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Abstract: In this paper, we introduce an extension of the sinh Cauchy distribution including a double
regression model for both the quantile and scale parameters. This model can assume different shapes:
unimodal or bimodal, symmetric or asymmetric. We discuss some properties of the model and
perform a simulation study in order to assess the performance of the maximum likelihood estimators
in finite samples. A real data application is also presented.
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1. Introduction

A wide range of phenomena can be defined more appropriately using probability
distributions. This description is very useful because of the properties associated with a
distribution: expectation, shape, range, etc. However, fitting data can be difficult when their
distribution is bimodal, which occurs commonly in practice: in astrophysics, the metallicity
of the globular cluster system in the Milky Way (see [1]); in ecology, the tree cover of moist
savanna and tropical forest ecosystems (see [2]); in genetics, gene expression measure-
ments (see [3]). Other practical examples of bimodality in data can be seen in [4–6]. In
the literature, there are many proposals discussing bimodal distributions; e.g., the works
of [7–12]. Bimodal data can be fitted by a mixture of two unimodal distributions. When
the mixture is created from the same model, the main difficulty is the non-identifiability
of the proposed mixture model. The traditional example is the mixture of normals. Alter-
natively, the most workable practical method is to use a distribution which already has
bimodal properties. For the latter situation, we introduce the gamma–sinh Cauchy (GSC)
distribution, proposed by [13]. We note that the initials GSC can be found in the literature
as an acronym for Generalized Skew-Cauchy, and readers should be aware of this when
reviewing the literature. This model has uni/bimodal properties. However, unlike the
distributions discussed in the works mentioned above, in this model, one of the parameters
can be interpreted as the q-th quantile under certain conditions. This is very convenient,
because it allows covariates to be introduced into non-homogeneous populations directly.
The probability density function (pdf) for the GSC distribution is given by

f (x; µ, σ, λ, φ) =
λ cosh( x−µ

σ )

σπΓ(φ)
{

1+[λ sinh( x−µ
σ )]

2}{− log
[

1
2 −

1
π arctan

{
λ sinh

(
x−µ

σ

)}]}φ−1
,

where x, µ ∈ R, σ, λ and φ > 0. The corresponding cumulative distribution function (cdf)
is given by

F(x; µ, σ, λ, φ) = G
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where G(·; φ) denotes the cdf of the gamma distribution with shape and scale parameters
equal to φ and 1 respectively. The GSC can be asymmetric or symmetric and, as the main
advantage, its cdf has a closed-form expression which can be generated quickly in many
different softwares. This is useful for generating random data, besides defining quantiles.

Regression models seek to describe the behavior of a variable of interest (or response)
from covariables (explanatory variables). In general, a function called a link function links
a characteristic of the response variable to the explanatory variables through parameters
estimated from observed data. In our case, the response variable is bimodal and described
by the GSC distribution, while the relationship between the response and explanatory
variables is through the quantile. This type of relation is known as quantile regression.
The literature on parametric models in the context of quantile regressions has increased
considerably in recent years. For instance, for responses in the unit interval, see the works
of [14,15]; for responses in the positive line see the work of [16]; and for responses in the
real line see the works of [17,18].

The main advantage of quantile regression is that it is more robust against outliers.
The advantage is that we can have a more informative approach to the response than
simply modeling some specific measure of the population, such as the mean or median.
The applicability of this method can be seen in ecology [19], econometrics [20], environ-
metrics [21], and medicine [22], for instance. In general terms, the distributions are not
parametrized directly in terms of a general quantile q ∈ (0, 1) or any specific quantile,
except for some particular cases. For instance, for the N(θ, σ2) model, θ represents the
mean and the median of the distribution, but the q-th quantile is given by θ + zqσ, where
zq is the q-th of the standard normal distribution. On the other hand, which quantile is
of interest depends on the research. In some cases, small quantiles will be of interest,
whereas in other contexts, large quantiles will be the focus. For instance, in a nutrition
context, larger quantiles of weight are of interest because they enable the nutritionist to
define which patients are at higher risk; on this basis, they can define special treatments for
such patients.

In view of the importance of bimodal distributions, the chief object of this paper is to
build on the quantile regression structure in the GSC distribution. Double regression has
been studied quite extensively in the literature; for example, the authors of [23] consider
a regression structure for both components based on a new parameterization indexed by
mean and dispersion parameters; in [24], a regression model is proposed that is useful for
situations where the variable of interest is continuous and restricted to the positive real line
and is related to other variables through the mean and precision parameters; and in [25],
a new parameterization of the gamma distribution is used that is indexed by mode and
precision parameters.

The paper is organized as follows. In Section 2, we develop the GSC regression model
with its properties. In Section 3, we perform a small-scale simulation and evaluate the point
estimation. An application to real data, which illustrates the usefulness of the proposed
model, is discussed in Section 4. Finally, conclusions are given in Section 5.

2. The GSC Regression Model

Gómez et al. [13] show that F(µ; µ, σ, λ, φ) = G(log(2), φ) and then, for a fixed q ∈ (0, 1)
such as

G(log(2), φ) = q, (1)

the parameter µ represents the q-th quantile of the distribution. This equation can be solved
numerically. Henceforth, we use the notation GSCq(µ, σ, λ) to refer to a random variable
with GSC distribution where φ is fixed as in (1), µ is the q-th quantile of the distribution, σ
is a scale parameter and λ is a shape parameter. Figure 1 shows the relation between q and
φ and the regions where the model is unimodal or bimodal, depending on the modeled
quantile q and the parameter λ. Note that, for q ∈ (0, 1), we have (λ1, λ2) ∈ R2

+ such that
the model is unimodal for λ1 and bimodal for λ2. In the next proposition, we enunciate a
property related to the unimodality of the model.
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Figure 1. (a) Relation between q and φ and (b) regions of unimodality and bimodality for the GSC
model in terms of q and λ.

Proposition 1. The GSC0.5(µ, σ, λ) model is unimodal for λ ≥ 1/
√

2 and bimodal for 0 < λ <
1/
√

2.

Proof. Since µ and σ are location and scale parameters, without a loss of generality, we
can consider µ = 0 and σ = 1. Deriving the pdf of the GSC0.5(µ = 0, σ = 1, λ) model in
relation to x, we obtain that

f ′(x) =
∂ f (x)

∂x
=

sinh(x)(1− 2λ2 − λ2 sinh2(x))
cosh(x)(1 + λ2 sinh2(x))

f (x).

Note that f ′(x) = 0 if and only if sinh(x) = 0 or 1− 2λ2 − λ2 sinh2(x) = 0. From the
last equation, it follows that sinh(x) = ±

√
1−2λ2

λ , which has two solutions if 0 < λ < 1/
√

2,
one solution if λ = 1/

√
2, and no solution if λ > 1/

√
2. Therefore,

• For 0 < λ < 1/
√

2, the equation f ′(x) = 0 has three solutions. In this case,

f ′(x) > 0, ∀x ∈ (−∞, asinh
(
−
√

1−2λ2

λ

)
) ∪ (0, asinh

(√
1−2λ2

λ

)
) and f ′(x) < 0, ∀x ∈

(asinh
(
−
√

1−2λ2

λ

)
, 0) ∪ (asinh

(√
1−2λ2

λ

)
,+∞). Then, asinh

(
±
√

1−2λ2

λ

)
are the two

modes of the distribution.
• For λ ≥ 1/

√
2, the equation f ′(x) = 0 has one solution. In this case, f ′(x) > 0, ∀x < 0

and f ′(x) < 0, ∀x > 0. Then, x = 0 is the only mode of the distribution.

Suppose now that we are interested in modeling the q-th quantile of the distribution
for a non-homogeneous population. We assume that, for a fixed q ∈ (0, 1), the q-th quantile
of the distribution µ and the scale parameter σ satisfy the following functional relations:

µi(q) = x>1i β1(q) and log(σi(q)) = x>2i β2(q), (2)

where β1(q) = (β11(q), . . . , β1p1(q))
> and β2(q) = (β21(q), . . . , β2p2(q))

> are vectors of
unknown regression coefficients such that

(
β1(q)

>, β2(q)
>) ∈ Rp1+p2 , with p1 + p2 < n;

and x>1i = (x11i, . . . , x1p1i) and x>2i = (x21i, . . . , x2p2i) are the observations of the known
regressors p1 and p2. Note that the vector x1i is linked with the µi(q) parameter using
the identity link; then, interpretations for the covariates in x1i can be performed using
the same idea as an ordinary linear regression. For instance, if the jth covariate 1 ≤
j ≤ p1 is a quantitative variable, then, fixing the rest of the covariates, the q-th quantile
of the distribution increases by β1j(q) units when x1j is increased to x1j + 1. Similarly,
for the regression coefficients related to the scale parameter, after fixing the rest of the
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covariates, the scale of the distribution for the q-th quantile of the distribution is increased
by exp(β2k(q)) units when x2k is increased to x2k + 1, 1 ≤ k ≤ p2. We highlight that
in [13], a regression structure was assumed only for µi(q). However, the assumption that
all the observations have the same scale parameter could be unrealistic, as each observation
could have its own scale. For this reason, it seems reasonable to assume this double
regression structure.

In this setting, the log-likelihood function for ψ(q) = (β>1 (q), β>2 (q), λ), up to a
constant, is given by

`(ψ(q)) =
n

∑
i=1

[
− log

(
1 + [λ sinh(zi(q))]2

)
+(φ− 1) log

{
− log

[
1
2
− 1

π
arctan{λ sinh(zi(q))}

]}]
+ n[log λ− log σ],

where zi(q) = (xi − µ(q))/σi(q). The maximum likelihood (ML) estimator of ψ(q), say
ψ̂(q), is obtained by maximizing `(ψ(q)) in relation to ψ(q). For this model, such a maxi-
mization procedure does not provide a closer form, meaning that numerical procedures
need to be implemented. Specifically, we use the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) quasi-Newton method; see [26] (p. 199). This procedure is implemented in the R
software [27]. The programs are available on request. Finally, under regularity conditions,
ψ̂(q) satisfies that

√
n
[

Ĥ(ψ̂)
]−1(

ψ̂−ψ
)
→ Np1+p2(0, Ip1+p−2), as n→ +∞, (3)

where Np(0, Ip) denotes the standard multivariate distribution and Ĥ(ψ̂) denotes the
estimated Hessian matrix of the log-likelihood function in relation to ψ.

3. Simulation Study

In this section, we present a simulation study to evaluate the performance of ML
estimates in finite samples. The computational procedure is implemented using R soft-
ware [27]. Values of the GSC distribution were drawn using inverse transform sampling.
We considered a scheme with two covariates, both simulated from the uniform distribution
between −2 and 2. We considered combinations of values for the quantile q : 0.10, 0.50
and 0.75; vectors for β1 : (1,−1, 0.5), (−0.5,−2, 1), (1,−1, 0.5) and (−0.5,−2, 1); vectors
for β2 : (−1, 1.6,−0.5), (−1, 1.6,−0.5) and (1, 0.7,−0.3); and the parameter log(λ) : −1.39
and 1.61. We also considered three sample sizes: 100, 200 and 500. Based on 5000 replicates,
we compute the mean of the estimated bias for each estimator (bias), the mean of the
estimated standard errors (SE), the root of the estimated mean squared error (RMSE), and
the 95% coverage probabilities (CP). Table 1 summarizes the results. From Table 1, it can be
observed that the bias, SE, and RMSE for all the parameters tend to approach zero when
the sample size is increased, showing that the ML estimates obtained are asymptotically
consistent. On the other hand, the CP values are closer to the nominal values used in
their construction (95%), suggesting that the asymptotic distribution in Equation (3) is
reasonable, even in finite samples.
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Table 1. Estimated bias, SE, RMSE, and 95%CP for the ML estimators for the GSC double regression model under different scenarios based on 5000 Monte Carlo replicates.

n = 100 n = 200 n = 500
q β1 β2 log(λ) Parameter Bias SE RMSE CP Bias SE RMSE CP Bias SE RMSE CP

0.10 (1, −1, 0.5) (−1, 1.6, −0.5) −1.39 β10 0.0146 0.0514 0.0648 0.8694 0.0066 0.0329 0.0363 0.9198 0.0025 0.0200 0.0208 0.9394
β11 0.0060 0.0275 0.0340 0.8786 0.0029 0.0177 0.0191 0.9246 0.0010 0.0106 0.0110 0.9398
β12 −0.0011 0.0078 0.0099 0.8676 −0.0003 0.0058 0.0066 0.9086 −0.0002 0.0038 0.0040 0.9410
β20 −0.0544 0.1004 0.1184 0.9006 −0.0257 0.0699 0.0750 0.9314 −0.0085 0.0438 0.0449 0.9424
β21 0.0194 0.0505 0.0598 0.9040 0.0083 0.0357 0.0385 0.9314 0.0033 0.0224 0.0236 0.9390
β22 −0.0089 0.0457 0.0503 0.9222 −0.0051 0.0332 0.0359 0.9268 −0.0009 0.0206 0.0210 0.9462

log(λ) −0.0983 0.3151 0.3520 0.9332 −0.0498 0.2163 0.2273 0.9460 −0.0162 0.1340 0.1360 0.9498

1.61 β10 0.0003 0.0449 0.0536 0.8920 −0.0002 0.0287 0.0310 0.9310 0.0002 0.0175 0.0179 0.9428
β11 0.0003 0.0255 0.0311 0.8866 −0.0001 0.0164 0.0181 0.9222 0.0001 0.0099 0.0102 0.9410
β12 −0.0001 0.0069 0.0098 0.8308 0.0001 0.0053 0.0064 0.8950 0.0000 0.0036 0.0039 0.9334
β20 −0.0627 0.1116 0.1311 0.8904 −0.0315 0.0791 0.0863 0.9162 −0.0113 0.0501 0.0514 0.9398
β21 0.0113 0.0460 0.0504 0.9264 0.0047 0.0337 0.0352 0.9386 0.0014 0.0215 0.0216 0.9472
β22 −0.0058 0.0467 0.0503 0.9280 −0.0023 0.0336 0.0350 0.9388 −0.0012 0.0211 0.0215 0.9464

log(λ) −0.1492 0.3012 0.3461 0.9266 −0.0777 0.2073 0.2277 0.9312 −0.0274 0.1288 0.1333 0.9446

0.50 (−0.5, −2, 1) (−1, 1.6, −0.5) −1.39 β10 0.0126 0.0512 0.0636 0.8744 0.0073 0.0331 0.0368 0.9182 0.0023 0.0200 0.0204 0.9398
β11 0.0050 0.0275 0.0338 0.8812 0.0032 0.0178 0.0195 0.9230 0.0009 0.0106 0.0108 0.9422
β12 −0.0011 0.0077 0.0098 0.8628 −0.0005 0.0058 0.0067 0.9118 −0.0003 0.0039 0.0041 0.9350
β20 −0.0576 0.1001 0.1197 0.8924 −0.0239 0.0700 0.0748 0.9288 −0.0087 0.0438 0.0446 0.9446
β21 0.0186 0.0499 0.0586 0.9074 0.0080 0.0358 0.0381 0.9342 0.0036 0.0224 0.0236 0.9376
β22 −0.0084 0.0455 0.0489 0.9274 −0.0044 0.0333 0.0352 0.9346 −0.0011 0.0207 0.0207 0.9492

log(λ) −0.1142 0.3149 0.3507 0.9382 −0.0432 0.2162 0.2242 0.9448 −0.0154 0.1340 0.1391 0.9422

(1, 0.7, −0.3) −1.39 β10 −0.0068 0.0529 0.0668 0.8808 −0.0020 0.0346 0.0384 0.9198 −0.0008 0.0210 0.0220 0.9428
β11 −0.0025 0.0297 0.0382 0.8720 −0.0005 0.0196 0.0223 0.9164 −0.0003 0.0118 0.0124 0.9428
β12 0.0002 0.0082 0.0121 0.8276 0.0001 0.0063 0.0079 0.8782 0.0000 0.0043 0.0047 0.9342
β20 −0.0667 0.1081 0.1297 0.8862 −0.0275 0.0765 0.0813 0.9306 −0.0102 0.0482 0.0497 0.9402
β21 0.0154 0.0511 0.0574 0.9182 0.0048 0.0375 0.0393 0.9352 0.0023 0.0238 0.0245 0.9430
β22 −0.0070 0.0512 0.0560 0.9208 −0.0047 0.0371 0.0386 0.9426 −0.0010 0.0232 0.0234 0.9510

log(λ) −0.1579 0.3161 0.3625 0.9240 −0.0694 0.2164 0.2292 0.9398 −0.0227 0.1342 0.1375 0.9440

0.75 (1, −1, 0.5) (1, 0.7, −0.3) 1.61 β10 −0.0061 0.5813 0.6422 0.9130 −0.0004 0.4112 0.4314 0.9352 −0.0020 0.2552 0.2604 0.9442
β11 0.0032 0.3709 0.4267 0.9004 0.0015 0.2696 0.2875 0.9296 0.0000 0.1632 0.1668 0.9426
β12 0.0059 0.2288 0.2930 0.8690 0.0061 0.1650 0.1863 0.9152 −0.0001 0.1074 0.1115 0.9414
β20 −0.0629 0.1118 0.1297 0.8912 −0.0292 0.0792 0.0866 0.9180 −0.0127 0.0500 0.0510 0.9422
β21 0.0079 0.0458 0.0497 0.9274 0.0033 0.0338 0.0351 0.9400 0.0019 0.0214 0.0219 0.9490
β22 −0.0037 0.0467 0.0503 0.9292 −0.0012 0.0337 0.0354 0.9382 −0.0007 0.0211 0.0213 0.9462

log(λ) −0.1481 0.3016 0.3408 0.9286 −0.0727 0.2073 0.2253 0.9362 −0.0313 0.1289 0.1305 0.9508

(−0.5, −2, 1) (1, 0.7, −0.3) 1.61 β10 −0.0043 0.1204 0.1302 0.9226 −0.0013 0.0834 0.0886 0.9322 −0.0007 0.0516 0.0519 0.9474
β11 0.0026 0.0772 0.0880 0.9102 0.0009 0.0547 0.0594 0.9242 0.0005 0.0330 0.0333 0.9462
β12 −0.0013 0.0494 0.0627 0.8624 −0.0006 0.0338 0.0366 0.9208 0.0001 0.0217 0.0224 0.9370
β20 −0.0547 0.2266 0.2380 0.9246 −0.0307 0.1588 0.1659 0.9306 −0.0099 0.1000 0.0997 0.9500
β21 0.0264 0.1123 0.1207 0.9282 0.0098 0.0805 0.0833 0.9414 0.0045 0.0504 0.0517 0.9428
β22 −0.0142 0.1147 0.1221 0.9342 −0.0080 0.0803 0.0843 0.9382 −0.0014 0.0496 0.0508 0.9470

log(λ) −0.0064 0.2947 0.2999 0.9452 −0.0107 0.2041 0.2084 0.9432 −0.0028 0.1282 0.1277 0.9488
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4. Application

To illustrate the GSC double regression model, we consider the Australian data set
available in the package sn in R [28], which includes data on 202 athletes collected at
the Australian Institute of Sport. Codes were performed in [27] and are available upon
request. Our main aim is to explain the body fat percentage (Bfat) in terms of the body
mass index (bmi) and the lean body mass (lbm). Particularly, we consider Bfati(q) ∼
GSC(µi(q), σi(q), λ, φ(q)), where φ(q) satisfies (1), q ∈ (0, 1) and for i = 1, . . . , 202, we
have that

µi(q) = β11(q) + β12(q)bmii + β13(q)lbmi and σi(q) = β21(q) + β22(q)bmii + β23(q)lbmi.

In other words, the bmi and lbm explain both the q-th quantile of Bfat and the scale
of the distribution. The same structure of covariates was considered in [13], but without
modeling the scale parameter; i.e., considering β22(q) = β23(q) = 0. We refer to those
models as GSC and GSC0 for the cases where σ is modeled and not modeled, respectively.
We considered q ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. Our approach is compared with the skewed
Laplace (SKL) model in [29]. Table 2 shows the Akaike information criterion (AIC [30]) for
the three models. We also present the statistic for the likelihood ratio test (LRT) to test H0 :
β22(q) = β23(q) = 0 versus H0 : β22(q) 6= 0 or β23(q) 6= 0, for all the quantiles considered.
In addition, we also compute the quantile residuals [31] for the GSC model. If the model
is correctly specified, the residual should be a random sample from the standard normal
distribution. We checked this assumption with the traditional Kolmogorov–Smirnov test.
Note that the GSC presents the lowest AIC for the quantiles up to the median, and GSC0
presents the lowest AIC for the rest of the quantiles. This is explained because, according
to the LRT, the coefficients related to the bmi and lbm variables are not significant (under
any common level of significance) for modeling the scale parameter for q = 0.75 and
q = 0.9, while they are significant for the rest of the quantiles. Finally, based on the quantile
residuals, the GSC double regression model seems to be appropriate for modeling all
quantiles, except the largest. Figure 2 also shows the regression coefficients in terms of the
quantiles and their respective 95% confidence intervals. Note that β12(q) and β13(q) are
significant (based on 5% significance) for all the quantiles considered; i.e., the bmi and lbm
variables are relevant for explaining the different quantiles of Bfat. Specifically, we can
obtain the following interpretations for β12(q) and β13(q):

• (Interpreting β12(q)) For a fixed lbm, for athletes in the lowest 10% of Bfat, the Bfat
is increased by 0.8572 units (95% confidence interval 0.4191; 1.2954) for each unit
increase in bmi, and for athletes in the highest 90% of Bfat, the Bfat is increased by
2.5834 units (95% confidence interval 2.3227; 2.8442) for each unit increase in bmi.

• (Interpreting β13(q)) For a fixed bmi, for athletes in the lowest 10% of Bfat, the Bfat
is decreased by 0.3039 units (95% confidence interval −0.4093; −0.1984) for each unit
increase in lbm, and for athletes in the highest 10% of Bfat, the Bfat is decreased by
0.5511 units (95% confidence interval −0.6077; −0.4945) for each unit increase in lbm.

We highlight the large difference between the interpretations for athletes in the lowest
10% and highest 10% of Bfat.

Finally, Figure 3 shows the different estimated pdf values for the Bfat under different
scenarios for bmi and lbm. We note that these estimated pdf values assumed different
shapes—unimodal, bimodal symmetric, and bimodal asymmetric—justifying the use of
the double regression GSC model in this example. Finally, Figure 4 shows the pairs (λ, q)
for the five quantiles modeled, identifying the unimodal and bimodal cases.
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Table 2. AIC for GSC, GSC0, and SKL models in the athlete data set for different quantiles. We also present the statistical
p-value.

AIC log-Likelihood LRT KS
τ GSC0 GSC SKL GSC0 GSC Statistical p-Value p-Value

0.10 1168.54 1154.64 1194.28 −574.27 −563.32 21.90 <0.0001 0.988
0.25 1172.72 1164.55 1172.70 −576.36 −568.27 16.17 0.0003 0.646
0.50 1174.74 1171.83 1182.66 −577.37 −571.91 10.91 0.0043 0.180
0.75 1171.50 1176.51 1221.65 −575.75 −574.25 3.00 0.2235 0.839
0.90 1223.71 1229.75 1280.45 −601.85 −600.88 1.95 0.3768 0.004
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Figure 2. Estimated parameters for regression coefficients (and 95% confidence intervals) for different quantile regression
models in the athlete data set.

0 50 100 150 200

Bfat

pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

0.000

0.002

0.010

0 20 40 60 80 100 120

Bfat

pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

0.00

0.02

(a) (b)

Figure 3. Cont.



Symmetry 2021, 13, 2279 8 of 10

0 50 100 150

Bfat

pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

0.000

0.002

0.010

0.012

0 10 20 30 40 50

Bfat

pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

0.00

0.02

0.04

(c) (d)

Figure 3. Estimated density function for different quantiles of Bfat under different combinations of
bmi and lbm: (a) q = 0.25, bmi = 32, lbm = 40; (b) q = 0.50, bmi = 32, lbm = 40; (c) q = 0.25, bmi = 30,
lbm = 80 and; (d) q = 0.75, bmi = 30, lbm = 80.
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Figure 4. Points of unimodality and bimodality for the GSC model in the athlete data set for the
different quantiles modeled.

5. Conclusions

In this paper, we present a new extension of the GSC model, introducing a double
regression structure to model both the quantile and the scale of the distribution. This
structure produces a competitive model for modeling heterogeneous populations with
different shapes: unimodal symmetric, unimodal asymmetric, bimodal symmetric, and
bimodal asymmetric. The illustration with a real data set shows that the model provides
better performance than other proposals in the literature. A limitation of the model is that
the shape parameter is common for all the observations. Further extensions should include
covariates in this parameter also.
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