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Abstract: This paper presents an uncertain logistic growth model to analyse and predict the evolution
of the cumulative number of COVID-19 infection in Czech Republic. Some fundamental knowledge
about the uncertain regression analysis are reviewed firstly. Stochastic regression analysis is invalid
to model cumulative number of confirmed COVID-19 cases in Czech Republic, by considering the
disturbance term as random variables, because that the normality test and the identical distribution
test of residuals are not passed, and the residual plot does not look like a null plot in the sense of
probability theory. In this case, the uncertain logistic growth model is applied by characterizing the
disturbance term as uncertain variables. Then parameter estimation, residual analysis, the forecast
value and confidence interval are studied. Additionally, the uncertain hypothesis test is proposed
to evaluate the appropriateness of the fitted logistic growth model and estimated disturbance term.
The analysis and prediction for the cumulative number of COVID-19 infection in Czech Republic
can propose theoretical support for the disease control and prevention. Due to the symmetry and
similarity of epidemic transmission, other regions of COVID-19 infections, or other diseases can be
disposed in a similar theory and method.

Keywords: uncertainty theory; uncertain statistics; uncertain hypothesis test; uncertain regression
model; COVID-19

1. Introduction

The pandemic COVID-19 remains a challenge globally, which gives rise to seriously
threatens of human health, economic losses and social panic in different degree. As of
16 August 2021, a total of 1,676,222 confirmed cases and 30,737 death has been reported in
Czech Republic. In addition, the confirmed case is the individual whose blood sample is
confirmed to be positive and has the ability to transmit the virus, and the death case means
the individual who infects the COVID-19 and dies from the virus. How do we model its
evolution based on the cumulative confirmed cases from 6 June 2021 to 16 August 2021 in
Czech Republic?

Regression analysis is a set of statistical techniques exploring the relationship between
explanatory variables and response variables. Although stochastic regression analysis, un-
der the framework of probability theory, has got lots of attention and researches. However,
it can only be applied to the case that the estimated distribution being close enough to the
true frequency, which can not be satisfied in many cases. Motivated by this, the uncertain
regression analysis was firstly proposed in 2018 by Yao-Liu [1] based on the knowledge
framework of uncertainty theory [2].

In this paper, we will adopt the uncertain regression analysis to interpret and analyse
the cumulative confirmed of COVID-19 cases in Czech Republic. As an important branch
of uncertain statistics, uncertain regression analysis [1] is a set of statistical techniques
that use uncertainty theory to explore the relationship between explanatory variables and
response variables.
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After the least squares estimation was proposed to estimate the unknown parameters
in uncertain regression models [1], some other estimation methods were presented, such
as the absolute deviations estimation [3], Tukey’s biweight estimations [4], the maximum
likelihood estimation [5], and so on. In order to make interval estimation for predicting the
response variables, Lio-Liu [6] suggested a method to determine the expected value and
variance of uncertain disturbance term. The uncertain hypothesis test was initialized by Ye-
Liu [7] as a statistical tool that uses uncertainty theory to judge whether some hypotheses
are correct or not based on observed data. Then the uncertain significance test [8] was
introduced. Uncertain regression analysis has also been successfully extended in many
directions, including uncertain multivariable regression model [9], multivariate regression
analysis [10,11], nonparametric regression analysis [12], and so on. In addition, some other
uncertain regression models were analysed, such as the uncertain Chapman-Richards
growth model [13], the uncertain Verhulst-Pearl model [14], the uncertain Gompertz
regression model [15], the uncertain revised regression model [16], and so on.

It is worth mentioning that the uncertainty theory has been successfully applied
to the cumulative number of COVID-19 infections in China, for instance, uncertain SIR
model [17], uncertain SEIAR model [18], uncertain logistic growth model [19], initial value
estimation [20], uncertain time series [21], and so on. All above researches have studied and
analysed the cumulative number of COVID-19 infections in China by using the uncertainty
theory, from the angle of uncertain differential equation, uncertain regression analysis and
uncertain time series analysis. In this manuscript, the cumulative number of COVID-19
infections in Czech Republic is dealt with initially by using an uncertain logistic growth
model. The upper limit number of infection, and an accurate expected forecast value
are obtained.

The rest frame is organized as follows. In next section, some fundamental knowledge
about the uncertain regression analysis are introduced. Uncertain logistic growth model is
given for COVID-19 cases in Czech Republic in Section 3 by characterizing the disturbance
term as an uncertain variable. The data for the cumulative number of COVID-19 infection
in Czech Republic is given firstly. Then parameter estimation, the forecast value, confidence
interval, and the uncertain hypothesis test are used to analyse and predict the evolution of
the cumulative number of confirmed COVID-19 infections in Czech Republic. In addition,
stochastic regression analysis is invalid to model cumulative number of confirmed COVID-
19 cases in Czech Republic, because that the normality test (Lilliefors test) and the identical
distribution test (Kolmogorov–Smirnov test) of residuals are not passed, and the residual
plot does not look like a null plot in the sense of probability theory. A brief summary and
discussion are given in the last. So other regions of COVID-19 infections, or other diseases
can be analysed and forecasted by using the uncertain logistic growth model due to the
symmetry and similarity.

2. Uncertain Regression Analysis

In this section, we introduce some fundamental knowledge about the uncertain
regression analysis, including parameter estimation, residual analysis, forecast value and
confidence interval, and hypothesis test for the uncertain logistic growth model.

2.1. Uncertain Logistic Growth Model

The uncertain logistic growth model, as an uncertain regression model, was proposed
in order to explore the functional relationship between t and y,

y = β0/(1 + β1 exp(−β2t)) + ε, β0 > 0, β1 > 0, β2 > 0, (1)

where (β0, β1, β2) is a vector of parameters, and ε is an uncertain disturbance term (uncer-
tain variable).
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2.2. Parameter Estimation and Residual Analysis

When (t, yt), t = 1, 2, · · · , n, are observed, Yao and Liu [1] defined the uncertain least
squares estimations β̂0, β̂1, β̂2 of β0, β1, β2 in the uncertain logistic growth model (1) is the
solution of the minimization problem:

min
β0>0,β1>0,β2>0

n

∑
t=1

(yt − β0/(1 + β1 exp(−β2t)))2. (2)

which is a traditional minimization problem, solved by the least square method (lsqnonlin
in Matlab). Thus, the fitted logistic growth model is:

y = β̂0/
(
1 + β̂1 exp

(
−β̂2t

))
. (3)

Then for each index t ( t = 1, 2, · · · , n), the t-th residual is:

ε̂t = yt − β̂0/
(
1 + β̂1 exp

(
−β̂2t

))
, (4)

which will be regarded as the samples of the uncertain disturbance term ε in the uncertain
logistic growth model. Therefore, the expected value of the uncertain disturbance term can
be estimated as the average of residuals, i.e.,

ê =
1
n

n

∑
t=1

ε̂t, (5)

and the variance of the disturbance term can be estimated as:

σ̂2 =
1
n

n

∑
t=1

(ε̂t − ê)2. (6)

2.3. Forecast

As the hypothesis, the disturbance term ε is a normal uncertain variable with expected
value ê and variance σ̂2. Thus, the forecast uncertain variable of response variable y with
respect to a new explanatory variable t is:

ŷ = β̂0
(
1 + β̂1 exp

(
−β̂2t

))
+ ε̂, ε̂ ∼ N (ê, σ̂), (7)

in which ê, σ̂2 are the expected value and variance of the disturbance term shown in (5)
and (6), respectively.

The forecast value is defined as the expected value of the forecast uncertain variable y

µ̂ = β̂0
(
1 + β̂1 exp

(
−β̂2t

))
+ ê. (8)

According to the operational law for calculating the inverse uncertainty distributions [2],
ŷ has a normal uncertainty distribution N (µ̂, σ̂), i.e.,

Ψ̂(x) =
(

1 + exp
(

π(µ̂− x)√
3σ̂

))−1
, (9)

and the inverse uncertainty distribution of ŷ is equivalent to:

Ψ̂−1(α) = β̂0
(
1 + β̂1 exp

(
−β̂2x

))
+ Φ−1(α), (10)

where Φ−1(α) is the inverse uncertainty distribution,

Φ−1(α) = e +
σ
√

3
π

ln
α

1− α
. (11)
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Taking α as a confidence level (e.g., 95%), Lio-Liu [5] suggested the α confidence
interval of response variable y is: [

µ̂− b̂, µ̂ + b̂
]
,

where

b̂ =
σ̂
√

3
π

ln
1 + α

1− α

is the minimum b such that:

Ψ̂(µ + b)− Ψ̂(µ− b) ≥ α. (12)

2.4. Uncertain Hypothesis Test

Uncertain hypothesis test was initialized by Ye-Liu [7] as a statistical tool that uses
uncertainty theory to judge whether some hypotheses are correct or not. Let ε be an
uncertain variable with a normal uncertainty distribution N (e, σ) where e and σ2 are
unknown parameters. Then the hypotheses are:

H0 : e = ê and σ = σ̂ versus H1 : e 6= ê or σ 6= σ̂.

The statement H0 is called a null hypothesis, and H1 is called an alternative hypothesis.
Given a significance level α, the hypotheses are

W =
{
(ε1,ε2, · · · , εn) : there are at least α of indexes t’s with 1 ≤ t ≤ n

such that εt < Φ−1
(α

2

)
or εt > Φ−1

(
1− α

2

)} (13)

with Φ−1 is the inverse uncertainty distribution of N (ê, σ̂), i.e.,

Φ−1(α) = ê +
σ̂
√

3
π

ln
α

1− α
. (14)

If the vector of observed data belongs to the rejection region W, i.e.,

(ε1, ε2, · · · , εn) ∈W,

then we reject H0. Otherwise, we accept H0.

3. Uncertain Logistic Growth Model for COVID-19 Cases in Czech Republic

In this section, we use the uncertain regression analysis to modeling the cumu-
lative data of confirmed COVID-19 infections in Czech Republic from 6 June 2021 to
16 August 2021 (see Table 1).

3.1. Data and Model

Table 1 shows the cumulative numbers of COVID-19 infections in Czech Republic from
6 June 2021 to 16 August 2021, via the website of the (MedSci https://www.medsci.cn/
(accessed on 16 August 2021)). Let t = 1, 2, · · · , 72 denotes the data from 6 June 2021
to 16 August 2021. For instance, t = 1 and 72 represent 6 June 2021 and 16 August
2021, respectively. In order to find the functional relationship between t (the date) and
y (the cumulative number of COVID-19 infections in Czech Republic ), we may use the
observed data:

(t, yt), t = 1, 2, · · · , 72,

https://www.medsci.cn/
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in which yt are the cumulative numbers shown in Table 1 on days t, t = 1, 2, · · · , 72 ,
respectively. For example,

y1 = 1663363, y72 = 1676222,

which is shown in Figure 1.

Table 1. Cumulative numbers of confirmed COVID-19 infections in Czech Republic from 6 June 2021
to 16 August 2021.

1,663,363 1,663,517 1,663,607 1,663,998 1,664,382 1,664,649 1,664,839 1,665,022

1,665,097 1,665,139 1,665,327 1,665,526 1,665,660 1,665,818 1,665,961 1,666,025

1,666,082 1,666,192 1,666,325 1,666,521 1,666,686 1,666,821 1,666,890 1,666,947

1,667,115 1,667,287 1,667,435 1,667,608 1,667,796 1,667,935 1,668,040 1,668,170

1,668,277 1,668,891 1,668,891 1,669,182 1,669,351 1,669,496 1,669,745 1,670,073

1,670,348 1,670,583 1,670,823 1,671,027 1,671,145 1,671,372 1,671,685 1,671,933

1,672,140 1,672,340 1,672,409 1,672,547 1,672,764 1,673,017 1,673,219 1,673,429

1,673,576 1,673,694 1,673,769 1,673,926 1,674,183 1,674,410 1,674,577 1,674,726

1,674,906 1,675,010 1,675,179 1,675,450 1,675,675 1,675,868 1,676,080 1,676,222
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Figure 1. Cumulative numbers of confirmed COVID-19 infections in Czech Republic from 6 June
2021 to 16 August 2021.

We use the uncertain logistic growth model to invest the relationship between the
time t and the cumulative number of confirmed COVID-19 cases in Czech Republic yt. The
uncertain logistic growth model is shown in (1),

y = β0/(1 + β1 exp(−β2t)) + ε, β0 > 0, β1 > 0, β2 > 0,

where (β0, β1, β2) is a vector of parameters, and ε is an uncertain disturbance term (uncer-
tain variable).
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3.2. Parameter Estimation and Residual Analysis

With the observed data of confirmed COVID-19 cases in Czech Republic from 6 June 2021
to 16 August 2021, (t, yt), t = 1, 2, · · · , 72, solving the following minimization problem:

min
β0>0,β1>0,β2>0

72

∑
t=1

(yt − (β0/(1 + β1 exp(−β2t))))2,

we can obtain the parameter values β̂0, β̂1, β̂2 for β0, β1, β2,

β̂0 = 1.5743× 107, β̂1 = 8.4666, β̂2 = 1.213× 10−4.

Thus, the fitted logistic growth model is:

y = 1.5743× 107/
(

1 + 8.4666 exp
(

1.213× 10−4t
))

, (15)

which matching the data excellently.
Then, for each index t (t = 1, 2, · · · , 72), the t-th residual is:

εt = yt − 1.5743× 107/
(

1 + 8.4666 exp
(

1.213× 10−4t
))

, (16)

which can be regarded as the samples of the uncertain disturbance term ε (shown in
Figure 2) in the uncertain regression model

y = 1.5743× 107/
(

1 + 8.4666 exp
(

1.213× 10−4t
))

+ ε, (17)

Then, the average of the expected values of residuals ε̂t is obtained, i.e.,

ê =
1

72

72

∑
t=1

ε̂t = 0.0172, (18)

and the variance is:

σ̂2 =
1

72

72

∑
t=1

(ε̂t − ê)2 = 299.73502. (19)

Stochastic regression analysis is invalid to model cumulative number of confirmed
COVID-19 cases in Czech Republic. Firstly, based on the Lilliefors test for the normality
of residuals in Figure 2, we have the p-values is less than 10−3, which suggests that the
normality of residuals has been disproved by the test. The QQplot shown in Figure 3 can
also support this point. Then, by using the Kolmogorov–Smirnov test, the residuals in
Figure 2 are not from the same population in the sense of probability theory. For example,
by using the test to check whether the first 10 residuals and the rest residuals in Figure 2
are identically distributed in the sense of probability theory, we have that the p-value is
0.0019, which means it does not pass the identical distribution test. Finally, stochastic
regression analysis requires that a residual plot should look like a null plot which has
constant mean, constant variance, and no separated points. It seems that the residual plot
shown in Figure 2 is not a null plot in the sense of probability theory. Under these situations,
the distribution function we obtained is not close enough to the real frequency for the
disturbance term. Therefore, the disturbance term can not be characterized as a random
variable, that is to see, stochastic regression analysis is invalid in this case.Consequently, the
disturbance term can be characterized as an uncertain variable, and we use the uncertain
regression analysis and uncertain hypothesis to exam the observed data in Table 1.
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Figure 2. Residual plots for the uncertain logistic growth model.
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Figure 3. QQplot for the residuals.

3.3. Forecast

The forecast uncertain variable of cumulative number of confirmed COVID-19 infec-
tions in Czech Republic on day t is:

ŷ = 1.5743× 107/
(

1 + 8.4666 exp
(

1.213× 10−4t
))

+ ε̂, ε̂ ∼ N
(

0.0172, 299.73502
)

. (20)

For instance, the forecast uncertain variable of cumulative number of confirmed
COVID-19 infections in Czech Republic on day 73 ( 17 August 2021) follows the normal
uncertainty distribution:

ŷ(73) = 1.5743× 107/
(

1 + 8.4666 exp
(

1.213× 10−4 × 73
))

+ ε̂.

We can see that ŷ(73) ∼ N
(
1676256, 299.73502) due to ε̂ ∼ N

(
0.0172, 299.73502).

Thus, the excepted forecast value of cumulative number of confirmed COVID-19 infections
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in Czech Republic on 17 August 2021 is 1,676,256. Furthermore, the 95% confidence
interval is:

1676256± 1730.8
√

3
π

ln
1 + 0.95
1− 0.95

,

i.e., [1,675,650.30, 1,676,861.13].

3.4. Uncertain Hypothesis Test

As assumption, ε is a normal uncertain variableN (e, σ) with unknown expected value
e and unknown variance σ2. (ε1, ε2, · · · , εn) obtained in Equation (16) are 72 observed data
of the uncertain variable ε. For a certain significance level α = 0.05, we obtain:

Φ−1
(

1− α

2

)
= 605.4129, Φ−1

(α

2

)
= −605.4129.

where Φ−1 is the inverse uncertainty distribution of N (0, 299.7350), i.e.,

Φ−1(α) = 0 +
299.7350

√
3

π
ln

α

1− α
. (21)

It follows from α× 72 = 3.6 and uncertain hypothesis test that the test for the hypotheses:

H0 : e = 0 and σ = 299.7350 versus H1 : e 6= 0 or σ 6= 299.7350

is

W =
{
(ε1,ε2, · · · , ε72) : there are at least 4 of indexes t′s with 1 ≤ t ≤ 72

such that εt < −605.4129 or εt > 605.4129
} (22)

with Φ−1 is the inverse uncertainty distribution of N (ê, σ̂). Since there only exist 2 outliers
ε32 : −646.0414 /∈ [−605.4129, 605.4129] and ε33 : −720.1483 /∈ [−605.4129, 605.4129]
(shown in Figure 4), we have (ε1, ε2, · · · , ε72) /∈ W. Thus, we accept H0. In other words,
the uncertain regression model (20) is appropriate for fitting the the cumulative number of
confirmed COVID-19 data in Czech Republic. As the forecast of uncertain logistic growth
model, the total number of confirmed COVID-19 infections in Czech Republic continues to
increase, but does not exceed 1.5743× 107 as expected.
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Figure 4. Uncertain hypothesis test: two outliers ( ε32 = −646.0414 and ε33 = −720.1483).
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4. Discussion

In this manuscript, an uncertain logistic growth model was applied to formulated the
cumulative number of COVID-19 data in Czech Republic. Stochastic regression analysis is
invalid to model cumulative number of confirmed COVID-19 cases in Czech Republic, by
considering the disturbance term as random variables, because that the normality test and
the identical distribution test of residuals are not passed, and the residual plot does not
look like a null plot in the sense of probability theory. In this case, the uncertain logistic
growth model was employed by considering the perturbation as an uncertain distribution
term. Then parameter estimation, residual analysis, forecast value, and confidence interval
were proposed, also the cumulative number of confirmed COVID-19 on August 17, 2021
in Czech Republic was predicted. Moreover the uncertain hypothesis test was employed
to illustrate the uncertain logistic growth model is a good fit to the observed data. In the
future, uncertain logistic growth model can also be applied to modeling the prediction and
precaution for other epidemics due to the symmetry and similarity of disease. If there is a
very little data reported or the limitations of data time period choosing, the prediction will
be not as accurate as expected.
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