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Abstract: In this paper, we present a variety of existence theorems for maximal type elements
in a general setting. We consider multivalued maps with continuous selections and multivalued
maps which are admissible with respect to Gorniewicz and our existence theory is based on the
author’s old and new coincidence theory. Particularly, for the second section we present presents
a collectively coincidence coercive type result for different classes of maps. In the third section we
consider considers majorized maps and presents a variety of new maximal element type results.
Coincidence theory is motivated from real-world physical models where symmetry and asymmetry
play a major role.
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1. Introduction

Using some collectively fixed and coincidence type results of the author [1,2] and
also a new general collectively coincidence result in Section 2 of this paper we present
some new maximal type element theorems for families of majorized type maps [3,4]. The
maps we consider are usually multivalued and either in the class of admissible maps
of Gorniewicz [5] or multivalued maps which may have continuous selections (i.e., the
Φ? maps [6]). There are a number of papers in the literature which consider collectively
coincidence coercive type results for maps in the same class, usually the Φ? classes of maps;
see [2,3,7] and the references therein. Our main result in Section 2 is Theorem 2 which
considers a collectively coincidence coercive type result between two different classes of
maps, namely the Φ? and Ad classes. One of the main difficulties encountered here is
to try to set up a strategy so that one could use a coincidence result of the author [2] for
the compact case. Now, Theorem 2 will immediately provide a maximal element type
result in Section 3. In particular, Section 3 considers a generalization of majorized maps
in the literature (see [3,8,9] and the references therein) and using new ideas and results in
Section 2 we establish very general and applicable maximal element type results. Note
coincidence theory arises naturally in many physical models and one can discuss symmetry
and asymmetry together in this general setting. For applications and an overview we refer
the reader to [3,4,8,9] and the references therein. In particular, we note that fixed or coinci-
dence points (equilibria) occur in generalized game theory (or abstract economies) so arise
naturally in the study or markets. Our theory in Sections 2 and 3 generalizes and improves
corresponding results in [9,10]. Finally we note in real-world applications many problems
arising in differential and integral equations and many problems arising in variational
settings can be rewritten in operator form where the operators are either compact or satisfy
some sort of monotonicity type assumption. These are two examples contained within
the general corecive setting. For example, consider (steady-state temperature in a rod)
the boundary value problem y′′(t) = − ey(t), t ∈ [0, 1] with y(0) = y(1) = 0. This can be
rewritten as y(t) =

∫ 1
0 G(t, s) ey(s)ds ≡ F y(t), where

G(t, s) =
{

t (1− s), 0 ≤ t ≤ s ≤ 1
s (1− t), 0 ≤ s ≤ t ≤ 1.
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One can consider a fixed (coincidence) point problem y = F y, where F : X → X with
X = {u ∈ C[0, 1] : |u|0 = supt∈[0,1] |u(t)| ≤ 1} (note maxt∈[0,1]

∫ 1
0 |G(t, s)|ds = 1

8 and
1
8 e1 ≤ 1) and the Arzela Ascoli theorem guarantees that F : X → X is a compact map so
our theory below guarantees a fixed (coincidence) point and as a result the boundary value
problem has a solution.

We now give a brief description of the main results [4,11] in the literature to date. Our
paper was motivated by [11], where the authors’ considered some collectively fixed point
results in the compact case. Here, we replaced the compactness condition with the less
restrictive coercive condition and in addition we established collectively coincidence results
for different classes of maps which is a new contribution to the literature. Ding and Tan [4]
discussed a particular coercive condition for a single majorized map and presented a fixed
point result. In this paper, we generalized majorized maps and considered a collection of
maps and presented a collection of collectively fixed point and coincidence point results.
These results generate maximal element type results in a very general setting.

Now, we describe the general maps of this paper. Let H be the C̆ech homology
functor with compact carriers and coefficients in the field of rational numbers K from
the category of Hausdorff topological spaces and continuous maps to the category of
graded vector spaces and linear maps of degree zero. Thus H(X) = {Hq(X)} (here X is a
Hausdorff topological space) is a graded vector space, Hq(X) being the q–dimensional
C̆ech homology group with compact carriers of X. For a continuous map f : X → X,
H( f ) is the induced linear map f? = { f? q} where f? q : Hq(X)→ Hq(X). We say a space
X is acyclic if X is nonempty, Hq(X) = 0 for every q ≥ 1, and H0(X) ≈ K.

Let X, Y and Γ be Hausdorff topological spaces. A continuous single valued map
p : Γ→ X is called a Vietoris map (written p : Γ⇒ X) if the following two conditions hold:

(i). for each x ∈ X, the set p−1(x) is acyclic
(ii). p is a perfect map i.e., p is closed and for every x ∈ X the set p−1(x) is nonempty

and compact.

Let φ : X → Y be a multivalued map (note for each x ∈ X we assume φ(x) is
a nonempty subset of Y). A pair (p, q) of single valued continuous maps of the form

X
p← Γ

q→ Y is called a selected pair of φ (written (p, q) ⊂ φ) if the following two
conditions hold:

(i). p is a Vietoris map
and

(ii). q (p−1(x)) ⊂ φ(x) for any x ∈ X.

We are now in a position to define the admissible maps of Gorniewicz [5]. A upper
semicontinuous map φ : X → Y with compact values is said to be admissible (and we
write φ ∈ Ad(X, Y)) provided there exists a selected pair (p, q) of φ. An example of an
admissible map is a Kakutani map. A upper semicontinuous map φ : X → K(Y) is said
to Kakutani (and we write φ ∈ Kak(X, Y)); here K(Y) denotes the family of nonempty,
convex, compact subsets of Y.

The following class of maps will also be considered in this paper. Let Z and W be
subsets of Hausdorff topological vector spaces Y1 and Y2 and G a multifunction. We say
G ∈ Φ?(Z, W) [6] if W is convex and there exists a map S : Z → W with S(x) ⊆ G(x) for
x ∈ Z, S(x) 6= ∅ and has convex values for each x ∈ Z and the fibre S−1(w) = {z ∈ Z :
w ∈ S(z)} is open (in Z) for each w ∈W.

We recall that a point x ∈ X is a maximal element of a set valued map F from a
topological space X to another topological space Y if F(x) = ∅.

Our paper is arranged as follows. In Section 2, we present a collectively coincidence
type result for different classes of maps. The result is then used in Section 3 to examine
maximal type elements for a generalization of majorized maps in the literature and as a
result we improve the corresponding results in [3,4,8–10].

In [2], the author presented collectively coincidence type results between maps in
the same classes and the idea there (see [2] (Theorem 2.15)) was to generate continuous
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single valued selections for appropriate maps and then use a single valued map with the
Brouwder fixed point theorem to conclude the existence of a coincidence. In this paper,
in Section 2, we consider collectively coincidence type results between maps in different
classes and the idea here is to obtain a continuous selection for an appropriate map from
one class so that its composition with an appropriate map from the other class will be a
multivalued map which is admissible with respect to Gorniewicz and then we can apply
a fixed point theorem of the author to conclude the existence of a coincidence. In [2], the
author did not see this connection for maps from different classes in the coercive case. In
Section 3 (the main results in this paper), the author uses the results in [2] and the results
in this paper to present a variety of new maximal element type results for generalized
majorized maps.

2. Coincidence Results

Rcent fixed point and coincidence point results of the author [1,2] will generate some
maximal type element results. We will present three results in Section 3 and for recent
results in other classes and for other types of maps we refer the reader to [1,2,7]. In this
section, we will prove a new coincidence result (which can be considered as the main result)
for the Φ? and Ad classes. As mentioned in Section 1 this is a collectively coincidence
coercive type result between two different classes of maps.

To establish a new coincidence result between the Φ? and Ad classes, we need to recall
a recent result of the author [2].

Theorem 1 ([2]). Let {Xi}N
i=1, {Yi}N0

i=1 be families of convex sets each in a Hausdorff topological
vector space with ∏N0

i=1 Yi paracompact. For each i ∈ {1, ..., N0}, suppose Fi : X ≡ ∏N
i=1 Xi → Yi

and Fi ∈ Ad(X, Yi) and in addition assume there exists a compact set Ki with Fi(X) ⊆ Ki ⊆ Yi.
For each j ∈ {1, ....N}, suppose Gj : Y ≡ ∏N0

i=1 Yi → Xj and there exists a map Sj : Y → Xj

with Sj(y) ⊆ Gj(y) for y ∈ Y, Sj(y) has convex values for each y ∈ Y and S−1
j (w) is open (in

Y) for each w ∈ Xj. Finally suppose for each y ∈ Y there exists a j ∈ {1, ..., N} with Sj(y) 6= ∅.
Then there exists a x ∈ X, a y ∈ Y, a i0 ∈ {1, ..., N} with yj ∈ Fj(x) for all j ∈ {1, ..., N0} and
xi0 ∈ Gi0(y).

Theorem 2. Let {Xi}N
i=1, {Yi}N0

i=1 be families of convex sets each in a Hausdorff topological vector
space with ∏N0

i=1 Yi paracompact. For each i ∈ {1, ..., N0}, suppose Fi : X ≡ ∏N
i=1 Xi → Yi and

Fi ∈ Ad(X, Yi). For each j ∈ {1, ....N}, suppose Gj : Y ≡ ∏N0
i=1 Yi → Xj and there exists a

map Sj : Y → Xj with Sj(y) ⊆ Gj(y) for y ∈ Y, Sj(y) has convex values for each y ∈ Y and
S−1

j (w) is open (in Y) for each w ∈ Xj. Also assume there is a compact subset K of Y; and for
each i ∈ {1, .., N}, a convex compact subset Zi of Xi, such that for each y ∈ Y\K, there exists a
i ∈ {1, .., N} with Si(y) ∩ Zi 6= ∅. Finally, suppose for each y ∈ Y, there exists a j ∈ {1, ..., N}
with Sj(y) 6= ∅. Then there exists a x ∈ X, a y ∈ Y, a i0 ∈ {1, ..., N} with yj ∈ Fj(x) for all
j ∈ {1, ..., N0} and xi0 ∈ Gi0(y).

Proof. We begin by noting that Ci = {y ∈ Y : Si(y) 6= ∅}, i ∈ {1, .., N} is an open
covering of Y (recall the fibres of Si are open) so from [12] (Lemma 5.1.6, pp301) there exists
a covering {Di}N

i=1 of Y where Di is closed in Y and Di ⊂ Ci for all i ∈ {1, ..., N}. For each
i ∈ {1, .., N}, let Mi : Y → Xi and Li : Y → Xi be given by

Mi(y) =
{

Gi(y), y ∈ Di
Xi, y ∈ Y\Di

and Li(y) =
{

Si(y), y ∈ Di
Xi, y ∈ Y\Di.

We begin by showing that for each i ∈ {1, ..., N} we have Mi ∈ Φ?(Y, Xi). Note for
i ∈ {1, ..., N} that Li(y) 6= ∅ for y ∈ Y, since if y ∈ Di, then Li(y) = Si(y) 6= ∅ since
Di ⊂ Ci, whereas if y ∈ Y\Di, then Li(y) = Xi. Further, for y ∈ Y and i ∈ {1, ..., N}



Symmetry 2021, 13, 2269 4 of 9

then, if y ∈ Di, we have Li(y) = Si(y) ⊆ Gi(y) = Mi(y), whereas if y ∈ Y\Di, we have
Li(y) = Xi = Mi(y). Additionally, if x ∈ Xi, we have

L−1
i (x) = {z ∈ Y : x ∈ Li(z)} = {z ∈ Y\Di : x ∈ Li(z) = Xi} ∪ {z ∈ Di : x ∈ Li(z)}

= (Y\Di) ∪ {z ∈ Di : x ∈ Si(z)} = (Y\Di) ∪ [Di ∩ {z ∈ Y : x ∈ Si(z)}]

= (Y\Di) ∪
[

Di ∩ S−1
i (x)

]
= Y ∩

[
(Y\Di) ∪ S−1

i (x)
]
= (Y\Di) ∪ S−1

i (x)

which is open in Y (note S−1
i (x) is open in Y and Di is closed in Y). Thus, for each

i ∈ {1, ..., N}, we have Mi ∈ Φ?(Y, Xi). Let K be the set as in the statement of Theorem 2
and let M?

i (respectively, L?
i ) denote the restriction of Mi (respectively, Li) to K. We note for

i ∈ {1, ..., N} that M?
i ∈ Φ?(K, Xi), since if x ∈ Xi, then we have

(L?
i )
−1(x) = {z ∈ K : x ∈ L?

i (z)} = {z ∈ K : x ∈ Li(z)}
= K ∩ {z ∈ Y : x ∈ Li(z)} = K ∩ L−1

i (x)

which is open in K∩Y = K. Thus, for i ∈ {1, ..., N}, since M?
i ∈ Φ?(K, Xi), then from [6,11]

there exists a single valued continuous selection gi : K → Xi of M?
i with gi(y) ∈ L?

i (y) ⊆ M?
i (y)

for y ∈ K and there exists a finite subset Ri of Xi with gi(K) ⊆ co (Ri). Let

Ωi = co (co (Ri) ∪ Zi) for i ∈ {1, ..., N}

which is a convex compact subset of Xi. Let

G??
i (y) = Gi(y) ∩Ωi and S??

i (y) = Si(y) ∩Ωi for y ∈ Y and i ∈ {1, ..., N}.

Note for i ∈ {1, ..., N} and y ∈ Y that S??
i (y) = Si(y) ∩Ωi ⊆ Gi(y) ∩Ωi = G??

i (y) and also
note if x ∈ Ωi then

(S??
i )−1(x) = {z ∈ Y : x ∈ S??

i (z)} = {z ∈ Y : x ∈ Si(z) ∩Ωi}
= {z ∈ Y : x ∈ Si(z)} = S−1

i (x)

which is open in Y. Next fix y ∈ Y. We now claim there exists a j ∈ {1, .., N} with
S??

j (y) 6= ∅. This is immediate if y ∈ Y\K since from one of our assumptions in the state-
ment of Theorem 2 there exists a j ∈ {1, .., N} with Sj(y) ∩ Zj 6= ∅ so S??

j (y) = Sj(y) ∩Ωj 6= ∅

since Zj ⊆ Ωj. It remains to consider the case when y ∈ K. Since {Di}N
i=1 is a cover-

ing of Y there exists a j0 ∈ {1, .., N} with y ∈ Dj0 , and note gj0(y) ∈ L?
j0
(y) = Sj0(y) since

y ∈ Dj0 and gj0(y) ∈ co (Rj0) ⊆ Ωj0 , so S??
j0
(y) = Sj0(y) ∩Ωj0 6= ∅. Combining all the

above we see there exists a j ∈ {1, .., N} with S??
j (y) 6= ∅.

Let Ω = ∏N
i=1 Ωi which is a convex comapct subset of X and let F?

i denote the
restriction of Fi to Ω. Note for i ∈ {1, .., N0} that F?

i ∈ Ad(Ω, Yi) (recall Ad is closed under
compositions) so in particular since F?

i is upper semicontinuous with compact values then
(see [13]) Wi = F?

i (Ω) is a compact subset of Yi. Now, Theorem 2.5 (with Xi replaced by Ωi,
X replaced by Ω, Fi replaced by F?

i , Ki replaced by Wi, Gi replaced by G??
i , Si replaced by

S??
i and note G??

i : Y → Ωi, S??
i : Y → Ωi, F?

i : Ω→ Y) guarantees a x ∈ Ω, a y ∈ Y, and a
i0 ∈ {1, ..., N} with yj ∈ F?

j (x) for all j ∈ {1, ..., N0} and xi0 ∈ G??
i0
(y).

3. Maximal Type Element Results

In this section, we will first rewrite collectively fixed and coincidence point results as
maximal type element results and from these maximal element results and other ideas we
will obtain our general theory.

Theorem 3. Let {Xi}N
i=1 be a family of convex sets each in a Hausdorff topological vector space

with X = ∏N
i=1 Xi paracompact. For each i ∈ {1, ..., N}, suppose Fi : X → Xi and in addition
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there exists a map Si : X → Xi with Si(x) ⊆ Fi(x) for x ∈ X, Si(x) has convex values for x ∈ X
and S−1

i (w) is open (in X) for each w ∈ Xi. Additionally, assume there is a compact subset K of X;
and for each i ∈ {1, .., N}, a convex compact subset Yi of Xi, such that for each x ∈ X\K, there
exists a j ∈ {1, .., N} with Sj(x) ∩Yj 6= ∅. Now, suppose for all i ∈ {1, .., N} that xi /∈ Fi(x) for
each x ∈ X. Then there exists a x ∈ X with Si(x) = ∅ for all i ∈ {1, ..., N}.

Proof. Suppose the conclusion is false. Then for each x ∈ X, there exists a i ∈ {1, ..., N}
with Si(x) 6= ∅. Now, [1] guarantees a x ∈ X and a i ∈ {1, .., N} with xi ∈ Fi(x), a
contradiction.

We next discuss a generalization of majorized mappings in the literature (see [3,4,8,9]).
Let Z and W be sets in a Hausdorff topological vector space with Z paracompact and W
convex. Suppose H : Z → W, J : Z → W and for each y ∈ Z, assume there exists a map
Ay : Z → W and an open set Uy containing y with H(z) ⊆ Ay(z) for every z ∈ Uy, Ay is
convex valued, (Ay)−1(x) is open (in Z) for each x ∈W and J(w) ∩ Ay(w) = ∅ for w ∈ Z.
We now claim that there exists a map T : Z →W with H(z) ⊆ T(z) for z ∈ Z, T is convex
valued, T−1(x) is open (in Z) for each x ∈W and J(w) ∩ T(w) = ∅ for w ∈ Z. To see this
note {Uy}y∈Z is an open covering of Z and since Z is paracompact there exists [12,14] a
locally finite open covering {Vy}y∈Z of Z with y ∈ Vy and Ωy = Vy ⊆ Uy for each y ∈ Z.
Now, for each y ∈ Z, let

Qy(z) =
{

Ay(z), z ∈ Ωy
W, z ∈ Z\Ωy.

Note, as in Theorem 2, for any x ∈W, we have

(Qy)
−1(x) = (Z\Ωy) ∪ (Ay)

−1(x)

which is open in Z, Qy is convex valued and H(z) ⊆ Qy(z) for every z ∈ Z (to see this note
if z ∈ Ωy, then it is immediate, since Ωy ⊆ Uy, whereas if z ∈ Z\Ωy, then it is immediate
since Qy(z) = W). Let T : Z →W be given by

T(z) =
⋂

y∈Z
Qy(z) for z ∈ Z.

Now T is convex valued, H(z) ⊆ T(z) for every z ∈ Z and J(w) ∩ T(w) = ∅ for w ∈ Z;
to see this let w ∈ Z and note there exists a y? ∈ Z with w ∈ Ωy? (recall {Vy}y∈Z is a
covering of Z) so T(w) =

⋂
y∈Z Qy(w) ⊆ Qy?(w) = Ay?(w) (since w ∈ Ωy? ) and thus

J(w) ∩ T(w) = ∅, since J(w) ∩ T(w) ⊆ J(w) ∩ Ay?(w) = ∅. It remains to show T−1(x) is
open for each x ∈W. Fix x ∈W and let u ∈ T−1(x). We now claim there exists an open set
Wu containing u with u ∈Wu ⊆ T−1(x), so then as a result T−1(x) is open. To prove our
claim, note since {Vy}y∈Z is locally finite, there exists an open neighborhood Nu of u (in
Z) such that {y ∈ Z : Nu ∩Vy 6= ∅} = {y1, ...., ym} (a finite set). Now, if y /∈ {y1, ...., ym},
then ∅ = Vy ∩ Nu = Vy ∩ Nu = Ωy ∩ Nu so Qy(z) = W for all z ∈ Nu, and as a result

T(z) =
⋂

y∈Z
Qy(z) =

m⋂
i=1

Qyi (z) for all z ∈ Nu.

Now T−1(x) = {z ∈ Z : x ∈ T(z)}, whereas

{z ∈ Nu : x ∈ T(z)} =
{

z ∈ Nu : x ∈
m⋂

i=1

Qyi (z)

}
= Nu ∩

[
∩m

i=1 (Qyi )
−1(x)

]
so

u ∈ Nu ∩
[
∩m

i=1 (Qyi )
−1(x)

]
⊆ T−1(x)

and our claim is true (note Nu ∩
[
∩m

i=1 (Qyi )
−1(x)

]
is an open neighborhood of u).
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The above discussion with Theorem 3 will guarantee our next result.

Theorem 4. Let {Xi}N
i=1 be a family of convex sets each in a Hausdorff topological vector space

with X = ∏N
i=1 Xi paracompact. For each i ∈ {1, ..., N}, suppose Hi : X → Xi; and for each

x ∈ X, assume there exists a map Ai,x : X → Xi and an open set Ui,x containing x with
Hi(z) ⊆ Ai,x(z) for every z ∈ Ui,x, Ai,x is convex valued, (Ai,x)

−1(z) is open (in X) for each
z ∈ Xi and wi /∈ Ai,x(w) for each w ∈ X. Additionally, assume there is a compact subset K of X;
and for each i ∈ {1, .., N}, a convex compact subset Yi of Xi, such that for each x ∈ X\K, there
exists a j ∈ {1, .., N} with Hj(x) ∩ Yj 6= ∅. Then there exists a x ∈ X with Hi(x) = ∅ for all
i ∈ {1, ..., N}.

Proof. Let i ∈ {1, ..., N}. From the discussion after Theorem 3 (with Z = X, W = Xi,
H = Hi, J = Projection of X on Xi, Ay = Ai,x), there exists a map Ti : X → Xi with
Hi(w) ⊆ Ti(w) for w ∈ X, Ti is convex valued, (Ti)

−1(z) is open for each z ∈ Xi and
wi /∈ Ti(w) for each w ∈ X; here

Qi,x(z) =
{

Ai,x(z), z ∈ Ωi,x
Xi, z ∈ X\Ωi,x

and
Ti(z) =

⋂
x∈X

Qi,x(z) for z ∈ X

where {Vi,x}x∈X is a locally finite open covering of X with x ∈ Vi,x and Ωi,x = Vi,x ⊆ Ui,x
for each x ∈ X.

Now, we will apply Theorem 3 with Fi = Si = Ti (note if for each x ∈ X\K there exists
a j ∈ {1, .., N} with Hj(x) ∩ Yj 6= ∅ with K and Yi being in the statement of Theorem 4,
then Tj(x) ∩ Yj 6= ∅ since Hj(w) ⊆ Tj(w) for w ∈ X) and so there exists a x ∈ X with
Tj(x) = ∅ for all j ∈ {1, ..., N}. Now, since Hj(w) ⊆ Tj(w) for w ∈ X then Hj(x) = ∅ for
all j ∈ {1, ..., N}.

Theorem 5. Let {Xi}N
i=1, {Yi}N0

i=1 be families of convex sets each in a Hausdorff topological
vector space with ∏N

i=1 Xi and ∏N0
i=1 Yi paracompact. For each i ∈ {1, ..., N0}, suppose Fi : X ≡

∏N
i=1 Xi → Yi and there exists a map Ti : X → Yi with Ti(x) ⊆ Fi(x) for x ∈ X, Ti(x) has

convex values for each x ∈ X and T−1
i (w) is open (in X) for each w ∈ Yi. For each j ∈ {1, ....N},

suppose Gj : Y ≡ ∏N0
i=1 Yi → Xj and there exists a map Sj : Y → Xj with Sj(y) ⊆ Gj(y) for

y ∈ Y, Sj(y) has convex values for each y ∈ Y and S−1
j (w) is open (in Y) for each w ∈ Xj. In

addition assume there is a compact subset K of Y; and for each i ∈ {1, .., N} a convex compact
subset Zi of Xi, such that for each y ∈ Y\K, there exists a i ∈ {1, .., N} with Si(y) ∩ Zi 6= ∅.
Now, suppose either for all j ∈ {1, ..., N0} we have yj /∈ Fj(x) for each (x, y) ∈ X × Y or for all
i ∈ {1, ..., N} we have xi /∈ Gi(y) for each (x, y) ∈ X×Y. Then either there exists a x ∈ X with
Ti(x) = ∅ for all i ∈ {1, ..., N0} or there exists a y ∈ Y with Sj(y) = ∅ for all j ∈ {1, ..., N}.

Proof. Suppose the conclusion is false. Then for each x ∈ X, there exists a i ∈ {1, ..., N0}
with Ti(x) 6= ∅; and for each y ∈ Y, there exists a j ∈ {1, ..., N} with Sj(y) 6= ∅. Now, [2]
guarantees a x ∈ X, a y ∈ Y, a j0 ∈ {1, ..., N0} and a i0 ∈ {1, ..., N} with yj0 ∈ Fj0(x) and
xi0 ∈ Gi0(y), a contradiction.

Theorem 6. Let {Xi}N
i=1, {Yi}N0

i=1 be families of convex sets each in a Hausdorff topological vector
space with ∏N

i=1 Xi and ∏N0
i=1 Yi paracompact. For each i ∈ {1, ..., N0} and for each j ∈ {1, ..., N},

suppose Hi : X → Yi and Ψj : Y → Xj, and for each x ∈ X, assume there exists a map
Ai,x : X → Yi and an open set Ui,x containing x with Hi(z) ⊆ Ai,x(z) for every z ∈ Ui,x, Ai,x is
convex valued, (Ai,x)

−1(z) is open (in X) for each z ∈ Yi, and for each y ∈ Y, assume there exists
a map Bj,y : Y → Xj and an open set Oj,y containing y with Ψj(z) ⊆ Bj,y(z) for every z ∈ Oj,y,
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Bj,y is convex valued, (Bj,y)
−1(z) is open (in Y) for each z ∈ Xj and also assume either for all

i ∈ {1, ..., N0} we have vi /∈ Ai,x(u) for each (u, v) ∈ X × Y or for all j ∈ {1, ...., N} we have
uj /∈ Bj,y(v) for each (u, v) ∈ X × Y. In addition, assume there is a compact subset K of Y; and
for each i ∈ {1, .., N}, a convex compact subset Zi of Xi, such that for each y ∈ Y\K, there exists
a i ∈ {1, .., N} with Ψi(y) ∩ Zi 6= ∅. Then either there exists a x ∈ X with Hi(x) = ∅ for all
i ∈ {1, ..., N0} or there exists a y ∈ Y with Ψj(y) = ∅ for all j ∈ {1, ..., N}.

Proof. We modify slightly the ideas in the discussion after Theorem 3. Fix i ∈ {1, .., N0} (re-
spectively, j ∈ {1, .., N}). Note {Ui,x}x∈X is an open covering of X (respectively, {Oj,y}y∈Y
is an open covering of Y) so there exists a locally finite open covering {Vi,x}x∈X of X with
x ∈ Vi,x and Ωi,x = Vi,x ⊆ Ui,x for each x ∈ X (respectively, a locally finite open covering
{Cj,y}y∈Y of Y with y ∈ Cj,y and Dj,y = Cj,y ⊆ Oj,y for each y ∈ Y). Now, for each x ∈ X
(respectively, y ∈ Y), let

Qi,x(z) =
{

Ai,x(z), z ∈ Ωi,x
Yi, z ∈ X\Ωi,x

(respectively,

Rj,y(z) =
{

Bj,y(z), z ∈ Dj,y
Xj, z ∈ Y\Dj,y )

and let Ti : X → Yi (respectively, Sj : Y → Xj) be given by

Ti(z) =
⋂

x∈X
Qi,x(z), z ∈ X (respectively, Sj(w) =

⋂
y∈Y

Rj,y(w), w ∈ Y).

The argument in the discussion after Theorem 3 guarantees that Hi(z) ⊆ Ti(z) for every
z ∈ X (respectively, Ψj(w) ⊆ Sj(w) for w ∈ Y), Ti (respectively, Sj) is convex valued and
T−1

i (w) is open for each w ∈ Yi (respectively, S−1
j (z) is open for each z ∈ Xj).

There are two cases to consider (see the statement of Theorem 6). Suppose first that
for each x ∈ X for all i ∈ {1, ..., N0} we have vi /∈ Ai,x(u) for each (u, v) ∈ X×Y. Then for
all i ∈ {1, ..., N0} we have vi /∈ Ti(u) for each (u, v) ∈ X × Y; to see this fix i ∈ {1, ..., N0}
and (u, v) ∈ X×Y and note there exists a x? ∈ X with u ∈ Ωi,x? so

Ti(u) =
⋂

x∈X
Qi,x(u) ⊆ Qi,x?(u) = Ai,x?(u)

and as a result, vi /∈ Ti(u) since vi /∈ Ai,x?(u) and Ti(u) ⊆ Ai,x?(u). Next consider the case
that for each y ∈ Y for all j ∈ {1, ...., N}, we have uj /∈ Bj,y(v) for each (u, v) ∈ X×Y. As
in the first case (with Dj,y and Sj replacing Ωi,x and Ti), we obtain for all j ∈ {1, ...., N} we
have uj /∈ Sj(v) for each (u, v) ∈ X×Y.

Now, apply Theorem 5 (with Fi = Ti and Gj = Sj) so either there exists a x ∈ X with
Ti(x) = ∅ for all i ∈ {1, ..., N0} or there exists a y ∈ Y with Sj(y) = ∅ for all j ∈ {1, ..., N},
Now, since Hi(z) ⊆ Ti(z), z ∈ X and Ψj(w) ⊆ Sj(w), w ∈ Y, the conclusion follows.

Theorem 7. Let {Xi}N
i=1, {Yi}N0

i=1 be families of convex sets each in a Hausdorff topological vector
space with ∏N0

i=1 Yi paracompact. For each i ∈ {1, ..., N0} suppose Fi : X ≡ ∏N
i=1 Xi → Yi and

Fi ∈ Ad(X, Yi). For each j ∈ {1, ....N}, suppose Gj : Y ≡ ∏N0
i=1 Yi → Xj and there exists a map

Sj : Y → Xj with Sj(y) ⊆ Gj(y) for y ∈ Y, Sj(y) has convex values for each y ∈ Y and S−1
j (w)

is open (in Y) for each w ∈ Xj. Additionally, assume there is a compact subset K of Y; and for
each i ∈ {1, .., N}, a convex compact subset Zi of Xi, such that for each y ∈ Y\K, there exists a
i ∈ {1, .., N} with Si(y) ∩ Zi 6= ∅. Now, suppose either for all i ∈ {1, ..., N} we have xi /∈ Gi(y)
for each (x, y) ∈ X×Y or for each (x, y) ∈ X×Y there exists a j ∈ {1, ..., N0} with yj /∈ Fj(x).
Then there exists a y ∈ Y with Si(y) = ∅ for all i ∈ {1, ..., N}.
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Proof. Suppose the conclusion is false. Then for each y ∈ Y, there exists a j ∈ {1, ..., N}
with Sj(y) 6= ∅. Now, Theorem 2 guarantees a x ∈ X, a y ∈ Y, a i0 ∈ {1, ..., N} with
yj ∈ Fj(x) for all j ∈ {1, ..., N0} and xi0 ∈ Gi0(y), a contradiction.

Theorem 8. Let {Xi}N
i=1, {Yi}N0

i=1 be families of convex sets each in a Hausdorff topological vector
space with ∏N0

i=1 Yi paracompact. For each i ∈ {1, ..., N0}, suppose Fi : X ≡ ∏N
i=1 Xi → Yi and

Fi ∈ Ad(X, Yi). For each j ∈ {1, ....N}, suppose Ψj : Y ≡ ∏N0
i=1 Yi → Xj; and for each y ∈ Y,

assume there exists a map Bj,y : Y → Xj and an open set Oj,y containing y with Ψj(z) ⊆ Bj,y(z)
for every z ∈ Oj,y, Bj,y is convex valued and (Bj,y)

−1(z) is open (in Y) for each z ∈ Xj. In addition,
assume there is a compact subset K of Y; and for each i ∈ {1, .., N}, a convex compact subset Zi of
Xi, such that for each y ∈ Y\K, there exists a i ∈ {1, .., N} with Ψi(y) ∩ Zi 6= ∅. Additionally,
suppose either for each y ∈ Y for all j ∈ {1, ...., N} we have uj /∈ Bj,y(v) for each (u, v) ∈ X×Y
or for each (x, y) ∈ X×Y there exists a i ∈ {1, ..., N0} with yi /∈ Fi(x). Then there exists a y ∈ Y
with Ψj(y) = ∅ for all j ∈ {1, ...., N}.

Proof. Let j ∈ {1, ..., N} and create Cj,y, Dj,y, Rj,y and Sj as in Theorem 6. We now claim
that for all j ∈ {1, ...., N}, we have uj /∈ Sj(v) for each (u, v) ∈ X × Y if in the statement
of Theorem 8 we have for each y ∈ Y for all j ∈ {1, ...., N} we have uj /∈ Bj,y(v) for each
(u, v) ∈ X×Y. Thus, for a fixed j ∈ {1, ..., N} and (u, v)×X×Y, note there exists a y? ∈ Y
with v ∈ Dj,y? so

Sj(v) =
⋂

y∈Y
Rj,y(v) ⊆ Rj,y?(v) = Bj,y?(v)

and as a result uj /∈ Sj(v) since uj /∈ Bj,y?(v) and Sj(v) ⊆ Bj,y?(v). Thus, our claim is
true. Now, apply Theorem 7 (with Gj = Sj) so there exists a y ∈ Y with Si(y) = ∅ for all
i ∈ {1, ..., N}. The conclusion follows, since Ψj(w) ⊆ Sj(w), w ∈ Y.

4. Conclusions

In Section 2, we present a new collectively coincidence coercive type result between
two different classes of maps, namely the Φ? and Ad classes. The coincidence theory in
Section 2 is then used to establish some new maximal element type results in Section 3.
Further, in Section 3, we consider majorized maps to establish a variety of new maximal
element type results. In a future paper, we hope to use some of the ideas, techniques and
results in this paper to consider applications in generalized abstract economies (general-
ized games).
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