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Abstract: High computation complexity restricts the application prospects of the interval type-2
fuzzy variable (IT2-FV), despite its high degree of freedom in representing uncertainty. Thus, this
paper studies the fuzzy operations for the regular symmetric triangular IT2-FVs (RSTIT2-FVs)—the
simplest IT2-FVs having the greatest membership degrees of 1. Firstly, by defining the medium of an
RSTIT2-FV, its membership function, credibility distribution, and inverse distribution are analytically
and explicitly expressed. Secondly, an operational law for fuzzy arithmetic operations regarding
mutually independent RSTIT2-FVs is proposed, which can simplify the calculations and directly
output the inverse credibility of the functions. Afterwards, the operational law is applied to define
the expected value operator of the IT2-FV and prove the linearity of the operator. Finally, some
comparative examples are provided to verify the efficiency of the proposed operational law.

Keywords: interval type-2 fuzzy variable; membership function; expected value; operational law

1. Introduction

There are various types of uncertainty in real life (e.g., fluctuations in the stock market,
the costs and demands in the suppliers’ market, etc.), forcing us to choose reasonable
mathematical tools to describe the research objects. Therefore, the ordinary fuzzy set theory
proposed by Zadeh [1] in 1965 has "deepened" over the past five decades. Among the vast
amount of theories(e.g., the fuzzy random sets [2], the twofold fuzzy sets [3], the bifuzzy
sets [4], the fuzzy soft sets [5], the interval-valued picture hesitant fuzzy set [6]), the type-2
fuzzy set (T2-FS) is an important branch attracting constant attention due to its superiority
in representing the uncertainty of the membership function (MF).

The MF, which measures the degree to which an FV is likely to take a certain value,
is usually provided by experts, based on their experiences or experiments under the
circumstances where there are a lack of data, or where semantic ambiguity exists. In the
ordinary fuzzy set theory, the MF of an FV should be uniquely determined. In reality,
however, different people have their own understanding of the same fuzzy concept; that
is, the determination process of the MF is subjective. Then, how could one guarantee that
subjective judgments lead to objective results? There is no mature or effective method
yet. Consequently, in order to reflect the inner- and inter-individual differences, Zadeh [7]
proposed the concept of T2-FS in 1975, the MF (named primary MF) of which is also an FV.

For a general T2-FV, the fuzziness of its secondary MFs (the MFs of the primary MF)
brings about both high computational complexity and visualization difficulty [8]. Although
numerous scholars have made delicate research on type-reduction approaches, including
the Karnik-Mendel (KM) algorithm-based iterative methods [9], the statistical sampling
based geometric strategies [10], and the possibility measure based methods [11–13], the
applicability of the T2-FVs is seriously restricted. Up until now, the studies on the appli-
cation of T2-FVs have mainly focused on fuzzy logic systems, programmings, and game
theory [14–18]. Readers may refer to [19–21] for related papers on T2-FS type-reduction
and its application areas.

Symmetry 2021, 13, 2196. https://doi.org/10.3390/sym13112196 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym13112196
https://doi.org/10.3390/sym13112196
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13112196
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13112196?type=check_update&version=2


Symmetry 2021, 13, 2196 2 of 23

As a special case, the interval T2-FVs (IT2-FVs), whose secondary MFs are identically
equal to 1 [22], the uncertainty of the secondary MFs disappears, and a single IT2-FV is
uniquely determined by its upper MF (UMF) and lower MF (LMF). Therefore, it can be
visualized in a plane. Compared to the generalized T2-FVs, the theories concerning IT2-FVs
are, nowadays, relatively mature (see, e.g., [23,24]), and the application areas are extended
to computer science, finance, commerce, etc. [25–28].

To the best of our knowledge, however, the existing studies focus on algorithm-based
type-reductions and defuzzification methods, whereas the research for fuzzy arithmetic
operations of the IT2-FVs are relatively limited. The first work is by Lee and Chen [29]
who defined three arithmetic operations between two IT2-FVs, whose UMF and LMF
are both r-polygonal shape, named addition, subtraction, and multiplication. Since then,
some scholars have followed Lee and Chen’s work while applying multi-attribute decision
making approaches [30], such as the analytic hierarchy process [31,32] and TOPSIS [33],
to make ranking and evaluation decisions [34–36]. Besides, for the trapezoidal interval
type-2 fuzzy numbers, some other operators, such as the geometric Bonferroni mean
operator [37] and Heronian mean operators [38] were proposed. Aguero and Vargas [39] is
another work focusing on the operations between two IT2-FVs, where the vertex method,
based on α−cut, was suggested. Nevertheless, these operators involve complex operations
themselves, and thus are inadequate at solving many realistic problems concerning more
complex operations. Hence, there is an urgent need to put forward a brand-new and
convenient operational law for fuzzy arithmetic operations of the IT2-FVs.

On the other hand, within the framework of the traditional fuzzy set theory,
Zhou et al. [40] proposed an operational law for calculating the inverse credibility dis-
tribution of the strictly monotone functions between mutually independent type-1 FVs
(T1-FVs) and verified that their method can greatly simplify the fuzzy arithmetical oper-
ations. Therefore, learning from their ideas, we attempt to extend the inverse credibility
distribution-based operational law to the type-2 fuzzy set theory. To demonstrate the
efficiency of the proposed method, the simplest and most special type of IT2-FVs, i.e., the
regular symmetric triangular IT2-FV (RSTIT2-FV), is studied in this paper, as an extension
of the most commonly used symmetric triangular FV in the type-1 fuzzy set system. The
RSTIT2-FV this paper focuses on has two characteristics: (1) the shapes of the UMF and
LMF are both symmetric triangles; (2) the vertexes of the UMF and LMF overlap at the
membership degree of 1.

The main contributions of this paper are as follows. First, we give a clear mathematical
definition of the RSTIT2-FV and define the medium of an RSTIT2-FV as a type-reduction
operator, and then set forth the possibility, necessity, and credibility measures, as well as
the credibility distribution and inverse credibility distribution. Second, the operational law
based on the proposed inverse credibility distribution for mutually independent RSTIT2-
FVs is given, which can help calculate for the strictly monotone functions of the RSTIT2-FVs
in a relatively easy way. Thirdly, an expected value operator via inverse credibility distri-
bution for the RSTIT2-FV is defined, and its linearity is proved. Finally, some numerical
examples are illustrated to verify the efficiency of the proposed methodology.

The rest of this paper is organized as follows. In Section 2, the related concepts are
briefly introduced. Then, the RSTIT2-FV is defined in Section 3, as well as the credibility
distribution function and inverse credibility distribution. In Section 4, the operation law
for the proposed RSTIT2-FV is provided. Finally, the expected value and its property of
linearity are introduced and proved in Section 5.

2. Preliminaries

To begin, some fundamental concepts of the fuzzy set theory will be briefly introduced
in advance.

Definition 1. (Zadeh [7]) A type-1 fuzzy set (T1-FS) B can be defined as
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B =
∫

x∈X

µB(x)
x

,

where µB(x) is the real-valued membership function, and X is the universe of x.

Definition 2. (Liu [41]) Given that Θ is a nonempty set, Γ(Θ) is the power set of Θ, Pos is a
possibility measure, and R is a real number set. Let the triad (Θ, Γ(Θ), Pos) be a possibility space,
then the map η: (Θ, Γ(Θ), Pos)→ R is called a type-1 fuzzy variable (T1-FV).

Definition 3. (Liu [41]) The credibility distribution for a T1-FV η can be calculated by

Φη(x) = Cr{η ≤ x} = 1
2

(
supη≤xµη(x) + 1− supη>xµη(x)

)
,

where µη(x) is the MF of η.

Definition 4. (Doubois and Prade [42]) A T1-FV η is called an LR-type FV if its shape function
and scalers α > 0, c > 0 satisfy

µη(x) =


L
(

c− x
α

)
, x ∈ (−∞, c]

R
(

x− c
α

)
, x ∈ [c,+∞),

where the shape function L (for left) and R (for right) are decreasing functions from R+ → [0, 1]
and satisfy L(0) = R(0) = 1 and L(1) = R(1) = 0.

Definition 5. (Zhou et al. [40]) An LR-type FV η, which has a continuous and strictly increasing
credibility distribution Φη is called a regular LR-FV.

Definition 6. (Zadeh [7], Mendel and John [43]) A type-2 fuzzy set (T2-FS), denoted as S and
characterized by a type MF µS(x, u). And S can be expressed as

S =
∫

x∈X

∫
u∈Jx

µS(x, u)
(x, u)

.

where u ∈ Jx ⊆ [0, 1], x ∈ X is called the primary MF of x, µS(x, u) is called the secondary MF of u.

It can be easily seen from Definition 6 that T2-FS is defined on a three-dimensional
space. To better characterize its features, Mendel and John [43] defined the information it
mapped to the two-dimensional plane as the footprint of uncertainty (FOU).

Definition 7. (Mendel and John [43]) For any x ∈ X, let the primary membership function of a
T2-FS S be Jx ⊆ [0, 1], then the FOU of S is the union of all the primary membership functions
and, thus, can be expressed as

FOU(S) =
⋃

x∈X
Jx.

The upper and lower bounds of the FOU are called the upper membership function (UMF) and
lower membership function (LMF) of S, respectively.

Definition 8. (Mendel et al. [22]) For a T2-FS S who has an N-element discrete universe of
discourse X and primary membership functions Jx1 , Jx2 , · · · , JxN , an embedded T1-FS Se has N
elements, one each from Jxi , i = 1, 2, · · · , N, namely u1, u2, · · · , uN , i.e.,

Se =
N

∑
i=1

ui
xi

, ui ∈ Jxi ⊆ [0, 1].
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Remark 1. The embedded T1-FS can be extended to the continuous situations and expressed as

Se =
∫ u

x
, u ∈ Jx ⊆ [0, 1].

Obviously, there are uncountable numbers of embedded T1-FSs in infinite domains.

Definition 9. (Liu and Liu [11]) Let S be a T2-FV, then the secondary possibility distribution
function, µ̃S(x), is a map R → [0, 1] satisfying µ̃S(x) = P̃os{γ ∈ Θ|S(γ) = x}, x ∈ R, and
the type-2 possibility distribution function, µS(x, u), is a map R × Jx → [0, 1] satisfying
µS(x, u) = Pos{µ̃S(x) = u}, (x, u) ∈ R× Jx.

Remark 2. In fact, for a given x = x′, µS(x′) in Definition 9 is exactly the secondary MF,
µS(x′, u), in Definition 6. Therefore, Jx in Definition 9 can also be regarded as the primary MF
in Definition 6.

Definition 10. (Men at al. [44]) For any x ∈ X and u ∈ Jx, if µS(x, u) is identically equal to 1,
then the T2-FS S is an interval T2-FV (IT2-FV).

According to Definition 10, the secondary membership of an IT2-FV is unique and
equal everywhere, i.e., the uncertainty of the MF and the information of the third dimension
for an IT2-FV can be ignored, and the IT2-FV can be uniquely determined by the region
bounded by its UMF and LMF.

3. Symmetric Triangular Interval Type-2 Fuzzy Variable

In this section, a special kind of IT2-FV, named regular symmetric triangular IT2-FV,
is introduced.

3.1. RSTIT2-FV and Its Medium

The specific definition of the IT2-FV studied in this paper is as follows.

Definition 11. An IT2-FV S is called a regular symmetric triangular IT2-FV (RSTIT2-FV) if its
UMF and LMF are as in the following forms,

UMF =



1
lU

x− c− lU
lU

, x ∈ [c− lU , c)

− 1
lU

x +
c + lU

lU
, x ∈ [c, c + lU ]

0, otherwise,

(1)

and

LMF =



1
lL

x− c− lL
lL

, x ∈ [c− lL, c)

− 1
lL

x +
c + lL

lL
, x ∈ [c, c + lL]

0, otherwise,

(2)

and can be denoted as
(

c− lU c c + lU
c− lL c c + lL

)
, where the spreads of the UMF and LMF, lU and lL,

satisfy lU > lL, and the peak of them, 1, are reached when x is equal to c.

An RSTIT2-FV is visualized in Figures 1 and 2, respectively, in a three-dimensional
space and two-dimensional plane, respectively, and Figure 2 can be understood as a top
view of Figure 1.
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Figure 1. The solid visualization of an RSTIT2-FV.

x

u

c− lU c− lL c− lUc + lLc

1

UMF

LMF

FOU

Figure 2. The plane visualization of an RSTIT2-FV.

In order to facilitate the subsequent definitions of credibility distribution and opera-
tional law for the RSTIT2-FV, the medium of an RSTIT2-FV is defined in advance.

Definition 12. Let S be an RSTIT2-FV, η be a T1-FV, and their MFs satisfy

µη(x) =
1
2

UMF +
1
2

LMF,

then η is called the medium of S.

Definition 12 endows equal weights to every possible value of the MFs for a certain x,
it is a relatively evenhanded way to eliminate the uncertainty of MFs in an uncertain and
complex environment. Following from Definition 12, the analytical expression of µη(x) can
be calculated as
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µη(x) =



1
2

(
1
lU

x− c− lU
lU

)
, x ∈ [c− lU , c− lL)

1
2

(
1
lU

x− c− lU
lU

)
+

1
2

(
1
lL

x− c− lL
lL

)
, x ∈ [c− lL, c)

1
2

(
− 1

lU
x +

c + lU
lU

)
+

1
2

(
− 1

lL
x +

c + lL
lL

)
, x ∈ [c, c + lL)

1
2

(
− 1

lU
x +

c + lU
lU

)
, x ∈ [c + lL, c + lU ]

0, otherwise,

(3)

according to Equations (1) and (2). Figure 3 shows the medium η with the red polyline
representing its MF, from which we can readily infer that η is a regular LR-FV. Moreover,
µη can be regarded as one of the embedded type-1 sets of S, according to Definition 8.

x

u

c− lU c− lL c− lUc + lLc

1

µη

Figure 3. The visualization of the medium η.

3.2. The Credibility Distribution of the RSTIT2-FVs

By means of the medium η, we can define the credibility distribution and inverse
credibility distribution in light of Liu [41]’s definition of credibility measure for the T1-FVs.
Beforehand, the definition of the credibility measure for an RSTIT2-FV is given.

Definition 13. Let S be an RSTIT2-FV with the medium of η, and A be a fuzzy event from the
universe, then the possibility, necessity, and credibility measures of A for S are, respectively,

Pos{A} = supx∈Aµη(x),

Nec{A} = 1− supx∈Ac µη(x),

Cr{A} = 1
2
(Pos{A}+ Nec{A}).

It can be easily proven that the credibility measure of an RSTIT2-FV is self-dual and
satisfies the monotonicity.

Theorem 1. For a fuzzy event A from the universe and the credibility measure of an RSTIT2-FV,
Cr, we have

Cr{A}+ Cr{Ac} = 1.

Proof. According to Definition 13, it can be deduced that
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Cr{A}+ Cr{Ac} = 1
2
(Pos{A}+ Nec{A}) + 1

2
(Pos{Ac}+ Nec{Ac})

=
1
2
(Pos{A}+ Pos{Ac}+ 1− Pos{Ac}+ 1− Pos{A})

= 1.

Theorem 2. Suppose that C and D are two fuzzy events satisfying C ⊆ D, then for the credibility
measure of the RSTIT2-FV, we have Cr{C} ≤ Cr{D}.

Proof. In light of Definition 13, it can be obtained that

Cr{C} = 1
2
(Pos{C}+ 1− Pos{Cc}),

Cr{D} = 1
2
(Pos{D}+ 1− Pos{Dc}).

(4)

On the other hand, we have Dc ⊆ Cc since C is a subset of D. Thus, we can
further obtain

supx∈Dc µη(x) ≤ supx∈Cc µη(x),

supx∈Cµη(x) ≤ supx∈Dµη(x).

Again, on the basis of Definition 13, we have

Pos{C} = supx∈Cµη(x) ≤ Pos{D} = supx∈Dµη(x),

Pos{Dc} = supx∈Dc µη(x) ≤ Pos{Cc} = supx∈Cc µη(x).
(5)

Accordingly, it can be derived that

Cr{C} ≤ Cr{D}

in view of Equations (4) and (5).

Based on Definition 13 and Theorems 1 and measure-mono, the possibility, necessity,
and credibility measures of a specific fuzzy event {S ≤ r} for an RSTIT2-FV S can be
calculated by

Pos{S ≤ r} = supx≤rµη(x),

Nec{S ≤ r} = 1− supx>rµη(x),

Cr{S ≤ r} = 1
2

(
supx≤rµη(x) + 1− supx>rµη(x)

)
.

Next, we can define the credibility distribution of S as follows.

Definition 14. Suppose that S is an RSTIT2-FV with a medium of η, then the credibility distribu-
tion ΦS of S is defined as Cr{S ≤ x}.

On the basis of Definition 13 and Equation (3), we can easily obtain that

Pos{S ≤ x} =



0, x ∈ (−∞, c− lU ]

1
2

(
1
lU

x− c− lU
lU

)
, x ∈ (c− lU , c− lL]

1
2

(
1
lU

x− c− lU
lU

)
+

1
2

(
1
lL

x− c− lL
lL

)
, x ∈ (c− lL, c]

1, x ∈ (c,+∞),

(6)
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and

Nec{S ≤ x} =



0, x ∈ (−∞, c]

1 +
1
2

(
1
lU

x− c + lU
lU

)
+

1
2

(
1
lL

x− c + lL
lL

)
, x ∈ (c, c + lL]

1 +
1
2

(
1
lU

x− c + lU
lU

)
, x ∈ (c + lL, c + lU ]

1, x ∈ (c + lU ,+∞).

(7)

Then by using Definition 14 and Equations (1) and (6) , the credibility distribution ΦS
can be easily calculated as

ΦS(x) = Cr{S ≤ x}

=



0, x ∈ (−∞, c− lU ]

1
4

(
1
lU

x− c− lU
lU

)
, x ∈ (c− lU , c− lL]

1
4

(
1
lU

x− c− lU
lU

)
+

1
4

(
1
lL

x− c− lL
lL

)
, x ∈ (c− lL, c + lL]

1 +
1
4

(
1
lU

x− c + lU
lU

)
, x ∈ (c + lL, c + lU ]

1, x ∈ (c + lU ,+∞).

(8)

Figure 4 gives the visualization of ΦS. Obviously, ΦS is a continuous and strictly
increasing function.

0 x

ΦS(x)

c− lUc− lL c + lLc + lU

lU − lL
4lU

1
2

c

1− lU − lL
4lU

1

Figure 4. The credibility distribution of S, ΦS.

Definition 15. Let S be an RSTIT2-FV, then its inverse credibility distribution is defined as the
inverse function of ΦS(see Figure 5) and can be calculated by

Φ−1
S (α) =



4lUα + c− lU , α ∈
[

0,
lU − lL

4lU

)
4lU lLα− 2lU lL

lU + lL
+ c, α ∈

[
lU − lL

4lU
, 1− lU − lL

4lU

)

4lUα + c− 3lU , α ∈
[

1− lU − lL
4lU

, 1
]

.

(9)
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0 α

Φ−1
S (α)

c− lU

c− lL

c + lL

c + lU

lU − lL
4lU

1
2

c

1− lU − lL
4lU

1

Figure 5. The inverse credibility distribution of S, Φ−1
S .

Remark 3. According to the definition of the credibility distribution [45] and inverse credibility
distribution [40] of the TI-FV, we have Φη(x) = ΦS(x) and Φ−1

η (α) = Φ−1
S (α), where Φη and Φ−1

η

are, respectively, the credibility distribution and inverse credibility distribution of the medium η.

Example 1. Denote an RSTIT2-FV as S1 =

(
1 4 7
3 4 5

)
, then according to Definition 11, we

have lU = 3 and lL = 1, and the UMF and LMF are, respectively,

UMF =



1
3

x− 1
3

, x ∈ [1, 4)

−1
3

x +
7
3

, x ∈ [4, 7)

0, otherwise,

LMF =


x− 3, x ∈ [3, 4)

−x + 5, x ∈ [4, 5)

0, otherwise,

Afterwards, based on Equation (3) in Definition 12, the MF of the medium η1 for S1 is

µη1(x) =



1
6

x− 1
6

, x ∈ [1, 3)

2
3

x− 5
3

, x ∈ [3, 4)

−2
3

x +
11
3

, x ∈ [4, 5)

−1
6

x +
7
6

, x ∈ [5, 7],

0, otherwise,

Consequently, on the basis of Definition 14, the possibility of the fuzzy event S ≤ x is

Pos{S ≤ x} =



0, x ∈ (−∞, 1]

1
6

x− 1
6

, x ∈ (1, 3]

2
3

x− 5
3

, x ∈ (3, 4]

1, x ∈ (4,+∞),
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and the necessity of it is

Nec{S ≤ x} =



0, x ∈ (−∞, 4]

2
3

x− 8
3

, x ∈ (4, 5]

1
6

x− 1
6

, x ∈ (5, 7]

1, x ∈ (7,+∞).

Thus, following from Definition 13 and Equation (14), the credibility (credibility distribution) is

ΦS1(x) = Cr{S ≤ x} =



0, x ∈ (−∞, 1)

1
12

x− 1
12

, x ∈ [1, 3)

1
3

x− 5
6

, x ∈ [3, 5)

1
12

x +
5
12

, x ∈ [5, 7]

1, x ∈ (7,+∞).

Finally, with a view to Equation (9) in Definition 15, we have

Φ−1
S1

(α) =



12α + 1, α ∈
[

0,
1
6

)
3α +

5
2

, α ∈
[

1
6

,
5
6

)
12α− 5, α ∈

[
5
6

, 1
]

.

(10)

Example 2. Given that S2 =

(
0 4 8
2 4 6

)
is an RSTIT2-FV, then the MF of its medium η2, the

credibility distribution and inverse credibility distribution are as follows,

µη2(x) =



1
8

x, x ∈ [0, 2)

3
8

x− 1
2

, x ∈ [2, 4)

−1
4

x +
5
2

, x ∈ [4, 6)

−1
8

x + 1, x ∈ [6, 8]

0, otherwise,

ΦS2(x) =



0, x ∈ (−∞, 0)

1
16

x, x ∈ [0, 2)

3
16

x− 1
4

, x ∈ [2, 6)

1
16

x +
1
2

, x ∈ [6, 8]

1, x ∈ (8,+∞),
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Φ−1
S2

(α) =



16α, α ∈
[

0,
1
8

)
16
3

α +
4
3

, α ∈
[

1
8

,
7
8

)
16α− 8, α ∈

[
7
8

, 1
]

.

(11)

following from Equations (3), (8) and (9).

In the previous subsection, the credibility distribution and the inverse credibility
distribution for a single RSTIT2-FV had been given. Now, we consider a situation where
more than one RSTIT2-FV are involved in an arithmetic operation.

Definition 16. Assume that Si, i = 1, 2, · · · , n are RSTIT2-FVs with the mediums of ηi,
i = 1, 2, · · · , n, respectively, and f is a function from Rn to R, then the credibility distribu-
tion of S = f (S1, S2, · · · , Sn), ΦS(x) = Cr{S ≤ x} is defined as

ΦS(x) = Φη(x),

where η = f (η1, η2, · · · , ηn) is the medium of S. The inverse credibility distribution of S is the
inverse function of ΦS, i.e., Φ−1

S .

Remark 4. According to Definition 16, it can be easily deduced that Φ−1
S (α) = Φ−1

η (α).

4. Operational Law

This section introduces the operational law for fuzzy arithmetic operations regarding
RSTIT2-FVs, which can help efficiently calculate ΦS in Definition 16. As a prerequisite for
its application, the definition of independence is introduced at first.

4.1. Independence

Although Liu and Liu [11] has given the definition of independence for T2-FVs based
on the possibility measure, it is somewhat more complex and is not that practicable.
Therefore, a new definition of independence based on the credibility measure and the
concept of medium in Definition 13 is proposed in this section.

Definition 17. The RSTIT2-FVs Si, i = 1, 2, · · · , n. Si, i = 1, 2, · · · , n are said to be mutually
independent if

Cr{Si ∈ Bi, i = 1, 2, · · · , n} = min
1≤i≤n

Cr{Si ∈ Bi}

for any subsets B1, B2, · · · , Bn.

Definition 18. (Liu and Gao [46]) Let ηi, i = 1, 2, · · · , n be n T1-FVs, they are said to be mutually
independent if

Cr{ηi ∈ Bi, i = 1, 2, · · · , n} = min
1≤i≤n

Cr{ηi ∈ Bi}

for any subsets B1, B2, · · · , Bn.

Remark 5. Since the independence of the RSTIT2-FVs are derived from their credibility mea-
sures, and the credibility measure of the RSTIT2-FVs are based on their mediums, T1-FVs
ηi, i = 1, 2, · · · , n, once RSTIT2-FVs Si, i = 1, 2, · · · , n are mutually independent, it means that

Cr{ηi ∈ Bi, i = 1, 2, · · · , n} = min
1≤i≤n

Cr{ηi ∈ Bi}
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holds. Thus, according to Definition 18, the mediums ηi, i = 1, 2, · · · , n are also mutually independent.

4.2. Operational Law for Strictly Monotone Function of RSTIT2-FVs

Prior to the introduction of the operational law, the definition of the strictly monotone
function is set forth.

Definition 19. (Zhou et al. [40]) A real-valued function f (x1, x2, · · · , xn) is said to be strictly
monotone if it is strictly increasing with respect to x1, x2, · · · , xt and strictly decreasing with
respect to xt+1, xt+2, · · · , xn; that is,

f (x1, · · · , xt, xt+1, · · · , xn) ≤ f (y1, · · · , yt, yt+1, · · · , yn)

whenever xi ≤ yi for i = 1, 2, · · · , t and xi ≥ yi for i = t + 1, · · · , n, and

f (x1, · · · , xt, xt+1, · · · , xn) < f (y1, · · · , yt, yt+1, · · · , yn)

whenever xi < yi for i = 1, 2, · · · , t and xi > yi for i = t + 1, · · · , n.

Theorem 3. (Zhou et al. [40]) Let ηi, i = 1, 2, · · · , n be independent regular LR FVs with the credi-
bility distributions of Φηi , i = 1, 2, · · · , n, respectively. If the function f (x1, · · · , xt, xt+1, · · · , xn)
is strictly increasing with respect to xi, i = 1, 2, · · · , t and strictly decreasing with respect to
xi, i = t + 1, t + 2, · · · , n, then the inverse credibility distribution of

η = f (η1, · · · , ηt, ηt+1, · · · , ηn),

can be calculated by

Φ−1
η (α) = f

(
Φ−1

η1
(α), · · · , Φ−1

ηt (α), Φ−1
ηt+1

(1− α), · · · , Φ−1
ηn (1− α)

)
.

Theorem 4. Suppose that Si, i = 1, 2, · · · , n are mutually independent RSTIT2-FVs with the
mediums of ηi, i = 1, 2, · · · , n, respectively. If the function f (x1, · · · , xt, xt+1, · · · , xn) is strictly
increasing with respect to xi, i = 1, 2, · · · , t and strictly decreasing with respect to xi, i = t + 1, t +
2, · · · , n, then

S = f (S1, · · · , St, St+1, · · · , Sn),

has the inverse credibility distribution of

Φ−1
S (α) = f

(
Φ−1

S1
(α), · · · , Φ−1

St
(α), Φ−1

St+1
(1− α), · · · , Φ−1

Sn
(1− α)

)
.

Proof. Since ηi, i = 1, 2, · · · , n are the mediums of the RSTIT2-FVs Si, i = 1, 2, · · · , n,
according to Definition 16, we have

Φ−1
Si

(α) = Φ−1
ηi

(α), i = 1, 2, · · · , t,

Φ−1
Si

(1− α) = Φ−1
ηi

(1− α), i = t + 1, t + 2, · · · , n.

Let η = f (η1, · · · , ηt, ηt+1, · · · , ηn), then Definition 16, we have

Φ−1
S (α) = Φ−1

η (α),

By using Theorem 3, it can be deduced that

Φ−1
η (α) = f

(
Φ−1

η1
(α), · · · , Φ−1

ηt (α), Φ−1
ηt+1

(1− α), · · · , Φ−1
ηn (1− α)

)
,
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Accordingly, we can easily obtain that

Φ−1
S (α) = f

(
Φ−1

η1
(α), · · · , Φ−1

ηt (α), Φ−1
ηt+1

(1− α), · · · , Φ−1
ηn (1− α)

)
= f

(
Φ−1

S1
(α), · · · , Φ−1

St
(α), Φ−1

St+1
(1− α), · · · , Φ−1

Sn
(1− α)

)
.

(12)

In order to show the efficiency of our proposed operational law in calculating the
inverse credibility distribution of the fuzzy arithmetic operations, we present three com-
parative examples, as follows.

Example 3. Suppose that S1 in Example 1 and S2 in Example 2 are mutually independent RSTIT2-
FVs, and fi(S1, S2), i = 1, 2, 3 are three functions of them. Then the inverse credibility distributions
of fi(S1, S2) can be given directly by Equation (12).

Case 1: Set f1(S1, S2) = S1 + S2. It is obviously seen that f1 is strictly increasing with respect to
S1 and S2. Hence, on the basis of Theorem 4 and Equations (10) and (11), we have

Φ−1
f1
(α) =



(12α + 1) + 16α, α ∈ [0, 1/8)

(12α + 1) + (16/3α + 4/3), α ∈ [1/8, 1/6)

(3α + 5/2) + (16/3α + 4/3), α ∈ [1/6, 5/6)

(12α− 5) + (16/3α + 4/3), α ∈ [5/6, 7/8)

(12α− 5) + (16α− 8), α ∈ [7/8, 1].

(13)

Figure 6 provides the graph of Φ−1
f1
(α).

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

Figure 6. The inverse credibility function of f1(S1, S2) = S1 + S2.

Case 2: Set f2(S1, S2) = S1 − S2. In this case, f2 is strictly increasing with respect to S1, and
strictly decreasingm with respect to S2. Following from Equation (11), we have

Φ−1
S2

(1− α) =


8− 16α, α ∈ [0, 1/8)

(20− 16α)/3, α ∈ [1/8, 7/8)

16(1− α), α ∈ [7/8, 1],

(14)

Then, with a view to Theorem 4 and Equations (10) and (14), we can readily obtain that
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Φ−1
f2
(α) =



(12α + 1)− (8− 16α), α ∈ [0, 1/8)

(12α + 1)− (20− 16α)/3, α ∈ [1/8, 1/6)

(3α + 5/2)− (20− 16α)/3, α ∈ [1/6, 5/6)

(12α− 5)− (20− 16α)/3, α ∈ [5/6, 7/8)

(12α− 5)− 16(1− α), α ∈ [7/8, 1],

(15)

which can be visualized in Figure 7.

Figure 7. The inverse credibility function of f2(S1, S2) = S1 − S2.

Case 3: Set f3(S1, S2) = S2/S1. Similarly, f3 is strictly increasing with respect to S2, and strictly
decreasing with respect to S1. According to Equation (10)

Φ−1
S1

(1− α) =


7− 12α, α ∈ [0, 1/6)

11/2− 3α, α ∈ [1/6, 5/6)

13− 12α, α ∈ [5/6, 1],

(16)

Therefore, it can be obtained that

Φ−1
f3
(α) =



16α

7− 12α
, α ∈ [0, 1/8)

16α/3 + 4/3
7− 12α

, α ∈ [1/8, 1/6)

16α/3 + 4/3
11/2− 3α

, α ∈ [1/6, 5/6)

16α/3 + 4/3
13− 12α

, α ∈ [5/6, 7/8)

16α− 8
13− 12α

, α ∈ [7/8, 1].

(17)

following from Theorem 4 and Equations (11) and (16), as shown in Figure 8.
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Figure 8. The inverse credibility function of f3(S1, S2) = S2/S1.

Comparatively, if we calculate the inverse credibility function of S1 + S2 by means of
Zadeh’s extension principle [1], we should first determine the turning points of the MF of
the medium fi(η1, η2) for fi(S1, S2) by identifying the key values of µη1(x) and µη2(x), and
then calculate the MF µ f (η1,η2)

(x) and credibility distribution Φ fi(S1,S2)
(x).Due to space

limitations, the solution process is placed in Appendix A, from which we can see that
the operational law proposed in this paper can simplify the fuzzy operations without
computing the intermediate procedures and possess the correctness.

5. Expected Value

The expected value operator is a crucial numerical characteristic of fuzzy variables;
however, to the best of our knowledge, there is not yet a clear expected value definition for
the IT2-FVs in the existing literature. Therefore, we define the expected value of the IT2-FVs
as well as their strictly monotone functions via the credibility distribution in this section.

Definition 20. Suppose that S is an RSTIT2-FV or an FV derived from multiple RSTIT2-FVs
operations, then the expected value of S can be defined as

E[S] =
∫ +∞

0
Cr{S ≥ x}dx−

∫ 0

−∞
Cr{S ≤ x}dx. (18)

Obviously, both integrals in Equation (18) are finite.

Theorem 5. Given that S is an RSTIT2-FV or obtained from multiple RSTIT2-FVs operations,
then its expected value can be simplified as the following form

E[S] =
∫ 1

0
Φ−1

S (α)dα.

Proof. In light of Definitions 5 and 20, we have

E[S] =
∫ +∞

0
Cr{S ≥ x}dx−

∫ 0

−∞
Cr{S ≤ x}dx

=
∫ +∞

0
(1−ΦS(x))dx−

∫ 0

−∞
ΦS(x)dx

=
∫ 1

ΦS(0)
Φ−1

S (α)dα +
∫ ΦS(0)

0
Φ−1

S (α)dα

=
∫ 1

0
Φ−1

S (α)dα.
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Example 4. By means of Theorem 5, the expected value of the RSTIT2-FV S1 in Example 1 is

E[S1] =
∫ 1/6

0
(12α + 1)dα +

∫ 5/6

1/6

(
3α +

5
2

)
dα +

∫ 1

5/6
(12α− 5)dα = 4.

Analogously, the excepted value of S2 in Example 2 can be calculated as

E[S2] =
∫ 1/8

0
(16α)dα +

∫ 7/8

1/8

(
16
3

α +
4
3

)
dα +

∫ 1

7/8
(16α− 8)dα = 4.

From Example 4, it can be observed that E[S1] = E[S2] = 4. In fact, we can easily ob-

tain that the expected value of an RSTIT2-FV S determined by the MF
(

c− lU c c + lU
c− lL c c + lL

)
is constantly equal to the center value c, i.e.,

E[S] =
∫ 1

0
Φ−1

S (α)dα = c,

where Φ−1
S (α) is the inverse credibility distribution of S, which can be calculated by

Equation (9). The results show that the expected value operator we defined is an unbiased
estimation.

Example 5. Following from Theorem 5 and Equation (13), the expected values of f1 = S1 + S2 in
Example 3 can be calculated as

E[ f1] =
∫ 1

0
Φ−1

f1
(α)dα

=
∫ 1/8

0
(28α + 1)dα +

∫ 1/6

1/8

1
3
(52α + 7)dα +

∫ 5/6

1/6

1
6
(50α + 23)dα

+
∫ 7/8

5/6

1
3
(52α− 11)dα +

∫ 1

7/8
(28α− 13)dα

= 8.

In a similar way, we can get E[ f2] = 0 and E[ f3] = 1.3800.

Theorem 6. Let S be an RSTIT2-FV and k be a constant, then we have

E[kS] = kE[S].

Proof. When k > 0, it is easy to know from Definition 4 that the inverse credibility
distribution of kS is kΦ−1

S (α). Then, by using Theorem 5, it can be deduced that

E[kS] =
∫ 1

0
kΦ−1

S (α)dα = k
∫ 1

0
Φ−1

S (α)dα = kE[S].

when k < 0, the inverse credibility distribution of kS is kΦ−1
S (1− α), then we have

E[kS] =
∫ 1

0
kΦ−1

S (1− α)dα = −k
∫ 0

1
Φ−1

S (t)dt = k
∫ 1

0
Φ−1

S (α)dα = kE[S].
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Theorem 7. Let S1 and S2 be two mutually independent RSTIT2-FVs, then the linearity of the
expected value operator concerning the two RSTIT2-FVs can be expressed in the following form,

E[k1S1 + k2S2] = k1E[S1] + k2E[S2].

Proof. When k1 > 0 and k2 > 0, (k1S1 + k2S2) is strictly increasing monotone with respect
to S1 and S2 and, thus, the inverse credibility distribution of (k1S1 + k2S2) can be easily
obtained as

(
k1Φ−1

S1
(α) + k2Φ−1

S2
(α)
)

in the views of Definition 4. Following that, and
based on Theorems 5 and 6, we have

E[k1S1 + k2S2] =
∫ 1

0

(
k1Φ−1

S1
(α) + k2Φ−1

S2
(α)
)

dα

= k1E[S1] + k2E[S2].

when k1 > 0 and k2 < 0, (k1S1 + k2S2) is strictly increasing with respect to S1 but strictly
decreasing with respect to S2. It follows immediately from Theorems 5 and 6 that

E[k1S1 + k2S2] =
∫ 1

0

(
k1Φ−1

S1
(α) + k2Φ−1

S2
(1− α)

)
dα

= k1E[S1] + k2E[S2].

In the other two cases (i.e., k1 < 0 and k2 > 0, k1 < 0 and k2 < 0), it is easy to
verify that Theorem 7 still holds. Due to space limitations, the details of the proofs are not
provided in this paper.

Remark 6. Definition 7 can be extended to the general case as

E

[
n

∑
i=1

kiSi

]
=

n

∑
i=1

kiE[Si],

where S1, S2, · · · , Sn are mutually independent RSTIT2-FVs and k1, k2, · · · , kn are constants.

Theorem 7 and Remark 6 demonstrate that the introduced expected value operator is
consistent with the property of linearity, which can help calculate the expected values of the
functions of mutually independent RSTIT2-FVs without calculating the inverse credibility
distribution of these RSTIT2-FVs.

Example 6. On the basis of Theorem 7 and Example 4, the expected value of the RSTIT2-FV
f1 = S1 + S2 in Example 3 can be easily calculated by

E[ f1] = E[S1] + E[S2] = 4 + 4 = 8,

which is equal to the result figured out by the integral form in Example 5.

6. Conclusions

In this paper, we defined a special kind of TIT2-FV based on the most typical and
simplest symmetric triangular type-1 FV, and proposed a novel operational law to calculate
the arithmetic operations for the strictly monotone functions of the mutually independent
RSTIT2-FVs as well as the expected value operator via the inverse credibility distribution.
The comparative results of the numerical examples verified that the operational law is
conducive to simplify the calculation processes, and the expected value operator is an
unbiased estimator possessing the property of linearity. Thus, it can be applied to many
areas involving complex fuzzy operations.

It is noteworthy that the methodology presented in this paper are not confined to
the symmetric and triangular types, but could also be extended to the asymmetric cases
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and many other types of type-2 fuzzy variables, such as trapezoidal and normal TIT2-FVs,
and the regularity of the TIT2-FVs can be extended to more generalized cases, which
would be analyzed in the near future. In other words, the proposed method is a universal
methodology, providing new insight for future research of many scholars, in both theory
and practice, regarding the type-2 fuzzy set theory.
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UMF upper membership function
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FOU footprint of uncertainty

Appendix A

Example A1. In views of Example 1, the key values of µη1(x) for S1 are, respectively, (1, 0),
(3, 1/3), (4, 1), (5, 1/3) and (7, 0), as shown in Figure A1a. Similarly, those of µη2(x) for S2 are,
respectively, (0, 0), (2, 1/4), (4, 1), (6, 1/4) and (8, 0), as Figure A1b shows.

According to Zadeh’s extension principle [1], the fuzzy operations of η1 and η2 can only be
conducted when the MFs are not piecewise functions. That is, the MFs of the medium for the
functions fi are piecewise functions which have turning points at µη1+η2(x) = 0, 1/4, 1/3 and
1, respectively. In order to obtain these turning points, the x values for µη1(x) = 1/4 and for
µη2(x) = 1/3 should be calculated (see Table A1). Hence, the key values of η1 + η2 can be deduced,
as summarized in the last row of Table A1.
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（ ） （ ）

Figure A1. The MF of η1 for S1 (a) and η2 for S2 (b).

Table A1. The key values of the MFs of the mediums for S1, S2 and S1 + S2.

µ 0 1/4 1/3 1 1/3 1/4 0

x for µη1 1 5/2 3 4 5 11/2 7
x for µη2 0 2 20/9 4 52/9 6 8

x for µη1+η2 1 9/2 47/9 8 97/9 23/2 15

Subsequently, the MF of the medium η1 + η2 for S1 + S2 is (see Figure A2)

µη1+η2(x) =



x/14− 1/14, x ∈ [1, 9/2)

3x/26− 7/26, x ∈ [9/2, 47/9)

6x/25− 23/25, x ∈ [47/9, 8)

−6x/25 + 73/25, x ∈ [8, 97/9]

−3x/26 + 41/26, x ∈ [97/9, 23/2]

−1x/14 + 15/14, x ∈ [23/2, 15]

0, otherwise,

0 5 10 15
0

1/4

1/3

1

Figure A2. The MF of η1 + η2.
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Accordingly, the credibility distribution can be obtained as

Φ f1(x) =



x/28− 1/28, x ∈ [1, 9/2)

3x/52− 7/52, x ∈ [9/2, 47/9)

3x/25− 23/50, x ∈ [47/9, 97/9)

3x/52 + 11/52, x ∈ [97/9, 23/2)

x/28 + 13/28, x ∈ [23/2, 15].

and the inverse credibility distribution is

Φ−1
f1
(α) =



28α + 1, α ∈ [0, 1/8)

52α/3 + 7/3, α ∈ [1/8, 1/6)

25α/3 + 23/6, α ∈ [1/6, 5/6)

52α/3− 11/3, α ∈ [5/6, 7/8)

28α− 13, α ∈ [7/8, 1].

Analogously, on the basis of the x values for µη1 and µη2 at µ = 0, 1/4, 1/3 and 1, the key
values of the mediums for S1− S2 can be derived, as shown in Table A2 and Figure A3.

Table A2. The key values of the MFs of the mediums for S1, −S2 and S1 − S2.

µ 0 1/4 1/3 1 1/3 1/4 0

x for µη1 1 5/2 3 4 5 11/2 7
x for µ−η2 −8 −6 −52/9 −4 −20/9 −2 0

x for µη2−η2 −7 −7/2 −25/9 0 25/9 7/2 7

Figure A3. The MF of η1 − η2.

Then, we have the MF of
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µη1−η2(x) =



x/14 + 1/2, x ∈ [−7,−7/2)

3x/26 + 17/26, x ∈ [−7/2,−25/9)

6x/25 + 1, x ∈ [−25/9, 0)

−6x/25 + 1, x ∈ [0, 25/9]

−3x/26 + 17/26, x ∈ [25/9, 7/2]

−x/14 + 1/2, x ∈ [7/2, 7],

0, otherwise,

Then, the credibility distribution is

Φ f2(x) =



x/28 + 1/4, x ∈ [−7,−7/2)

3x/52 + 17/52, x ∈ [−7/2,−25/9)

3x/25 + 1/2, x ∈ [−25/9, 25/9)

3x/52 + 35/52, x ∈ [25/9, 7/2]

x/28 + 3/4, x ∈ [7/2, 7]

and the inverse credibility distribution is

Φ−1
f2
(α) =



28α− 7, α ∈ [0, 1/8)

52α/3− 17/3, α ∈ [1/8, 1/6)

25α/3− 25/6, α ∈ [1/6, 5/6)

52α/3− 35/3, α ∈ [5/6, 7/8)

28α− 21, α ∈ [7/8, 1],

which is identical with Equation (15).
Following from Table A1, the key values of the medium for f3 = S2/S1 are summarized in

Table A3, and we can get the identical inverse credibility of Equation (17) for f3.

Table A3. The key values of the MF of the medium for S2/S1.

µ 0 1/4 1/3 1 1/3 1/4 0

x for µ 1
η1

1/7 2/11 1/5 1/4 1/3 2/5 1

x for µη2 0 2 20/9 4 52/9 6 8
x for µη2/η1

0 4/11 4/9 1 52/27 12/5 8
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