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Abstract: A cable-stayed bridge is a typical symmetrical structure, and symmetry affects the defor-
mation characteristics of such bridges. The main girder of a cable-stayed bridge will produce obvious
deflection under the inducement of temperature. The regression model of temperature-induced
deflection is hoped to provide a comparison value for bridge evaluation. Based on the temperature
and deflection data obtained by the health monitoring system of a bridge, establishing the correlation
model between temperature and temperature-induced deflection is meaningful. It is difficult to
complete a high-quality model only by the girder temperature. The temperature features based on
prior knowledge from the mechanical mechanism are used as the input information in this paper. At
the same time, to strengthen the nonlinear ability of the model, this paper selects an independent
recurrent neural network (IndRNN) for modeling. The deep learning neural network is compared
with machine learning neural networks to prove the advancement of deep learning. When only the
average temperature of the main girder is input, the calculation accuracy is not high regardless of
whether the deep learning network or the machine learning network is used. When the temperature
information extracted by the prior knowledge is input, the average error of IndRNN model is only
2.53%, less than those of BPNN model and traditional RNN. Combining knowledge with deep learn-
ing is undoubtedly the best modeling scheme. The deep learning model can provide a comparison
value of bridge deformation for bridge management.

Keywords: cable-stayed bridge; deflection model; deep learning; prior knowledge

1. Introduction

With the development of the economy, the transportation network has gradually ex-
panded, so there are increasingly more bridges being built across rivers, lakes, and seas [1].
Due to the progress of construction technology and industrial technology, cable-stayed
bridges have become more popular in long-span bridges [2]. To protect the operational
lifetime of the project, structural health monitoring (SHM) systems are installed on the
cable-stayed bridges to observe the service state of the bridges in real-time [3]. When the
bridge fails, the SHM systems would be expected to sense the failure event to prevent a
major accident. To achieve this goal, we must mine the big data accumulated by the SHM
system as much as possible. Therefore, the management and maintenance of cable-stayed
bridges based on the big data provided by SHM have become a hot topic [4].

Cable-stayed bridges are typical symmetrical structures, and symmetry affects the
deformation characteristics of such bridges. The main girder deflection of a cable-stayed
bridge is an important embodiment of its service performance [5]. Under the effect of
temperature, the deflection of the main girder changes slowly, that is, temperature-induced
deflection [6]. The temperature-induced deflection determines the quasi-static state of the
bridge. Therefore, if we can establish a regression model which can express the correlation
between the bridge temperature and temperature-induced deflection, the temperature-
induced deflection under the temperature effect can be output by the measured temperature
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information and the output temperature-induced deflection can be used as the baseline of
the normal state of the bridge. After obtaining the measured value of temperature-induced
deflection, we can compare the measured value with the output value from the regression
model, and thus we can know whether there is an abnormality in the working state of
the bridge once the difference between the two is too large. Therefore, the establishment
of a high-precision regression model of the structural response is the focus of bridge
engineering [7]. Based on the big data obtained by SHM, the linear regression model
between girder temperature and temperature-induced deflection is established, but the
accuracy is poor [8]. After replacing with powerful machine learning tools, the accuracy of
the regression model between the main girder and the temperature-induced deflection has
been greatly improved, but the error is still unsatisfactory [9].

In fact, the temperature-induced deflection of the main girder of a cable-stayed bridge
is affected by each component on the bridge. According to the knowledge from mechanism
research, the dispersed temperature field, which affects the temperature-induced deflection
of cable-stayed bridge, can be summarized as data features such as the average temperature
of main girder, the vertical temperature difference of main girder and the tower temperature.
Mechanical knowledge explains the causes of temperature-induced deflection, and scholars
have established a temperature-induced deflection model according to the mechanism [10].
However, the modeling process based on the mechanism is cumbersome, and therefore is
less practical.

Obviously, the existing regression models have two problems: one is that the temper-
ature information is not clear and sufficient; second, the timing modeling performance
of fitting tools still needs to be improved. In this paper, prior knowledge will be used to
extract the temperature features and reduce the data dimension; deep learning is used
as a fitting tool to strengthen the performance in time series regression, to enhance the
robustness of the established model [11]. This paper will verify the advantages of deep
learning technology and explore the optimal data cost required to establish the model. The
deep learning model is expected to obtain better accuracy, so it can contribute to a more
reliable and more efficient recognition of the bridge state.

2. Data Set for Model
2.1. Temperature Information Based on Prior Knowledge

This paper uses the data of the Tongling Yangtze River Bridge in Anhui Province,
China. Tongling Yangtze River Bridge is a highway–railway cable-stayed bridge connecting
Tongling and Wuhu. Figure 1 shows the elevation of Tongling Yangtze River Bridge. The
main span of the bridge reaches 630 m and the total length is 1290 m. It is a typical
double tower cable-stayed bridge. To monitor the temperature field of this bridge, several
temperature sensors are installed on the main girder and cable tower. To monitor the
deflection, a displacement sensor is installed in the middle of the main span. Section 1-1
and Section 2-2 show the detailed location of these sensors.

Figure 1. The elevation of the Tongling Yangtze River bridge.

As shown in Figure 2, Section 1-1 is the midspan section of the main girder. As
shown in Figure 3, Section 2-2 is the cross-section of the tower. In this bridge, twelve
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temperature sensors are installed in the main girder, and eight temperature sensors are
installed surrounding the tower. The deflection sensor is installed at the bottom center of
the main girder.

Figure 2. Section of main girder (Section 1-1).

Figure 3. Section of the tower (Section 2-2).

If we use the data of all temperature sensors for modeling, too large a data scale will
lead to a sharp increase in modeling cost, and invalid information will lead to a decrease in
fitting accuracy [12,13]. Therefore, this paper determines to extract temperature features
based on the verification knowledge. Taking the research on the mechanism of temperature-
induced deflection as a priori knowledge and combining the monitoring information of the
bridge, the temperature field of the whole bridge can be summarized as the main girder
temperature, the main girder temperature difference, and the tower temperature [14].
Therefore, we take the average value of sensors W1~W12 as the average temperature of
the girder, subtract W3 from W10 as the vertical temperature difference of the main girder,
and the average value of T1~T8 as the tower temperature. The sampling frequency of
temperature data in this paper is set as ever 10 min one time [15,16]. The variable of the
average temperature of the main girder is noted as W, the vertical temperature difference
of the main girder is noted as WD, and the vertical cable tower temperature is noted as T.
W, WD and T in one day, are shown in Figure 4.

Figure 4. W, WD, and T in one day. (a) Temperature of W. (b) Temperature of WD. (c) Temperature of T.
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As shown in Figure 4, the temperature features look like sine waves because of
following sunrise and sunset, and the trend of temperature-induced deflection is similar to
the temperature feature. Next, we will extract the temperature-induced deflection.

2.2. Temperature-Induced Deflection and Data Set

The time history curve of deflection sensor D in a single day is shown in Figure 5. The
raw data shows a lot of high-frequency information like a fishbone. The high-frequency
information is caused by vehicles. We used a 10 min averaging method to extract the
temperature-induced deflection to achieve the time stamp alignment with the temperature
data [15]. As shown in Figure 5, the temperature-induced deflection ups and downs are
just like the temperature information. The variable of temperature-induced deflection is
noted as D.

Figure 5. Temperature-induced deflection in one day.

We used the SHM system to obtain the time series data of the bridge within nine
months. After clearing the vacancy value in the common position of all four data variables,
there are 31,103 data points left for each variable. As shown in Figure 6, the first 75% of
data is defined as the training set for training the neural network, and the last 25% of data
is defined as the test set for testing the neural network.

Figure 6. W, WD, T and D in nine months.
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3. Fitting Methods
3.1. Back Propagation Neural Network (BPNN)

BPNN is one type of artificial neural network (ANN) belonging to machine learning.
Compared with general ANN, BPNN has the function of back propagation [17]. As shown
in Figure 7, in BPNN, data x1, . . . , xt is the input into the hidden layer from the input layer;
then, the information will be operated with weight coefficient (Wtm) and be transmitted
from input layer to hidden layer. In the hidden layer, the information will be processed with
sigmoid activation function σ, then the processed information will be operated with weight
coefficient (W’m); finally, the regression value y’ is obtained through the full connection
layer. The above is the forward propagation in BPNN. Then, the back propagation will be
used for optimizing the parameters in the neural network.

Figure 7. The typical architecture of BPNN.

Back propagation is a gradient descent algorithm, which uses the loss between the
actual value and regression value as optimization index, can improve the accuracy of
neural network by iterative training with several epochs [18]. BPNN is the traditional
machine learning fitting tool, and there are many introductions about BPNN in the existing
literature, so this paper will not repeat these.

3.2. Recurrent Neural Network (RNN)

RNN is one type of neural network belonging to deep learning technology. Compared
with the machine learning network, the deep learning network has a deeper hidden layer
and more complex computing cell, so deep learning usually has stronger performance than
machine learning [19]. Scholars created RNN to improve the performance of neural net-
works. To expression timing performance, RNN has the structure in expanding horizontal
depth, and thus RNN has the time transmission characteristic.

As shown in Figure 8, being different from BPNN, the time series data are input into
the recurrent hidden layer of RNN at different times. The RNN cell at the current time
transmits data to the output layer while transmitting data to the next time, and the data
from the above time will be input together.

Figure 8. The typical architecture of RNN.
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We illustrate the cell of RNN at time t. As shown in Figure 9, at time t, xt at this
time and the hidden output value ht−1 from the previous time will be accepted. These
two values are combined with the weights W and U, respectively. The combined value is
activated through the tanh function to obtain the output value ht at this time. ht passes in
the hidden cell to the next time and be combined with the weight V to obtain the output
value yt at the current time. This is the lateral depth of RNN, which is the important reason
why RNN has a stronger performance in timing modeling than BPNN.

Figure 9. One RNN cell in the hidden layer.

Taking time t as an example, we illustrate that the data operation in RNN cell. xt and
ht−1 are first combined with weight U, weight W, and bias b, and then calculated with
tanh activation function to obtain the value ht, which is input to the next time. Multiply ht
with the weight V , and then substitute the multiplied value to σ activation function, finally
obtaining the output value yt. Calculation formulas are shown in Equations (1) and (2).

ht = tanh (Uxt + Wht−1 + b) (1)

yt = σ (Vht) (2)

3.3. Independently Recurrent Neural Network (IndRNN)

Even RNN constructs the time link between the hidden cells, RNN is hard to express
long-term relationship and is difficult to construct vertical depth because RNN is prone
to gradient explosion or gradient disappearance. If a deeper RNN network were not
be constructed, only simple problem modeling could be carried out, which will greatly
limit the advantages of RNN [20]. If RNN could solve gradient explosion or gradient
disappearance, RNN would absorb the massive information and obtain strong fitting
performance.

To solve the problem in the traditional RNN, scholars put forward an independently
recurrent neural network (IndRNN) [21]. The reason, which causes gradient explosion
or gradient disappearance of RNN, is the hyperbolic tangent function tanh and sigmoid
function σ in RNN hidden cell. In the IndRNN cell, the activation function is selected as the
ReLU function, so the cell will have strong robustness and is feasible for multiple hidden
layers [21]. As shown in Figure 10, ReLU function is used as a substitute for tanh and σ.

Figure 10. One IndRNN cell in the hidden layer.

In the IndRNN cell, ht−1 is be described as Equation (3):

ht = ReLU (Uxt + W� ht−1 + b) (3)
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where � is represents thr Hadamard product, b is the bias vector in the hidden cell.
Activation function ReLU can be described as Equation (4):

ReLU = R(x) =
{

x, x ≥ 0
0, x < 0

(4)

As shown in Figure 11, IndRNN can be stacked with multiple layers. Compared with
the traditional RNN, IndRNN assigns batch normalization (BN) before each input layer
and after each output layer to avoid the covariate shift between the hidden layers [22].

Figure 11. The typical architecture of IndRNN.

In the study of SHM, the progress of the application of deep learning is fast [23,24],
so it is necessary to experiment with different kinds of neural networks [25]. We will use
the above three fitting tools to model the relationship between temperature variables and
temperature-induced deflection.

4. Temperature-Induced Deflection Model
4.1. Neural Network Model

In this paper, the operation flow of BPNN/RNN/IndRNN is consistent, and the
differences are located in the neurons used in the hidden layer. As shown in Figure 12a,
the first phase is the training phase. In the training phase, the first step is to normalize
the data of the training set. The normalization equation can use conventional min–max
normalization, which is the common sense of deep learning, so this article will not repeat.
Then input the data into the hidden layer and the fully connected layer, and regression
value y’ can be obtained.

Then, the error between the regression value y’ and the real value y are calculated
as loss for the back propagation. The equation of loss is Equation (5). Presetting training
epochs, the training phase will end when the predetermined epoch is reached. Then, we
can get a confirmed model.

loss =
1
N

N

∑
n=1

(
yn − y′n

)2

(5)

As Figure 12b shown, the confirmed model will be tested for whether the model is
qualified for application. Then we will compare the performance of the three kinds of
network.
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Figure 12. Training phase and test phase of machine learning: (a) Training phase of neural network;
(b) Test phase of neural network.

4.2. Model Based on Non-Mechanism Temperature Feature

If we put aside the mechanism of temperature-induced deflection of cable-stayed
bridges, we will believe that the temperature-induced deflection of the main girder is
driven by the temperature of the main girder. So building the model based on non-
mechanism temperature feature only needs to input temperature feature W. Referring to
the research of the time series property of bridge temperature [15], we selected 30 input
points corresponding to one output point, and the time shift mode is shown in Figure 13.

Figure 13. The time-moving relationship between W and D.

We trained and tested the three kinds of neural networks according to the process
in Figure 12, with preset 100 epochs. Learning rate (lr) was set as 0.0001; batch size was
set as 10; hidden layer had 64 cells. The loss curves in the training process are shown in
Figure 14. The CPU of our computer is the Intel Core i7-7700K with an operation frequency
of 4.20 GHz. The training time of BPNN is 158.58 s; the training time of RNN is 378.46 s;
the training time of IndRNN is 405.64 s.



Symmetry 2021, 13, 2293 9 of 13

Figure 14. The loss curves in training and test phases of the three kinds of neural network:
(a) Training phase; (b) Test phase.

As shown in Figure 14a,b, in the training phase and test phase, the curves of three
kinds of neural networks are all convergent, but that of IndRNN is undoubtedly the one
with the smallest error. We put the test set into the trained model; the regression value and
actual value are shown in Figure 15.

Figure 15. Regression values of three kinds of neural network: (a) BPNN; (b) RNN; (c) IndRNN.
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As shown Figure 15, no matter what kind of neural network is used, the error is not
satisfactory when only W is input. The average error of BPNN was 11.12%, RNN was
10.57%, and IndRNN was 9.69%. Obviously, whether BPNN belonging to machine learning
or RNN and IndRNN belonging to deep learning is used, the satisfactory model can not be
completed by only inputting W. Therefore, we needed to further explore knowledge-driven
input information.

4.3. Model Based on Temperature Feature Driven by Knowledge

Obviously, it is impossible to produce a high-performance temperature-induced de-
flection model without prior knowledge, even with advanced fitting tools. Therefore, we
need to input three temperature features W, WD, and T obtained based on prior knowledge.
When three temperature variables are input, the data relationship mode is different due
to the different principles of the neural network. Take time t as an example. As shown in
Figure 16, for BPNN, the data of three temperature features at different times are input into
the neural network model together. For RNN/IndRNN, because of the temporal modeling
attribute, three temperature features, at the same time, are integrated into a vector for
input.

Figure 16. The relationship between temperature features and temperature-induced deflection at
time t: (a) The relationship between W, WD, T and D at time t of BPNN; (b) The relationship between
W, WD, T and D at time t of RNN/IndRNN.

In the neural networks with prior knowledge, the learning rate (lr) was still 0.0001;
batch size was set as 10; each hidden layer had 64 cells and the number of hidden layers
was improved to two. After inputting three temperature features, the loss curves in the
training process are shown in Figure 17. The training time of BPNN was 422.04 s; the
training time of RNN was 1125.50 s; the training time of IndRNN was 1569.78 s.

Figure 17. The loss curves in the training phase and test phase of the three kinds of neural networks
with three temperature variables by prior knowledge: (a) Training phase; (b) Test phase.
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As shown in Figure 17a,b, in the training phase and test phase, the curves of three
kinds of neural networks are all convergent, but that of IndRNN is undoubtedly the one
with the smallest error. When three kinds of temperature variables were input, the loss
curves undoubtedly converged to lower. We put the test set into the trained models by the
neural networks with prior knowledge; the regression value and actual value are shown in
Figure 18.

Figure 18. Regression value of the three kinds of neural network with prior knowledge: (a) BPNN;
(b) RNN; (c) IndRNN.

As shown Figure 18, after inputting more comprehensive temperature information,
the output accuracy of the three models has been improved. The average error of BPNN
was 6.57%, RNN was 4.76%, and IndRNN was only 2.53%. This result proves that when
establishing the temperature-induced deflection model of the main girder of a cable-
stayed bridge, sufficient temperature information must be input, and the temperature
features extracted based on the mechanism are undoubtedly appropriate. Compared with
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traditional machine learning, deep learning technology undoubtedly has stronger nonlinear
fitting performance and thus has higher accuracy of regression model. Compared with
RNN, IndRNN has better modeling effect, and the accuracy of it is the highest among the
three models because of its stronger robustness. Therefore, this paper suggests that when
establishing the temperature-induced deflection model of the main girder of a cable-stayed
bridge, the temperature features can be extracted based on the prior knowledge by the
mechanical mechanism. The fitting method can be chose from the tools that with nonlinear
robustness such as IndRNN and other deep learning tools.

5. Conclusions

Under the influence of the complex temperature field distributing in all components
of a cable-stayed bridge, the main girder of the cable-stayed bridge will produce the
temperature-induced deflection. Because the action mechanism is complex, establishing
the correlation model between the temperature features and the temperature-induced
deflection is a complex project. The difficulty is usually considered to be two aspects of
information extraction and fitting tools. To establish a more accurate temperature-induced
deflection model, this paper attempts to use the priori knowledge from the mechanical
mechanism to extract the appropriate temperature features, and tries to use a deep learning
tool with more powerful nonlinear expression performance. The conclusions are as follows:

(1) When establishing the temperature-induced deflection model of a cable-stayed bridge,
we should not only input the temperature data of the main girder, but also input the
temperature information obtained by the prior knowledge. Through the mechanical
mechanism of the temperature-induced deflection of a cable-stayed bridge, this paper
obtains three kinds of temperature features, namely, the average temperature of
the main girder, the vertical temperature difference of the main girder, and the
temperature of the tower. Only by inputting the temperature information obtained by
the prior knowledge can a good model be established.

(2) The effect of using BPNN, which belongs to traditional machine learning to establish
the temperature-induced deflection model is worse than using deep learning algo-
rithms. When only the average temperature of the main girder is input, the average
error of the model established by BPNN is 11.12%. After inputting three temperature
features, the average error is reduced to 6.57%.

(3) Benefiting from the stronger nonlinear modeling performance, the model established
by deep learning has higher accuracy. When only the average temperature of the
main girder is input, the average error of the model established by IndRNN is 9.96%.
After inputting three temperature features, the output error is reduced to only 2.53%.
Deep learning is undoubtedly a better tool for bridge response modeling.

Author Contributions: Conceptualization, Z.Y. and Y.D.; funding acquisition, Y.D. and H.Z.; inves-
tigation, Z.W.; methodology, Z.Y. and Y.D.; resources, Y.D. and H.Z; software, Z.Y., Y.D. and H.Z.;
validation, Z.Y.; writing—original draft, Z.Y.; writing—review and editing, Y.D. All authors have
read and agreed to the published version of the manuscript.

Funding: The Fund for Distinguished Young Scientists of Jiangsu Province (Grant BK20190013), the
National Natural Science Foundation of China (Grants 51978154, 52008099, and 51608258), Natural
Science Foundation of Jiangsu Province (Grant. BK20200369), and the Fund for Jiangsu Graduate
Research and Practice Innovation Program (Grant KYCX21_0116).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the editors and the anonymous reviewers for
their valuable comments on the content and the presentation of this article.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2021, 13, 2293 13 of 13

References
1. Song, S.Y.; Guo, J.; Su, Q.K. Technical challenges in the construction of bridge-tunnel sea-crossing projects in China. J. Zhejiang

Univ. Sci. A Appl. Phys. Eng. 2020, 21, 509–513. [CrossRef]
2. Zhang, L.; Qiu, G.; Chen, Z. Structural health monitoring methods of cables in cable-stayed bridge: A review. Measurement 2020,

168, 108343. [CrossRef]
3. Miyamoto, A.; Motoshita, M. A Study on the intelligent bridge with an advanced monitoring system and smart control techniques.

Smart Struct. Syst. 2017, 19, 587–599.
4. Yan, Z.G.; Yue, Q.; Shi, Z. Design of Structural Health Monitoring System for Hutong Changjiang River Bridge. Bridge Constr.

2017, 47, 7–12.
5. Xia, G.P. Parametric Study of Cable Deflection and Gravity Stiffness of Cable-Stayed Suspension Bridge. Appl. Mech. Mater. 2014,

488, 445–448. [CrossRef]
6. Ding, Y.; Wang, G.; Zhou, G.; Li, A. Life-cycle simulation method of temperature field of steel box girder for Runyang cable-stayed

bridge based on field monitoring data. China Civ. Eng. J. 2013, 46, 129–136.
7. Xu, X.; Xu, C.; Zhang, Y.; Wang, H. Preliminary Study on the Loss Laws of Bearing Capacity of Tunnel Structure. Symmetry 2021,

13, 1951. [CrossRef]
8. Li, H. Study on Mechanical Characteristics of Railway Cable-Stayed Bridges with High and Low Towers. China Railw. Sci. 2019,

40, 54–59.
9. Yang, D.H.; Yi, T.H.; Li, H.N.; Zhang, Y.F. Correlation-Based Estimation Method for Cable-Stayed Bridge Girder Deflection

Variability under Thermal Action. J. Perform. Constr. Facil. 2018, 32, 04018070. [CrossRef]
10. Zhou, Y.; Sun, L.; Fu, Z.; Ren, P. General formulas for estimating temperature-induced mid-span vertical displacement of

cable-stayed bridges. Eng. Struct. 2020, 221, 111012. [CrossRef]
11. Pedraza, A.; Deniz, O.; Bueno, G. On the Relationship between Generalization and Robustness to Adversarial Examples. Symmetry

2021, 13, 817. [CrossRef]
12. Porter, W.A.; Liu, W. On the performance of higher order moment neural computation. Inf. Sci. Appl. 1995, 3, 179–191. [CrossRef]
13. Korczak, J.; Hammadi-Mesmoudi, F. A way to improve an architecture of neural network classifier for remote sensing applications.

Neural Process. Lett. 1994, 1, 13–16. [CrossRef]
14. Zhou, Y.; Sun, L. Effects of environmental and operational actions on the modal frequency variations of a sea-crossing bridge: A

periodicity perspective. Mech. Syst. Signal Process. 2019, 131, 505–523. [CrossRef]
15. Liu, H.; Ding, Y.-L.; Zhao, H.-W.; Wang, M.-Y.; Geng, F.-F. Deep learning-based recovery method for missing structural temperature

data using LSTM network. Struct. Monit. Maint. 2020, 7, 109–124.
16. Mei, X.D.; Lu, Y.Y.; Shi, J. Temperature monitoring and analysis of a long-span cable-stayed bridge during construction period.

Struct. Monit. Maint. 2021, 8, 203–220.
17. Sadeghi, B. A BP-neural network predictor model for plastic injection molding process. J. Mater. Process. Technol. 2000, 103,

411–416. [CrossRef]
18. Stuart, G.; Spruston, N.; Sakmann, B.; Häusser, M. Action potential initiation and backpropagation in neurons of the mammalian

CNS. Trends Neurosci. 2016, 134, 440–444. [CrossRef]
19. Williams, R.J.; Zipser, D. A Learning Algorithm for Continually Running Fully Recurrent Neural Networks. Neural Comput. 1998,

1, 270–280. [CrossRef]
20. Chen, Y.; Cheng, Q.; Cheng, Y.; Yang, H.; Yu, H. Applications of Recurrent Neural Networks in Environmental Factor Forecasting:

A Review. Neural Comput. 2018, 30, 2855–2881. [CrossRef] [PubMed]
21. Zhang, P.; Meng, J.; Luan, Y.; Liu, C. Plant miRNA-lncRNA Interaction Prediction with the Ensemble of CNN and IndRNN.

Interdiscip. Sci. Comput. Life Sci. 2020, 12, 82–89. [CrossRef]
22. Li, Y.; Wang, N.; Shi, J.; Liu, J.; Hou, X. Revisiting Batch Normalization for Practical Domain Adaptation. Pattern Recognit. 2016,

80, 109–117. [CrossRef]
23. Yaghoubi, V.; Cheng, L.; Van, P.W.; Kersemans, M. An ensemble classifier for vibration-based quality monitoring. Mech. Syst.

Signal Process. 2022, 165, 108341. [CrossRef]
24. Yaghoubi, V.; Liangliang, C.; Wim, V.P.; Mathias, K. A novel multi-classifier information fusion based on Dempster–Shafer theory:

Application to vibration-based fault detection. Struct. Health Monit. 2020, 14759217211007130. [CrossRef]
25. Wang, Z.-Y.; Lu, C.; Zhou, B. Fault diagnosis for rotary machinery with selective ensemble neural networks. Mech. Syst. Signal

Process. 2018, 113, 112–130. [CrossRef]

http://doi.org/10.1631/jzus.A20CSBE1
http://doi.org/10.1016/j.measurement.2020.108343
http://doi.org/10.4028/www.scientific.net/AMM.488-489.445
http://doi.org/10.3390/sym13101951
http://doi.org/10.1061/(ASCE)CF.1943-5509.0001212
http://doi.org/10.1016/j.engstruct.2020.111012
http://doi.org/10.3390/sym13050817
http://doi.org/10.1016/1069-0115(94)00041-Y
http://doi.org/10.1007/BF02312395
http://doi.org/10.1016/j.ymssp.2019.05.063
http://doi.org/10.1016/S0924-0136(00)00498-2
http://doi.org/10.1016/S0166-2236(96)10075-8
http://doi.org/10.1162/neco.1989.1.2.270
http://doi.org/10.1162/neco_a_01134
http://www.ncbi.nlm.nih.gov/pubmed/30216144
http://doi.org/10.1007/s12539-019-00351-w
http://doi.org/10.1016/j.patcog.2018.03.005
http://doi.org/10.1016/j.ymssp.2021.108341
http://doi.org/10.1177/14759217211007130
http://doi.org/10.1016/j.ymssp.2017.03.051

	Introduction 
	Data Set for Model 
	Temperature Information Based on Prior Knowledge 
	Temperature-Induced Deflection and Data Set 

	Fitting Methods 
	Back Propagation Neural Network (BPNN) 
	Recurrent Neural Network (RNN) 
	Independently Recurrent Neural Network (IndRNN) 

	Temperature-Induced Deflection Model 
	Neural Network Model 
	Model Based on Non-Mechanism Temperature Feature 
	Model Based on Temperature Feature Driven by Knowledge 

	Conclusions 
	References

