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Abstract: We present and amplify some of our previous statements on non-canonical interrelations
between the solutions to free Dirac equation (DE) and Klein–Gordon equation (KGE). We demonstrate
that all the solutions to the DE (possessing point- or string-like singularities) can be obtained via
differentiation of a corresponding pair of the KGE solutions for a doublet of scalar fields. In this way,
we obtain a “spinor analogue” of the mesonic Yukawa potential and previously unknown chains of
solutions to DE and KGE, as well as an exceptional solution to the KGE and DE with a finite value
of the field charge (“localized” de Broglie wave). The pair of scalar “potentials” is defined up to
a gauge transformation under which corresponding solution of the DE remains invariant. Under
transformations of Lorentz group, canonical spinor transformations form only a subclass of a more
general class of transformations of the solutions to DE upon which the generating scalar potentials
undergo transformations of internal symmetry intermixing their components. Under continuous
turn by one complete revolution the transforming solutions, as a rule, return back to their initial
values (“spinor two-valuedness” is absent). With an arbitrary solution of the DE, one can associate,
apart from the standard one, a non-canonical set of conserved quantities, positive definite “energy”
density among them, and with any KGE solution-positive definite “probability density”, etc. Finally,
we discuss a generalization of the proposed procedure to the case when the external electromagnetic
field is present.

Keywords: Dirac and Klein–Gordon equations; restricted gauge invariance; spinor two-valuedness;
singular solutions; conservation laws; Weyl and wave equations

1. On Well and Not Well Known: Relativistic Field Equations and Equivalence of
Their Solutions

The close relationship that has been established in the framework of relativistic field
theory between the physical Minkowski space-time geometry M and the two observed
types of elementary particles, bosons and fermions, is, perhaps, the most remarkable
achievement in theoretical physics. The connection manifests itself in the (discovered by E.
Cartan [1] (ch. VIII)) existence of two and only two types of irreducible representations
of the Lorentz group, symmetry group of M—tensorial and spinorial ones. According to
the modern paradigm, each type of particles of integer and half-integer spins (bosons and
fermions, respectively) is described by some linear field equation form-invariant under
transformations of the Lorentz group. In so doing, to ensure the form-invariance, the fields
themselves (“wave functions”) should transform through some irreducible representation
of Lorentz group (bosons through a tensorial while fermions through a spinorial one,
respectively).

Unconditionally, this rule is fulfilled for particles of low spins. Specifically, spinless
bosons (π-mesons) are described by scalar fields subject to the Klein–Gordon equation,
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whereas particles of unit spin are prescribed to the Proca equations for massive vector field
or wave equations for 4-potentials of the massless electromagnetic field. Fundamental
fermions (electron, neutrino, proton, neutron, etc.) of spin 1/2 are described by the Dirac
equation whose 4-component field transforms as a bispinor (a pair of 2-spinors) (Massless
fermions should be described by the Weyl equation. However, after the concept of massive
neutrino had been accepted, corresponding position turned out to be vacant, and such a
situation looks rather strange from a general viewpoint).

The Dirac equation corresponds to the principal constituents of matter. Introduction
of interaction between fermions as matter fields is then realized via the fields of integer
spin, carriers of interaction, on the base of the requirement of local gauge invariance of
the full Lagrangian. Under gauge transformations, the local phase of a wave function
and the potentials of a gauge field change concordantly (the latter in a gradient-wise way)
while the field strengths remain invariant. However, not all the integer spin fields, the
interaction carriers, can be considered as gauge fields; this is, in particular, the case of the
Klein–Gordon “mesonic” field. In the same manner, the Dirac field is not a gauge one by
itself. However, this evidently looking statement will be disputed and refuted further on.

As for the full set of solutions to the equations for free relativistic fields, apart from the
most often encountered everywhere regular solutions of the plane wave type, there exists a
wide class of their solutions singular on a zero measure set, with isolated point-like or string-
like singularities. Besides spherical waves, well known examples of solutions with a point-
like singularity are the Coulomb solution to Maxwell equations or the mesonic Yukawa
potential subject to the Klein–Gordon equation. Not always one can put in correspondence
with such a singular solution some δ-like source: for example, this is impossible for the “flat
limit” electromagnetic field of the Kerr–Newman solution in GTR (the so-called Appel
solution [2]) with a ring-like singularity, because of the twofold structure of the solution.

It is also known that, in the relativistic QM framework, wave functions of the bound
s− and p-states of the hydrogen atom have a weak singularity in the origin. It turns out
that solutions with not only point- or string-type, but even membrane-type, singularities
do exist for free Maxwell, Weyl, Yang–Mills fields [3,4] and, as we shall show later, for
massive Klein–Gordon and Dirac fields as well. It is this most general class of solutions to
relativistic field equations that we shall deal with below. Some of such singular solutions
are well known and possess generally accepted physical interpretation; others seem to
be novel.

In the case when all the solutions to a fundamental field equation can be obtained from
solutions of another equation, and vice versa, one should not consider such equations as
independent and describing different types of particles. On the contrary, these equations
should, perhaps, be treated as mathematically equivalent and corresponding to one and the
same physical system in different representations. Evident example of such a situation is the
link between Maxwell equations for field strengths and wave equations for electromag-
netic potentials. Indeed, one can (at least locally) juxtapose to any solution of Maxwell
equations a class of (gauge equivalent) potentials subject to wave equations, and vice versa.
That is why we do not relate, of course, these equations to different physical entities but
consider them both as describing one and the same electromagnetic field in its different
representations.

It turns out that a similar equivalence relationship takes place between the solutions to
massless (Maxwell, Weyl, and d’Alambert) [5,6] and massive (Dirac and Klein-Gordon) [6,7]
equations describing as though different types of particles. Evidently, the arising situation
hardly corresponds to the generally accepted viewpoint. Indeed, in the case of, say, massive
fields it is usually postulated that the Dirac equation (DE) and the equation of Klein–Gordon
(KGE) are responsible for description of particles of different spins, possess different sets of
conserved quantities and transform through different representations of the Lorentz group.
As for their solutions, everybody knows that each component of the Dirac field identically
satisfies the KGE, but not vice versa. In this sense, the DE is usually considered more rigid
and informative than the KGE [8] (p. 56).
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Meanwhile, correspondence of solutions to the DE and KGE can be not algebraic but
differentiative in nature just as it takes place for Maxwell equations for strengths in compare
with wave equations for potentials. Indeed, as it has been proved in [6] (see also in [7]),
any solution to the DE can be obtained by differentiation of a corresponding set of four solutions to
the KGE (defined up to a specific “gauge” freedom, see below).

In other words, one can regard a quadruple of the Klein–Gordon fields as a sort of
“potentials” for the Dirac bispinor field [6]. From this point of view, the free Dirac field is itself
a gauge field, and the DE and KGE should be considered as mathematically equivalent and
describing one and the same type of particles. Corresponding construction proposed earlier
in [6] is presented in Section 2. In Section 3, by making use of the 2 + 2 representation of
the DE, this construction is refined and essentially reinforced. It is shown, in particular, that
only some two (not four) solutions to the KGE are enough to obtain through differentiation
an arbitrary solution to the DE.

As far as the components of the arising solutions to the DE, in the turn, also satisfy
the KGE, it becomes possible to generate a whole chain of the DE-KGE solutions. Such a
possibility is demonstrated in Section 4 on a number of examples for which, as a starting
point, stationary (or static) spherically (axially) symmetric solution to the KGE, with point-
or string-like singularities is taken. In particular, a “spinorial analogue” of the mesonic
Yukawa potential is obtained. At the end of Section 4, a simple solution to the KGE with
integrable singularity and finite value of the field charge, as well as its “spinorial analog”,
are presented. Solution with such an exceptional property seems to be discovered for
the first time among those of various linear equations for fundamental fields. After a
corresponding Lorentz boost, we are brought up to its natural interpretation as a “localized”
de Broglie wave.

On the other hand, the discovered possibility to obtain a general solution to the DE
from the solutions for scalar fields poses, in the framework of the considered approach, the
question about the origin of the spinor law of transformation of the Dirac field. The solution
of this problem had been proposed in [6] and is based on the use of the internal symmetry
of the KGE system with respect to the transformations of the group SL(4,C), intermixing
the components of the quadruple of the Klein–Gordon “potentials”. After an appropriate
“tuning” of such transformations to the transformations of Lorentz group, the canonical
spinor law of transformations of the Dirac field can be completely restored. Generally,
however, the arising law of transformations of the Dirac field components corresponds to a
nonlinear representation of the Lorentz group and, on the other hand, does not result in a
spinorial two-valuedness. In particular, after a rotation by the complete angle the Dirac field
under transform does return, as a rule, back to its initial values. Properties of extended symmetry
transformations of the DE-KGE solutions are examined in Section 5 and illustrated on the
above indicated examples of solutions from Section 4.

In Section 6, we examine the problem of “twofoldness” of the set of conserved quanti-
ties which can be juxtapose to any solution to the DE or the KGE owing to their mutual
correspondence. To the first turn, it is remarkable that there exist two different “energies”
of the Dirac field one of which, according to the properties of the associated scalar fields, is
positive definite. Conversely, to any solution of the KGE, a positive definite “probability
density” can be ascribed.

In Section 7, we briefly describe the situation arising in the attempts of generalization
of the presented construction to the case when an external electromagnetic field is present.
The massless case is briefly reviewed in Section 8. In conclusion (Section 9), the most
important results of the paper are summarized. The problem of physical interpretation of
the established equivalence properties for distinct relativistic field equations is touched
upon as well as possible consequences of this equivalence for the QFT.

To simplify the perception, in the main part of the paper we do not apply the 2-spinor
formalism but use instead an equivalent 2 + 2 matrix form of representation. For metric on
M the form ηµν = diag{+1,−1,−1,−1} is chosen so that, say, the d’ Alembert operator
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has the form � := −∂µ∂µ = ∆− ∂2/∂t2. As usual, system of units where c = 1, h̄ = 1 is
used throughout the paper.

2. Klein–Gordon “Potentials” and Gauge Nature of a Free Dirac Field

Consider the Klein–Gordon equation (KGE)

(�−m2)Φ = 0, (1)

for four free complex scalar fields Φ = {φa}, a = 1, 2, 3, 4. The Klein–Gordon operator can
be factorized

(�−m2) = DD∗ = D∗D, (2)

into the product of two commuting Dirac operators D, D∗ of the first order:

D := iγµ∂µ −m, D∗ := iγµ∂µ + m, (3)

where γµ are the 4× 4 Dirac matrices

γµγν + γνγµ = 2ηµν, (4)

which we shall take in the standard 2 + 2 representation making use of the Pauli matrices
(see below, Section 3).

Through the derivatives of Φ let us then define another 4-component complex field Ψ,

Ψ := D∗Φ, (5)

which represents, on account of (1) and (2), a solution to the Dirac equation (DE),

DΨ = DD∗Φ = 0. (6)

Conversely, let an arbitrary solution Ψ to the DE, DΨ = 0, is given (Then, as is well
known, each component ψa satisfies identically the KGE, as 0 = D∗(DΨ) = (�−m2)Ψ =
0). In this case, the system of four inhomogeneous first order Equation (5) can be always
(locally) resolved with respect to four unknowns φa. As a partial solution of (5), on account
of the identity D∗ = D + 2m, one can take the Dirac field itself,

Φ =
1

2m
Ψ, (7)

while a more general solution to (5) is represented (on account of D∗γ5 = −γ5D) by the
“projective” ansatz

Φ =
1

2m
(1± γ5)Ψ, γ5 := iγ0γ1γ2γ3, (8)

that is, by “right” or “left” 2-spinors corresponding to the bispinor Ψ. Thus, any solution of
the DE can be in fact obtained from only a pair of the Klein–Gordon fields (for more details, see
Section 3).

Of course, the obtained functions φa are subject to the KGE,

0 = DΨ = DD∗Φ = (�−m2)Φ ≡ 0, (9)

yet defined non-uniquely, up to the general solution of an homogeneous equation of the
type (5). Specifically, any initially fixed solution Ψ of the DE (“strengths” of the Dirac



Symmetry 2021, 13, 2288 5 of 17

field) remains invariant under the following gauge transformations of the corresponding
“Klein–Gordon potentials” from (5):

Φ 7→ Φ + Υ, (10)

with Υ being some arbitrary solution of the (conjugate) DE,

D∗Υ = 0. (11)

In so doing, as for each Υ some Klein–Gordon potentials Ξ do exist, that is, Υ = DΞ,
the gauge transformation (10) can be represented in a familiar gradient-wise form

Φ 7→ Φ + DΞ. (12)

Thus, for any DE solution potentials subject to the KGE are locally defined up to the
gauge transformations (12). Through their differentiations, the complete set of solutions to the
free DE can be obtained [6]. As to the DE itself, free Dirac field should be regarded as a gauge field,
in a full analogy with free Maxwell equations for the strengths of electromagnetic field.

However, the set of four gauge functions Ξ = {ξa}, in distinction with the gauge
symmetry in electrodynamics, is not arbitrary but subject to the KGE, (�−m2)Ξ = 0. This
resembles the “residual” gauge invariance

Aµ 7→ Aµ − ∂µα, �α = 0 (13)

of Maxwell equations ∂νFµν = 0, Fµν = ∂µ Aν − ∂ν Aµ, supplemented by the Lorentz gauge
equation for the potentials ∂µ Aµ = 0.

Note that similar “weak” gauge invariance (for which the gauge function can de-
pend on coordinates implicitly, only through the components of the field function under
transform) takes place for the class of solutions to relativistic field equations generated by
twistor functions (for details, see in [3]).

3. Any Solution to Free Dirac Equation from a Doublet of the Klein–Gordon
Scalar Fields

Many of the interrelations between the Dirac and Klein–Gordon fields, as previously
presented, look more transparent in the chiral representation of the DE. Specifically, let us
define the 2× 2 matrix-valued Weyl operators (principal and conjugate, respectively):

W := (∂t −~σ∇), W̃ := (∂t +~σ∇) (14)

where~σ = {σa}, a = 1, 2, 3 are the Pauli matrices. Then, the DE

DΨ := (iγµ∂µ −m)Ψ = 0. (15)

acquires the following “splitted” form (see, e.g., in [9] (ch.II, Section 9)):

Wa = −imb, W̃b = −ima, (16)

where the 2-component “right” ΨR := a and “left” ΨL := b spinors are defined as the
half-sum / half-difference of the initial Dirac 2-spinors ψT = {κ, χ},

a = (κ + χ)/2, b = (κ − χ)/2, (17)

Note that Weyl operators W, W̃ are Hermitian and factorize the d’Alambert wave
operator

WW̃ = W̃W = −� = ∂2/∂t2 − ∆. (18)
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The above-described procedure to seek the Klein–Gordon potentials based on reso-
lution of Equation (5), in the chiral representation reduces to resolution of the following
system of equations

a = W̃β− imα, b = Wα− imβ (19)

with respect to a pair of unknown 2-component functions {α, β} for any given 2-spinors
{a, b} subject to the DE (16). It is easy to check that whether the solution to (19) does exist,
then it is non-unique. The potentials {α, β}, on account of (16) and (18), should satisfy the
KGE, (�−m2)α = 0, (�−m2)β = 0. Specifically, the gauge transformation of potentials
which leave invariant both Dirac 2-spinors has the form

α 7→ α−m2π − imW̃ρ,
β 7→ β + m2ρ + imWπ.

(20)

In the above equations, π, ρ are two arbitrary and independent pair of functions each
component of which satisfies the KGE.

Now, the problem of existence of potentials subject to (19) can be explicitly resolved.
Indeed, let us nullify (This evidenly corresponds to solutions (8) of (5) for potentials Φ in
the initial 4D representation, see Section 2) one of the 2-component potentials {α, β} setting,
say, β = 0. Then, the system (19) reduces to identification of the other 2-component α with
the first of the given 2-spinors

α =
i
m

a, (21)

while the other 2-spinor is then expressed through the derivatives of the first one:

b =
i
m

Wa. (22)

In other words, for any solution to the DE, the first of Equation (19) is simply a
definition (22) of the second 2-spinor (b) through the first one (a), after which the sec-
ond equation is identically valid as the KGE holds for both components of the principal
2-spinor (a).

Thus, any solution to DE is represented by some two functions, say, (a) subject to the KGE
which define themselves one of the Dirac 2-spinors whereas the second 2-spinor (b) is
explicitly expressed through the derivatives of the first one (a). In the next section, we shall
exhibit simple examples of such a procedure and obtain a number of singular solutions to
the DE.

4. Chains of Singular Solutions to the Dirac and Klein–Gordon Equations

In the above described method of generation of the DE solutions from some pair of
the KGE solutions, components of the arising Dirac fields, as it usually is, satisfy the KGE
themselves and, therefore, can serve as “potentials” to obtain new soluions to the DE,
and so on. A chain of the DE-KGE solutions arising in such a way proves to be infinite
or terminates in the case when new solutions turn to be functionally dependent on the
old ones.

On account of the linearity of the considered equations, it is sufficient to restrict oneself
by the case when only one of the initial KGE solutions is nonzero and take, say, the initial
2-spinor in the form aT = (0, F) or aT = (G, 0), where any of the functions F, G represents
a solution to the KGE. Then, the general case is represented by the 2-spinor aT = (G, F),
which generates a superposition of the DE solutions related to “partial” 2-spinors.

As generating potentials we below consider stationary (in particular, static) solutions
to the KGE possessing spherical or axial symmetry. Specifically, for stationary solutions

F = f (~r)e−iωt (23)
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the KGE reduces to the form

∆ f + (ω2 −m2) f = 0, (24)

and, in the most interesting case |ω| = m, to the Laplace equation ∆ f = 0. Selecting as the
solutions of the latter the Coulomb field and the stereographic projection, one comes to the
following stationary solutions to the KGE:

F =
1
r

e±imt, (25)

and

F =
x + iy
r + z

e±imt, (26)

respectively (x, y, z being the Cartesian coordinates, and r =
√

x2 + y2 + z2).
The first of the above-presented solutions has a point-like singularity, while the

second has a singularity of a string type (on the negative symmetry semi-axis). As it
had been already mentioned in the introduction, such solutions are valid only in the
external space outside singular domains, and, generally, it does not look justified to define
corresponding singular “sources”. For example, in the whole space solution (25) will satisfy
the inhomogeneous KGE with “oscillating” pointlike source of the form δ(~r)e±imt looking
physically senseless. The same can be said on the introduction of a source localized on
the singular string of the solution (26). Remarkably, Dirac himself had no intention to
introduce such a source on the singular string of the Schrodinger’s wave function of the
electron in the field of a magnetic monopole [10] (Section 4).

Consider now the other limiting case of static solutions to (24) with ω = 0. Let us
present here the following two static solutions of the KGE:

F = − g2

r
e−mr (27)

and

F =
x + iy

r(r + z)
e−mr (28)

first of which is known as the Yukawa potential in the old theory of mesonic forces (with g2

being the interaction constant).
Each of the two above presented solutions to the KGE can be completed up to a

corresponding solution of the DE by taking, say, the first 2-spinor (a) in the form aT = (0, F)
and defining the second 2-spinor (b) in accordance with (22). In such a way, making use of
the generating solution to the KGE (27), one obtains, in particular, the “spinorial analog” of
the Yukawa potential, that is, the solution to the DE of the form

a = − g2

r
e−mr

(
0
1

)
, b = − ig2

mr3 (1 + mr)e−mr
(

x− iy
−z

)
. (29)

Selecting then one of the components of the obtained 2-spinor (b) as an initial gen-
erating function F instead of (27) and using again the formula (22), one obtains the next
solution to the DE in the arising infinite chain of solutions:

a =

(
0

x−iy
r3 (1 + mr)e−mr

)
, b = − i

mr5 (3 + 3mr + m2r2)e−mr
(

(x− iy)2

−(x− iy)z

)
. (30)

Note that the components of Dirac fields entering the solutions, from the viewpoint of
their angular dependence, are various combinations of spherical spinors (see, e.g., in [9] (ch.2,
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Section 11)). On the contrary, for the DE solutions with stringlike singularities generating
by (26) or (28), angular dependence seems to be nontrivial and needs a further study.

To conclude, let us present a simple yet exceptional in its properties one-parametric
family of stationary spherically symmetric solutions to the KGE which can be easily
obtained by separation of variables in (24). It has the following form:

F =
e−mkr

r
e−imωt, k2 + ω2 = 1, (31)

or, using evident parameterization k = cosψ, ω = sinψ,

F =
e−mrcosψ

r
e−imtsinψ. (32)

As the Yukawa solution, function (31) is square integrable. Remarkably, however, the
associated charge-current density 4-vector

Jµ =:
i
2
(F∗∂µF− ∂µF∗F), ∂µ Jµ = 0, (33)

on the solution (31), defines a finite conserved quantity, the “field charge”

Q =
1

4π

∫
J0dV = mω

∫ ∞

0
|F|2r2dr =

ω

2k
=

1
2

tan ψ. (34)

To our knowledge, the above obtained solution with a finite integral of motion is the only
known one, among the solutions to all linear equations for free relativistic fields. For ω = 0 (ψ = 0),
it reduces to the static Yukawa solution with zero field charge, while for k = 0 (ψ = ±π/2)
it reduces to the “long-range” solution (25) for which the integral Q diverges at spacial
infinity.

Solution (31) can be also “completed” to a DE solution, again by making use of the
Formula (22). The corresponding “spinorial analog” of the solution (31) is of the form

a =
e−mkr−imωt

r

(
0
1

)
, b = −i

e−mkr−imωt

mr3

(
−(x− iy)(1 + mkr)
z(1 + mkr) + imωr2

)
, (35)

where, as before, k2 + ω2 = 1.
The canonical “Dirac” field charge with positive definite density ∼ (a2 + b2) will be

infinite (divergence in the singular point). Nonetheless, as the nonzero component F of
the spinor a satisfies the KGE, the charge Q it associates can be treated as the integral of
motion with respect to the Dirac field as well (for more detail see Section 6). As to other
solutions in the chain generated by (31), they do not possess a finite-valued charge at all.

Evidently, solution obtained from (35) by a “boost” can be interpreted as a “localized”
de Broglie wave with a finite-valued field charge.

5. Spinors from Scalars: Non-Canonical Symmetries of a Free Dirac Field

In the above presentation, we considered, as is generally accepted, both 2-component
functions (a and b) as 2-spinors. On the other hand, the generating KGE solutions which
form the ansatz a, under transformations of the Lorentz group, should be treated as scalars.
Thus, one encounters the problem: in which way the scalar nature of the initial Klein–
Gordon fields can be put in correspondence with the spinor law of transformation of the
Dirac field?

To most part, this problem had been already solved in [6], and below we elucidate the
resolution on the base of the chiral representation (16) of the DE and the above considered
examples of solutions.
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Under (proper) Lorentz transformations of coordinates

X 7→ X̄ = SXS+, (36)

where

X = X+ = t +~σ~r (37)

is the Hermitian matrix of coordinates on M, the Weyl operator W (and its conjugate W̃)
are transformed as

W 7→ S̃+WS̃, W̃ 7→ SW̃S+, (38)

where S ∈ SL(2,C) is an arbitrary matrix from the Lorentz “spinor group” with “half-
angles” of (pseudo) rotations as six parameters representing (up to a sign) an arbitrary
Lorentz transformation from the SO(3, 1) group; here, S̃, S+ are matrices inverse and
Hermitian conjugate to S, respectively.

According to the canonical spinor law, corresponding to (36), transformations of the
quantities a, b have the form

a(X) 7→ ā(X̄) = Sa(X), b(X) 7→ b̄(X̄) = S̃+b(X), (39)

so that the DE system (16) remains form-invariant, and one obtains a solution to the DE
{ā, b̄} corresponding to the initial one {a, b} yet transformed to a new reference frame.

On the other hand, treating the initial components of a subject to the KGE as scalars,
one should transform only their arguments,

a(X) 7→ ā(X̄) = a(X), (40)

after which for the components of b, according to (22), one obtains the expression

b(X) 7→ b̄(X̄) =
i
m
(S̃+WS̃)a(X), (41)

so that the pair (40) and (41) represents a new solution to the DE {ā, b̄} generally distinct from
that canonically transformed one (39). Note that the new components of b̄, according to
(41), cannot be expressed algebraically through the initial functions b so that the considered
transformations define a nonlinear representation of the Lorentz group.

In fact, the actual possibility of the two different types of symmetry transformations of
the DE solutions is related to the existence of a supplementary internal symmetry of the KGE
for a doublet of scalar fields a(X) w.r.t. transformations from the group SL(2,C)(INT) which
represents an independent copy of the spinor Lorentz group SL(2,C). Such transformations
do not change the coordinates themselves but linearily intermix the components of the
initial scalar doublet,

a(X) 7→ ā = Ma(X), M ∈ SL(2,C)(INT). (42)

Combining now these transformations with those from the spinor Lorentz group, we
obtain the most general law of transformations for the DE solutions in the following form:

ā(X̄) = Ma(X), b̄(X̄) =
i
m
(S̃+WS̃M)a(X). (43)
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In general, parameters of the matrix M are entirely independent from those of Lorentz
transformations. On the other hand, whether one identifies M ≡ S, the canonical spinor
law of transformations (39) will be restored:

ā = Sa(X), b̄ =
i
m
(S̃+W)a(X) ≡ S̃+b(X). (44)

Note, however, that generally (if only the parameters of a matrix S corresponding to
“half-angles” of a 3D rotation do not enter the matrix M) the starting solution to DE, being
continuously transformed according to (43) returns back to its initial value after one complete
revolution; in other words, the customary spinor two-valuedness is generally absent. From a
physical viewpoint, all the KGE-DE solutions obtained from an initial one by means of a
combination of Lorentz transformations with transformations of the internal group, should
be, perhaps, regarded as equivalent.

Let us now illustrate the above described scheme on the examples of solutions to
DE written out in Section 4. Below, we do not deal with arbitrary “intermixings” of the
components (43) but restrict our consideration by two limiting cases. Namely, we compare
the canonical spinor transformation (39) with the alternative (scalar-wise with respect to the
components of a(X)) transformation (40) and (41).

It is easy to check that, say, spherical symmetric (by norm) “spinor Yukawa solution”
(29) as well as the exceptional solution (35) or that generated from (25), under rotation by

an angle ϕ round an arbitrary axis, transform in a rather trivial way. Specifically, according
to the canonical law of transformations, all spinor components of those solutions acquire
common “spinorial” phase factor exp (−iϕ/2). Under alternative transformation, the
components of all the above solutions do not change at all so that one encounters here
examples of the entirely SO(3)-invariant, “scalar-like” (w.r.t. the alternative transformations)
solutions to the DE for which ā(X̄) = a(X), b̄(X̄) = b(X).

As for axisymmetric solutions to DE, which correspond to the generating scalar
functions (26) or (28), they acquire the common “spinorial ” factor exp (+iϕ/2) being
transformed in the canonical way. On the other hand, under the alternative transformation
both their components become multiplied by the “vector-like” factor exp (+iϕ) and, after a
rotation by 360◦, return back to their initial values.

Consider now one more example of a nontrivial transformation of a solution to
DE in the process of which the initial symmetry is broken. For the “spinor Yukawa”
solution (29) generated by the spherically symmetric function (27), let us take, as such a
transformation, a Lorentz boost along, say, Z-axis with the velocity parameter V = θ. In
this case transformation matrix S has the form

S =

(
e−θ/2 0
0 eθ/2

)
, (45)

and, for the solution transformed canonically according to (39) to the new reference frame,
we obtain (using for simplicity for new coordinates the same notation as for the initial ones):

ā =
eθ/2

r∗
e−mr∗

(
0
1

)
, b̄ =

ieθ/2

mr3∗
(1 + mr∗)e−mr∗

(
w

−(1 + e−2θ)z∗

)
, (46)

where the following familiar quantities are introduced:

z∗ := z−Vt, r∗ :=
√

x2 + y2 + z2∗ cosh2 θ. (47)
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We see that, apart of the common spinor factor eθ/2 and canonical transformation
of arguments, in the second component of the spinor b there arises a supplementary
“deforming” factor of the form

(1 + e−2θ) ≡ 1 + V
1−V

. (48)

On the other hand, under alternative transformation of the same spherically symmetric
solution, in the single component of a only its argument r should be changed for r∗ as in
(47). Computing then, explicitly through ā or making use of the law of transformation
(41), two novel components of b̄, one results in the Yukawa solution (29) transformed
alternatively to the moving reference frame:

ā =
1
r∗

e−mr∗
(

0
1

)
, b̄ =

i
mr3∗

(1 + mr∗)e−mr∗
(

x− iy
−(1 + e−2θ)z∗

)
. (49)

In distinction with the scalar type of transformation of functions a, corresponding
functions b are again deformed by the arising factor (48), so that the alternatively trans-
formed solution (49) completely reproduces the canonically transformed one (46), disregarding
the absence of the common characteristic “spinor” factor eθ/2. Remarkably, under a boost
along their symmetry, the Z-axis in a quite analogous way is related the canonically and al-
ternatively transformed axisymmetric solutions to DE generated by functions (26) and (28).

Let us note in conclusion that, apart of the above considered symmetrical cases,
application of the two distinct rules of transformation to an initial DE solution, namely,
(39) and (41), generally leads to two essentially different (that is, different not only by the

presence/absence of the common spinor factor) solutions to the DE. One can convince
in this fact considering, say, a rotation of an axisymmetrical solution round an axis not
coinciding with its initial symmetry axis (Z).

6. Positive Definite “Energy” for Dirac Field and “Probability Density” for the
Klein-Gordon Field

In consequence of the mutual correspondence of the DE-KGE solutions, for an arbitrary
Dirac field, apart of the canonical set of integrals of motion, there exists the other one which
is defined by corresponding pair of solutions to the KGE, and conversely. This allows, in
particular, for the existence of a second, positive definite “energy” density for free Dirac
fields, as well as positive definite “probability” density for any solution of the KGE. In a
more formal way, the above correspondence can be established in the framework of the
Lagrangian approach as follows.

In the 2 + 2 representation, the Dirac Equation (16) can be obtained through variation
of the Lagrangian

L = i{a+(Wa) + b+(W̃b)− (Wa+)a− (W̃b+)b} − 2m(a+b + b+a) (50)

(in view of hermiticity of the Weyl operators W+ = W, W̃+ = W̃).
Assuming the fulfillment of DE (16) and substituting the derivatives in (50), one comes

to the known property of the Dirac Lagrangian to vanish on the solutions. On the other
hand, exchanging in (50) the fields a, b, a+, b+ themselves with corresponding, on account
of (16), derivatives one obtains the Lagrangian for two doublets of fields

L =
2
m
{(Wa+)(W̃b) + (W̃b+)(Wa)−m2(a+b + b+a)}, (51)

variation of which results in the KGE for each component of {a, b},

(�−m2)a = 0, (�−m2)b = 0 (52)
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and for their hermitian conjugate. Making now use of the standard procedure, for the
initial Dirac Lagrangian one defines a canonical set of combinations of field quantities
that satisfy, on the solutions, the continuity equations. In particular, for the known Dirac
charge-current 4-vector

j(D)
µ := ψ̄γµψ, ∂µ j(D)

µ = 0, (53)

with a positive definite “charge density”, probability density ρ(D) := j(D)
0 = ψ+ψ, in the 2 +

2 representation one gets

ρ(D) = 2(a+a + b+b). (54)

However, for the same solutions {a, b} of the DE-KGE, making use of the Lagrangian
(51), one obtains the expression for a conserved Klein-Gordon current 4-vector which is
standard for scalar fields:

j(KG)
µ =

i
2
(a+∂µa− ∂µa+a + b+∂µb− ∂µb+b), (55)

and defines a sign-indefinite density of the “field charge”

ρ(KG) =
i
2
(a+∂ta− ∂ta+a + b+∂tb− ∂tb+b). (56)

One can explicitly observe the difference of these expressions, in particular, for the
spherically symmetric solutions to the KGE (27) and the DE (29) related to the Yukawa
potential. Indeed, for this solution the density of the field charge “a lá Klein–Gordon” (56)
turns to zero while the probability density (54) is positive and equal to

ρ(KG) =
1
r2 e−2mr

(
1 +

(1 + mr)2

(mr)2

)
. (57)

In the general case of stationary solutions to the KGE-DE with a, b ∼ exp (−iωt)
expressions for two conserved densities are proportional to each other,

ρ(D) = 2(a+a + b+b), ρ(KG) = 2ω(a+a + b+b), (58)

but the sign of the second density can be chosen to be negative, so that the DE can in fact
describe the particles with opposite “charges”.

Consider now the problem of “two energies” for the solutions to the KGE-DE. Let
one has a solution to the DE {a, b}. Then, making use of the canonical form of the energy-
momentum tensor of the Dirac field, for its (00)-component—energy density ε, in the 2 + 2
representation one obtains the expression

ε(D) =
i
2
(a+∂ta− ∂ta+a + b+∂tb− ∂tb+b), (59)

reproducing that for the Klein-Gordon charge density (56) and, certainly, sign-indefinite.
However, from corresponding solutions to the KGE and Lagrangian (51) one defines the
second “energy” density for the same Dirac field:

ε(KG) = (∇a+∇a + ∂ta+∂ta + m2a+a) + (∇b+∇b + ∂tb+∂tb + m2b+b), (60)

which, of course, is positive definite!
Quite analogously, for any KGE-DE solution, apart of the canonical one, it is possible

to define another density of the angular momentum making use of the expression for the
second field corresponding to the first one. To be sure, this procedure does not directly
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relate to the generally accepted opinion on the one-half spin of Dirac particles or zero spin
of particles described by the KGE.

7. On Correspondence of Dirac and Klein–Gordon Equations in an External
Electromagnetic Field

One can try to generalize the above obtained static or stationary solutions, spherically
or axisymmetric, for description of fields produced by a point- or string-like singularity
moving along an arbitrary world line, in full analogy with the Lienard–Wiehert fields
in the massless electromagnetic case. However, even in the case of inertial movement
the already obtained solutions allow for a recurrence to the de Broglie’s interpretation of
the wave-particle duality as the concordant motion of a particle-singularity and a “pilot
wave” [11] (ch. IX). These questions require special consideration.

As for generalization of the presented construction to the case when the external
field is present, electromagnetic or gravitational, one encounters rather obvious problems
thereby. The arising obstacles are related to the fact that in these cases the Klein–Gordon
operator cannot be factorized to the product of two Dirac operators as in the free case
(2). Specifically, in the presence of electromagnetic field with 4-potentials Aµ = {Φ, ~A}
the squared DE for the 2-component spinors a(X), b(X) looks as follows (see, e.g., in [12]
(p. 101), [9] (ch.II, Section 12)):

(�gen −m2 +~σ(~H − i~E))a = 0, (�gen −m2 +~σ(~H + i~E))b = 0 (61)

and, on account of the last matrix-valued terms, does not allow for interpretation of the
a or b components as scalar fields. In (61), the first term �gen represents the ordinary
Klein-Gordon operator in an external field, and ~H,~E—the fields themselves, magnetic and
electric, respectively.

Remarkably, an attempt to describe the electron-positron field by the squared DE
for only one of the 2-spinors had been undertaken in the paper of Feynman and Gell-
Mann [13], see also [14]. In essence, such a description is equivalent to the canonical one
(see, e.g., in [15]), since the second 2-spinor can be restored through the procedure of
differentiation analogous to that above presented. Nonetheless, such a description turns
out to be appropriate in the framework of Feynman formalism of path integration [16].

On the other hand, the scalar nature of the fields generating the DE solutions reveals
itself when the external (complexified) electromagnetic field is (anti) self-dual. In fact, the
(anti) self-duality conditions i

2 εµνρλFρλ = ±Fµν in the 3D-notation take just the form

~H ± i~E = 0, (∂t ~A−∇Φ± i∇× ~A = 0), (62)

and their fulfillment guarantees the fulfillment of homogeneous Maxwell equations, for
real and imaginary part of the complex strengths separately (Each solution of Maxwell
equations together with its dual is generated by a solution of the complex (anti)self-duality
constraint, see, e.g., in [3,5]). In the case when, say, the conditions of self-duality ~H− iE = 0
do hold, the squared DE reduces to the ordinary KGE in an external field with complex
potentials Aµ for a doublet of fields a, which can then be considered as scalars. These fields
after the differentiation (generalizing (22))

b =
i
m

Wgenb, (63)

define the second pair of functions b which, together with a, represents a solution to the DE
in an external field. Here, Wgen is a generalized, in a usual way (that is, by “prolongation
of derivatives”), Weyl operator (14). Note that as the generalized Weyl operators do not
longer commute W̃genWgen 6= WgenW̃gen, functions b in (63), contrary to a, do not satisfy the
KGE in an external field. For (anti) self-dual external fields functions a and b exchange their
places (together with corresponding reflection of spatial coordinates).
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During realization of the above described conception, the canonical problem of rel-
ativistic QM on definition of the states of the electron in external electromagnetic fields
(a complete review see, e.g., in [17]) requires essential reformulation. Particularly, in the
relativistic problem of the hydrogen atom, instead of the standard Coulomb potential, one
should use the combined potential {Φ = q/r, Aϕ = iΦ tg(θ/2), Ar = Aθ = 0}. This
results in complex self-dual fields whose real part corresponds to electric Coulomb, while
imaginary—to magnetic monopole distributions. Just for such an ansatz the hydrogen
atom problem reduces to resolution of a “pure” KGE in the joint concordant field of electric
and (imaginary) magnetic monopoles (In this case the field strengths themselves, contrary
to the potentials, do not enter the principal Equation (61)).

Analogous situation arises in the relativistic problem on the states of particles in
a constant and homogeneous magnetic field. To reduce the DE to the KGE, one needs
to supplement this field by an imaginary electric one such that the full complex field be
self-dual. Note that this situation can be closely connected with the known problem of
imaginary electric dipole moment whose existence inevitably follows from the DE but
whose physical status still remains unclear.

A question, crucial for the presented scheme, consists, however, in distinctions of the
energy spectra of electrons in complex self-dual fields from the canonical ones, in usually
considered real-valued fields. This problem certainly requires a careful investigation.

As for the case of a of gravitational field, the situation here looks much analogous
to the electromagnetic case. Specifically, reduction of the DE to the KGE turns out to be
possible only in complexified space-times with complex (anti) self-dual curvature tensor.
Such “(right-) left-flat” spaces were studied, in particular, in [18,19] and other papers in
connection with the problem of the “nonlinear graviton”, generalizations of twistor theory,
etc. Nonetheless, many principal problems arising in this approach, to the first turn those
about the ways of transition to a real physical metric from an initial complex one, are far
from being solved.

8. Massless Case: Equivalence of the Weyl and d’Alembert Equations

For completeness, we briefly review here close relations of solutions to the 2-spinor
Weyl equation and d’Alembert (wave) equation for a one-component complex scalar field
(for details, see in [5,6]).

Consider a massless Weyl equation in the matrix form

W̃ψ = 0, (64)

where W̃ is the (conjugate) Weyl operator (see (14))

W̃ := (∂t +~σ∇) (65)

and ψ is a 2-spinor with complex components, say, ψT = {α,−β}.
Making use of the matrix space-time coordinates

X = X+ =

(
u w
w̄ v

)
, u, v = t± z, w̄, w := x± iy, (66)

one can write out (64) as a simple system of two equations,

∂uα = ∂w̄β,
∂wα = ∂vβ.

(67)

In view of the first Equation (67), there exists (locally) a complex function µ(X),
for which

α = ∂w̄µ, β = ∂uµ. (68)
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Then, the second Equation (67) will be identically satisfied if the potential function µ is
subject to the d’Alembert equation

�µ := (−∂u∂v + ∂w∂w̄)µ ≡ 0. (69)

Evidently, a symmetric potential function ν(X) subject to d’Alembert equation �ν = 0
can be introduced on the base of the second Equation (67).

Thus, any solution to the 2-spinor Weyl equation can be obtained from a solution to one-
component d’Alembert equation. However, in order to represent the principal expressions in
the matrix form, one can use, say, instead of (68):

α = ∂vν− ∂w̄µ, β = ∂wν− ∂uµ, (70)

where now both potentials ν, µ should satisfy the d’Alembert equation. Then, the last
solution to initial Weyl equation can be written in the matrix form:

ψ = Wζ, (71)

where W = ∂t −~σ∇ is the Weyl operator, and the “potential row” is given as ζT = {ν, µ}.
As the latter does always exists (locally), one immediately checks that the Weyl equations
do hold,

W̃ψ = W̃Wζ ≡ −�ζ = 0. (72)

Matrix form for potentials is convenient to observe the (restricted) gauge symmetry of
the Weyl equation under gradient-wise transformation of potentials of the form

ζ 7→ ζ + W̃κ, (73)

with κ being an arbitrary (and independent on ψ) column with two components subject
to d’Alembert equation. It follows then from (71) that such a transformation of potentials
preserves the initial solution ψ of the Weyl equation. We see thus that free Weyl equation
possess a (restricted) gauge symmetry, in full analogy with the case of massive Dirac equation
(see (12)).

Another properties of the free DE discovered in the paper, among them the existence
of chains of solutions (Section 4), of non-canonical scalar-like symmetry transformations
(Section 5), of “positive definite” “energy” density of Dirac field (Section 6), etc., are also in
a close analogy with those for massless Weyl equation (see ([5,6]) for detail).

Note also that solutions to the latter are in a full correspondence with those of electro-
magnetic (anti-) self-duality constraint and, via the latter, to solutions of free Maxwell equa-
tions (see Section 7). Here we only present a Coulomb-like solution to Weyl equation ([5]),

α =
1
2r

, β = − µ

2r
(74)

which can be obtained in the above described way from the solution to d’Alembert equation

µ :=
w̄

z + r
= tan (

θ

2
)eiϕ (75)

corresponding to the stereographic projection S2 7→ C. Resulting solution to free Maxwell
equations is just the Coulomb one, with a δ-type singularity in origin.

9. Conclusions

It has been shown that the free DE is, essentially, no more than an identical interdepen-
dency between derivatives of a doublet of a Klein–Gordon field. An alternative method
to demonstrate the equivalence of Dirac and 2-component Klein–Gordon equations has
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been elaborated in [14] (Section 5A,B). In our treatment, generating solutions to the KGE
manifest themselves as potentials for the Dirac “field strengths”. One reveals thus that free
Dirac field is gauge in nature and closely resembles, in this respect, the Maxwell field.

We have discovered the property of form-invariance of the DE under non-canonical
Lorentz transformations in which the generating doublet of Klein–Gordon fields behaves
as a pair of scalars, while the second doublet supplementing the first one to a solution of
the DE, transforms according to a nonlinear representation of the Lorentz group. This leads,
in particular, to elimination of the generally accepted spinorial 2-valuedness under a 3D
rotation. It is known that the transformation properties of just the free Dirac/Klein–Gordon
fields predetermine distinct procedures of their secondary quantization in the framework
of QED. Therefore, the above presented results force one to put in doubt the competence of
the canonical quantization procedure and ponder over its possible reformulation and/or
reinterpretation.

In this connection, it is worth noting that A. Zommerfeld [20] (ch. 6, Section 6) had
proposed another way to regard the Dirac wave functions as scalars instead of generally
accepted (bi)spinor transformations. His proposition makes use of the 4-vector law of
transformation of the Dirac γ-matrices themselves. This procedure preserves defining
commutation relations (4) for these matrices and all the principal consequences of the Dirac
theory as a whole (see also [7]).

As another consequence of the discovered non-canonical links between the fields
of Dirac and Klein–Gordon one can distinguish the possibility to obtain a wide class of
(singular) solutions to the DE and KGE by subsequent differentiation of (one or two)
starting KGE solutions. Physical interpretation of the obtained solutions is generally not
evident; however, it would be wrong to ignore the very existence of such entities. Among
these, of a special interest is the “spinor” analogue (29) of the Yukawa potential and the
second static solution to DE (28) with a string-like singularity. These solutions can perhaps
be explicitly interpreted as Dirac fields produced by fermions of two types; also remarkable
are, certainly, the stationary “partners” of these static solutions, especially the solution (35)
with a finite value of the field charge. Corresponding chains of solutions to KGE-DE can
be, of course rather speculatively, treated as excited states (“resonances”). Probably, it will
be not hard to form a complete list of stationary singular solutions to KGE-DE.

One can obtain an interesting variety of these solutions by a complex shift z 7→ z + ia
along the coordinate corresponding to the symmetry axis (Z) of the initial solution. The
transformed solutions, say, (27) or (31), acquire then a ring-like singularity of a radius a, as in
the case of the above-mentioned Kerr–Newman solution in GTR [2]. It is well known that
the the Kerr–Newman solution has some properties analogous to those of Dirac particle (in
particular, the gyromagnetic ratio for this solution is g = 2 [21]). Therefore such a deformed
DE solution could be very interesting, say, in the context of the Dirac–Kerr–Newman electron
model developed by A.Ya. Burinskii [22].

Finally, note that the considered scheme allows to bypass the well-known Pauli
theorem [23] on the sign-indefinite energy density for the fields of half-integer, and charge
density of integer spins. Actually, as we have seen, any DE solution can be equipped with
a positive definite energy density, and any KGE solution—with a positive definite charge
density—probability density.

On a whole, however, we did not claim here to suggest some new physical theory,
interpretation or quantization procedure. We desired only to simply and rigorously demon-
strate that a number of paradigmatic settings dominating at present within the (firstly
quantized) relativistic field theory are in fact controversial (questionable) and actually
should be reconsidered. For this, it is certainly necessary to elaborate a number of supple-
mentary investigations, especially for the case when external fields, electromagnetic and
gravitational, are present.
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