. For example, actuator failure, communication switching, collision,
and deadlock [37–40]. We will consider these interesting problems in our future research.

4. Simulations

In this section, a numerical simulation is provided to show the performance of the
proposed adaptive control protocol.

Consider a MASs with six agents, where xi = (xi1, xi2)
T , vi = (vi1, vi2)

T and di =
(0.5 cos(it + 1), 0.2− 0.5 sin(it))T , i ∈ I6. The interaction topology is represented by the
strongly connected directed graph shown in Figure 1. The desired formation is a regular
hexagon and the desired trajectory of the formation center is “O”: (10 sin(π

4 t), 10 cos(π
4 t))T .

Furthermore, in the desired formation, the relative displacements of each agent to the for-
mation center are given as (−2, 0)T , (−1,

√
3)T , (1,

√
3)T , (2, 0)T , (1,−

√
3)T , (−1,−

√
3)T .

Control parameters are chosen as α = 1.3, β = 0.7, k1 = 5, k3 = 6.2, l1 = 5, l2 = 2, ` = 0.5.
Figure 2 depicts the adaptive gains. It can be observed that all the adaptive gains will
be bounded. The trajectories of the 6 agents are depicted in Figure 3. From Figure 3, it
is seen that when t = 0.5s, the formation is not formed; when t = 4s, the formation is
achieved and maintained. The formation trajectory tracking errors pi − hi and vi − ḣi are
shown in Figures 4 and 5, where pi − hi and vi − ḣi reach the same value very fast. Another
interesting thing is that vi − ḣi converges to zero finally, while xi − hi converges to some
steady but nonzero value. In fact, what matters most is (xi − hi)− (xj − hj). xi − hi is not
required to reach zero.
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Figure 1. The communication graph G.
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Figure 2. The trajectory of adaptive control gain. Above: the first dimension ωi1; below: the second
dimension ωi2.



Symmetry 2021, 13, 2295 12 of 15

-15 -10 -5 0 5 10 15 20

-25

-20

-15

-10

-5

0

5

10

t=0.5s

t=4s

t=7s

Figure 3. The trajectories of agents.
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Figure 4. Formation trajectory tracking error: pi − hi, i ∈ I6. Above: the first dimension pi1 − hi1;
below: the second dimension pi2 − hi2.
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Figure 5. Formation trajectory tracking error: vi − hi, i ∈ I6. Above: the first dimension vi1 − hi1;
below: the second dimension vi2 − hi2.

5. Conclusions

The FixF problem for a kind of second-order MASs with disturbances over general
directed graphs has been resolved in this paper. A novel FixF control protocol has been
designed based on backstepping method, and the convergence time can be estimated
directly, which is uniformly bounded. Then, to remove the dependence of control gains on
global conditions, an adaptive practical FixF control protocol has been presented, which is
fully distributed. In fact, the results can be generalized to more general directed graphs that
just contain a directed spanning tree [9]. Future work includes considering FixF of general
nonlinear MASs with directed communication topologies. Another research direction is
to design a fully distributed FixF control protocol to achieve an accurate convergence for
second-order or higher-order MASs by noticing that the errors converge to a small region
in this paper.
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