
symmetryS S

Article

Three-Phase Feeder Load Balancing Based Optimized Neural
Network Using Smart Meters

Lina Alhmoud 1,* , Qosai Nawafleh 2 and Waled Merrji 3

����������
�������

Citation: Alhmoud, L.; Nawafleh, Q.;

Marji, W. Three-Phase Feeder Load

Balancing Based Optimized Neural

Network Using Smart Meters.

Symmetry 2021, 13, 2195. https://

doi.org/10.3390/sym13112195

Academic Editor: José Carlos R.

Alcantud

Received: 11 October 2021

Accepted: 12 November 2021

Published: 17 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Electrical Power Engineering, Yarmouk University, Irbid 21163, Jordan
2 National Electric Power Company, Substation Maintenance Department, Amman 11181, Jordan;

2016979013@ses.yu.edu.jo
3 Irbid District Electricity Company, Planning Department, Loads Management Section, Irbid 21100, Jordan;

2017979020@ses.yu.edu.jo
* Correspondence: lina.hmoud@yu.edu.jo

Abstract: The electricity distribution system is the coupling point between the utility and the end-user.
Typically, these systems have unbalanced feeders due to the variety of customers’ behaviors. Some
significant problems occur; the unbalanced loads increase the operational cost and system investment.
In radial distribution systems, swapping loads between the three phases is the most effective method
for phase balancing. It is performed manually and subjected to load flow equations, capacity, and
voltage constraints. Recently, due to smart grids and automated networks, dynamic phase balancing
received more attention, thus swapping the loads between the three phases automatically when
unbalance exceeds permissible limits by using a remote-controlled phase switch selector/controller.
Automatic feeder reconfiguration and phase balancing eliminates the service interruption, enhances
energy restoration, and minimize losses. In this paper, a case study from the Irbid district electricity
company (IDECO) is presented. Optimal reconfiguration of phase balancing using three techniques:
feed-forward back-propagation neural network (FFBPNN), radial basis function neural network
(RBFNN), and a hybrid are proposed to control the switching sequence for each connected load. The
comparison shows that the hybrid technique yields the best performance. This work is simulated
using MATLAB and C programming language.

Keywords: artificial intelligence; feed-forward back-propagation; load balancing; radial basis function

1. Introduction

The electricity distribution systems are typically unbalanced because of the continuous
change in customer loading profile during the day. Once the three phases are not adequately
balanced, the risk of over-loading in the network equipment and the power losses increase.
Subsequently, the system stability is affected, the supply quality is decreased, and the
electricity cost is increased [1]. On the other hand, load balancing improves the reliability
and security of the electrical network. Load balancing also minimizes system losses to
relieve transformer loading [2,3]. Imbalanced three-phase feeders can be reconfigured
by implementing some load balancing techniques such as phase swapping and feeder
reconfiguration. The phase swapping technique changes the distribution of loads by
swapping them between the phases to make the three phases as equal as possible without
changing the feeder topology, as shown in Figures 1 and 2, respectively. Data obtained
from the smart meters which are installed at the beginning of each low voltage feeder and
customer side are sent directly to the remote controller (brain) to calculate the losses on the
feeder. Feeder losses are computed as a difference between the feeder and the summation of
the customers’ consumption. After that, the controller gives orders to a one-way switching
device to take action—if needed—to swipe between the phases feeding customers. Data
sent to the controller can be classified into fixed data and variable data, as shown in Figure 3.
Fixed data can be introduced as the data regarding the network topology, such as cable

Symmetry 2021, 13, 2195. https://doi.org/10.3390/sym13112195 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-1198-9312
https://doi.org/10.3390/sym13112195
https://doi.org/10.3390/sym13112195
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13112195
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13112195?type=check_update&version=1

Symmetry 2021, 13, 2195 2 of 20

lengths, sizes, and configuration, and customer data such as customer numbers at each
connection node. While the variable data are the data that come from the main smart meter
fixed at the beginning of the low voltage feeder containing power and energy, and the data
coming from the smart meters fixed at the customer side, containing the power and energy
consumption, as well.

X X X XFeeder 1 Feeder 2

Normally

Closed Switch

Normally

Closed Switch

Normally

Closed Switch

Normally

Open Switch

Figure 1. Load balancing before feeder reconfiguration.

X X X XFeeder 1 Feeder 2

Normally

Closed Switch

Normally

Closed Switch

Normally

Closed Switch

Normally

Open Switch

Figure 2. Load balancing after feeder reconfiguration.

Controller

Fixed

Data
Variable

Data

One-Way Switching

Device

Figure 3. Schematic diagram for data sent to the controller.

This mechanism is implemented using a phase switch selector/controller installed
right before the energy meter at the customer side and swapping the customers between
the three phases on the same feeder to maintain continual phase balancing. When three
phases are connected to the phase switch selector’s input side, only one switch should be
closed as an output, while the other two phases should remain open, as shown in Figure 4.

The feeder reconfiguration technique changes the feeder topology by moving parts of
the feeder to an adjacent one by changing the switches’ status so that loads are switched
from one feeder to another to relieve the loading of an overloaded feeder to a lightly loaded
one [4,5]. Usually, feeder reconfiguration shifts the loads from the heavily loaded feeder
to another lightly loaded feeder. Practically, electricity distribution utilities perform load
balancing with manual trial and error technique, which is time-consuming, costly, and does
not guarantee phase loading equality. Phase balancing automation becomes more realistic,
resilient, and agile. It is implemented through power electronics, modern communication
techniques, and artificial intelligence. Different types of neural network-based approaches
are presented in this work to control the switch selector output to swap customers between
the phases. Along with the low voltage distribution feeders, several customarily opened
and normally closed switches are distributed to allow transferring load currents between
the feeders [6].

Symmetry 2021, 13, 2195 3 of 20

T
h

r
e
e
 p

h
a
s
e
s
 f

r
o
m

t
h

e
 g

r
id

Energy Meter

1

2

3

N

Phase switch selector

S1

S2

S3

Figure 4. Phase switch selector.

Distribution systems operate under constraints to assure the continuity of supply
to the customers under certain quality. The distribution feeders consist of a variety of
loads under different categories. This variation in load types and their peak demands
do not coincide. Therefore, a variation in loading on some parts of the feeder during
the day is noticed. Hence, it is essential to reconfigure the network by rescheduling the
loads to operate the system effectively [7]. Feeder reconfiguration modifies the topology
of the distribution system by changing the open and close status of switches to better the
distribution networks, whereas phase swapping changes the customer connection from one
phase to another. The load balancing analysis determines which loads can be reconnected
to different phases. Load balancing in the distribution system is defined as preserving the
load currents roughly identical to the three phases. Loads are considered evenly distributed
on the three phases; i.e., each phase should be connected to 1/3 of the total loads. So,
the problem is to find the most appropriate three sets of loads, with minimum differences
among the individual sums of the three sets.

The loss minimization in distribution system reconfiguration and load balancing
problems of the open-loop radial power are presented using different techniques such as
heuristic or meta-heuristic approaches [8–10], mathematical programming [11], and in-
telligent algorithms [12,13]. The heuristics techniques produce acceptable results with
less computation cost. The network reconfiguration with optimal distribution generators
siting, sizing, and tie-switch placement for reliability improvement and loss minimization
is proposed [14]. The loss minimization using reconfiguration and switching modifications
like closing or opening the sectionalizing switches of the distribution feeders are manipu-
lated. A three-phase load balancing using load flow variation technique before electrical
installation is presented [15,16]. Load balancing estimation using balancing index calcu-
lation is formulated as a non-linear optimization problem with an objective function [17].
Reducing the feeder unbalance using a fuzzy logic is demonstrated [18,19]. Different tech-
niques are carried out to maintain the load balance, such as Ant Colony Optimization [20],
support vector machines [21,22], and discrete passive compensator [23]. This work is a
real case study for an optimal automatic feeder reconfiguration using three-phase load
balancing based artificial neural network (ANN) techniques: radial basis function neural
network (RBFNN) [24], feed-forward back-propagation neural network (FFBPNN) [25],
and a hybrid. Implementing a hybrid technique is the original contribution. This technique
enhances the learning process of FFBPNN, rides over the local minima, speeds the slow
rate error convergence, and reforms classification precision.

Symmetry 2021, 13, 2195 4 of 20

The rest of this article is organized as follows. Section 2 discusses load balancing.
Next, the system techniques under study is presented. ANN techniques are discussed,
including RBFNN, FFBPNN, and hybrid techniques are addressed in Section 4. Results
and discussion are discussed in Section 5, followed by a conclusion in Section 6.

2. Load Balancing

Distribution network operators face continuous pressure to improve the quality of sup-
ply for customers and decrease operating losses. Unbalanced loading of distribution feeders
is one of the essential factors affecting low voltage networks’ overall losses. The asymmetry
factor is high when the overall loading is low, and the asymmetry is significantly smaller
during peak load. It means the system is extensively trying to symmetrize the load during
the periods with low loading and minimal effect on the overall losses. Thus, the unbalanced
loading of the three-phase feeder’s distribution and the impact of unbalance currents on
the overall losses are considered a hot topic. Electrical utilities modernize power generation
and distribution systems. The electric grid transformation offers improved performance
and growth opportunities for customers, communities, and businesses. The system de-
ployed in this study is considered the first step towards advanced metering infrastructure
that integrates smart meters, software, data centers, and communication networks. Electric
companies can enhance their customer services and operations.

The problem is about determining the switches that be opened or closed to obtain
load balancing among feeders. Many constraints should be kept, such as voltage drop,
thermal constraint, reliability constraint, and capacity constraint of distribution lines and
transformers to achieve equal phase loading. The load is dynamic during the day due to the
customer’s behavior and usage of their appliances. Hence some phases are lightly loaded
during a certain period of the day and heavily loaded at another time. Figures 5 and 6
show an example for the unbalanced three-phase loads currents and voltages, respectively.
This load is a pure residential load located in Ajlun district. Customers are swapped
between the phases continuously to achieve load balancing on the feeder and the trans-
former. When the smart meters’ data are sent to a remote server, it starts to check through
optimization techniques if there is any better arrangement for the customers on the three
phases to obtain load balancing. If yes, orders are sent to the phase switch selector to
swap the customer between phases, with a super-fast action to avoid supply discontinuity.
Otherwise, the current situation is the best customer arrangement, and it does nothing [26].

Figure 5. Unbalanced three-phase load currents.

The phase switch selector takes an order from a remote server that collects data
from the downstream smart energy meters, calculates the losses at the current situation,
and rearranges the loads using one of the proposed algorithms to guarantee the best phase
balancing and minimum losses. The new configuration is sent to the phase switch selector

Symmetry 2021, 13, 2195 5 of 20

to be implemented. Thus, the phase switch selector takes a three-phase input from the
grid; each phase is connected to a switch. One switch of those three switches is closed,
while the other should remain open. When an order comes from the server to swap the
connected customer from phase A to phase B, a super-fast switching is made to open the
switch connected to phase A and close the switch connected to phase B. Discontinuity of
supply would not affect the customers because it should be super-fast switching according
to the phase switch selector characteristics. This fast-switching time should be mentioned
in the datasheet of the phase switch selector and should be fast enough that the customers’
appliances would not affect it [27].

Figure 6. Unbalanced three-phase load voltages.

3. System under Study

In Jordan, distribution feeders are a three-phase, four-wire system. Usually, they are
radial or open-loop structures with the same conductor size along the feeder. Balancing
loads on a three-phase feeder and reducing neutral current, improving voltage profiles,
reducing losses and enhancing system stability and reliability is a very sophisticated
task for the utility and engineers because they do not have authority or monitoring over
their customers. Practically, phase balancing is carried out manually by trial and error
technique based on experience and engineer’s knowledge about customer’s behavior in
that area. By using this manual trial and error method, supply interruption is inevitable
when exchanging customers’ connection phases to another.

A real case study from IDECO (latitude: 32°33′20.02′′ N, longitude: 35°51′0.00′′ E) is
considered in this work. One of four radial feeders going out from a 630 KVA transformer
in the Irbid district is chosen. The feeder under this study has 27 customers, is 470 m
in length, and has a 120 mm2 cross-sectional area. Smart meters are installed along the
feeder at the customer side. Their consumption varies from 0.2 kW to 5 kW. Figure 7 shows
a schematic diagram for the transformer and the corresponding low voltage network
of the four feeders coming out of it, including the feeder under study, while Figure 8
shows a schematic diagram for the same feeder understudy and the number of customers
connected to each node. The number of customers equally on the three-phase is not
necessary for load balancing, but the current equality on the three phases. In some countries,
almost all residential customers have a three-phase connection, but this method is used
for single-phase.

Symmetry 2021, 13, 2195 6 of 20

Figure 7. Selected transformer for the feeder under study with the corresponding low voltage
network.

Figure 8. Schematic diagram for the feeder under study.

4. ANN Techniques
RBFNN

RBFNN is an ANN technique that was formulated in 1988 by Broomhead and Lowe.
It depends on the linear activation function stored in both input and output layers, whereas
the Gaussian activation radial basis function is stored in the hidden layer as shown in
Figure 9. However, there are three main parameters; a center that can be determined using
clustering techniques, the transfer function, and the distance measured between the input
layer and the center. The number of neurons in both input and output layers is determined
based on the training pattern, whereas the number of neurons in the hidden layer is
determined based on the system’s non-linearity. The mathematical model of RBFNN can
be represented as follows [28].

f (I) = Ψ

(
‖ I − ci ‖

r2
i

)2

(1)

Symmetry 2021, 13, 2195 7 of 20

where I is the input vectors, f(I), ri, and ci are the output, radius, and center of ith neurons
in the hidden layer, respectively. Ψ is the radial basis function, q is the number of input in
the training process and ‖ I − ci ‖ is the distance between the input vectors and the center
ci in the Euclidean space. Clustering technique is used to calculate the center location and
is given by Equation (2) [29].

‖ I − ci ‖=
√
(I1 − ci1)2 + (I2 − ci2)2 + · · ·+ (Iq − cini)

2 (2)

The width Gtr of the basis function (σ) and the weight of the output layer W is given
by Equations (3) and (4), respectively [29].

Gtr

(
‖ Iq − ci ‖2

)
= e

(−Nh
dmax

‖Iq−ci‖2
)

(3)

W = G+
tr ×Ytr (4)

The output Y of RBFNN can be obtained using Equation (5) [29].

Y = WT × GT
tst (5)

where Gtst is given in Equation (6) and the suffix tst is for testing input vector obtained for
certain desired output. Figure 10 shows the main procedure to train RBFNN. It is started
with collecting the required data, then selecting the appropriate input and optimum values
of the number of neurons in the three layers with their appropriate weight and determining
the suitable activation function. Finally, training the network and calculating the error [29].

Gtst

(
‖ Itst − ci ‖2

)
= e

(
− ‖Itst−ci‖

2

2σ2

)
(6)

ᵠ𝟏 (𝒙𝒑)

Input 1

Input 2

Input 3

Input I

ᵠ𝟐 (𝒙𝒑)

ᵠ𝟑(𝒙𝒑)

ᵠ𝑰(𝒙𝒑)

Output vector

∑

 inputs

H RBFNN units

Output

𝑈𝐼.ℎ
𝑊ℎ

𝑊1

𝑊2

𝑊3

𝑊𝐼

⋮

⋮ ⋮

⋮

⋮

⋮ ⋮

⋮

Figure 9. RBFNN architecture [30].

Symmetry 2021, 13, 2195 8 of 20

Start

Data collection

Initialize spread and

number of neurons

Data Normalization

Training data

Calculate the error

Evaluation of activation

Is error

Accepted?

Stop

Plot error

 error

Yes
No

Figure 10. RBFNN flow chart [31].

FFBPNN

Here, the main goal is to minimize the whole network’s error by reducing each
output neuron’s error. The ANN should detect how to map arbitrary input to the output
suitably by optimizing the weights. This technique has many features, including accuracy,
decreasing the training time, enhancing the processing speed, optimizing the cost function,
and improving the mean absolute percentage error (MAP) [31]. The back-propagation
algorithm can be described in the FFBPNN technique as shown in Figure 11; the network
is created, then the network is trained by giving the input to innovate the output. Thus the
network is learned to examine all the values throughout the network. Here, the forward
propagation technique can be applied, which means that the input innovates the output,
then the backward propagation, including the error being estimated backward towards
the input. Lastly, the weight is adjusted, and the error can be reduced by adjusting the
weight function. The name of the back-propagation comes from the process sequence[32].
It starts from the input towards the output, then propagates back from the output to the
input as shown in Figure 12. Moreover, adjusting the activation functions and the bias
through going across. For the first time, these outputs make no sense, but better results are
obtained by decreasing error after repeating the process more and more. This algorithm as
shown in Figure 13 starts with having new observation x = [x1 . . . xd] and target y∗, then
feed forward for each unit gi in each layer 1 . . . L and compute gi based on units fk from
previous layer as shown in Equation (7)

gi = σ
(

ujo + ∑ ujk fk

)
(7)

X1

 Xi

Xn

W1.1

W
n. m

U
1

Input node Hidden layer

ŷ𝑘

⋮
⋮

K Compare
𝑦𝑘

Output

Back-propagation

Error

Target

Adjust

 weights

U
j

U
m

⋮

⋮

⋮

⋮ ⋮

⋮

Figure 11. FFBPNN training algorithm with a three-layered architecture [33].

Symmetry 2021, 13, 2195 9 of 20

*
y

h1

𝐡𝐢

h3

𝑔1

𝑔𝑗

𝑓1

𝑓𝑘

𝑥1

𝒙𝐤

𝑥d

wi
ujk

vi𝑗

tkm

Figure 12. Back-propagation architecture [33].

Initialize the weight W

with zero mean value for

all neurons

Training set input and

output vectors

Create pattern feed forward

back-propagation network

layer

Adjust weight for output

layer

Compute the error

More

 hidden layers?

More

patterns

𝐸 < 𝐸𝑚𝑎𝑥

Get Desired Using

Equations

Adjust the

hidden

 layers

No

Yes

No

Yes

Forward

computation

Start

Stop

Figure 13. FFBPNN algorithm flow chart [34].

After that, get the prediction y and the target y2 and calculate the error (y − y∗).
For each unit gi in each layer L . . . 1, an error can be calculated on both gi and on ujk that
affects gi using Equations (8) and (9), here a sort of synthetic training model is created
for all the hidden units in the network, and the errors are propagated by computing the
derivative of the error with respect a unit g in the network. The interpretation of the
derivative determines to higher or lower of the unit g. Subsequently the g units affects the
h units and updating the weight vij. The nodes are sigmoids and the scaling function σ′(hi)
states that H was around zero or one, then whatever changes made to G are not affected. H
determines whether G is high or low. Further, the weights fk that connect G to the nods
are higher or lower, as shown in Equation (9). The derivative indicates that the strength is
higher or lower. In this logistic process, each iteration, this strength is updated as well as
the weight as shown in Equation (10) [33].

∂E
∂gi

= ∑
i

σ′(hi)vij
∂E
∂hi

(8)

∂E
∂ujk

=
∂E
∂gi

σ′gj fk (9)

Symmetry 2021, 13, 2195 10 of 20

ujk ← ujk − η
∂E

∂ujk
(10)

The difference between the output y and the target y∗ is calculated using Equation (11).
The derivative of the error concerning the unit hi in the last hidden layers is as shown
in Equation (12). The value of derivatives of the error concerning the hidden layers is
computed as sigmoid y(1− y) of the bias is added to the weighted product of both the
combination of the previously hidden layer and strong connection of the two layers as
shown in Equation (13). The derivative of error concerning g is as the same as before. It
is shown in Equations (14)–(16), respectively. This nest can be handled as many layers
deep as suggested. Clearly, Equations (9)–(16) are the proof for Equation (8) as well as
optimizing the error with respect to all of the parameters [34].

E =
1
2
(y− y∗)2 (11)

∂E
∂hi

= (y− y∗)y(1− y)wi (12)

∂E
∂gi

= (y− y∗)
∂y
∂gi

(13)

∂E
∂gi

= (y− y∗)y(1− y)∑
i

wi
∂hi
∂gi

(14)

∂E
∂gi

= (y− y∗)y(1− y)∑
i

wihi(1− hi)vij (15)

∂E
∂gi

= ∑
i

hi(1− hi)vij
∂E
∂hi

(16)

5. Results and Discussion

The performance of the proposed model is evaluated, different evaluation measures
have been adopted, including mean absolute percentage error (MAPE), mean squared
errors (MSE), and the root means squared error (RMSE).

• MAPE: It shows the deviation of the predicted errors that show how much the pre-
dicted points are close to the target line, represented by Equation (17).

MAPE =
1
n

n

∑
i=1

(yi − ŷi)
2 (17)

• MSE: It is the average of the magnitude of the predicted errors, presented by Equation (18).

MSE =
1
n

n

∑
i=1
|yi − ŷi| (18)

• RMSE: It shows the deviation of the predicted errors that show how much the pre-
dicted points are close to the target line, represented by Equation (19).

RMSE =

√
∑n

i=1(yi − ŷi)2

n
(19)

where n is the number of observations, i = 1, 2, 3, . . . , n. yi is the measured value, and ŷi is
the forecasted value. The simulation is executed on an Intel Core i7-8750H CPU, 2.20 GHz,
64.0 GB RAM computer. The proposed ANN is implemented using Mathworks/MATLAB.
Different ANN techniques are used, selecting the appropriate number of hidden layers and
the number of neurons is the most critical step. This step leads to quick training speed, re-
duced memory space, and acceptable global generalization capability. The main drawback

Symmetry 2021, 13, 2195 11 of 20

of an inappropriate number of hidden nodes may be over-fitting for the input data. The
ANN technique is used to solve the load balancing problem. There are around 10,000 sam-
ples used as real data obtained from IDECO. Each sample holds current measurements
for 27 different loads (houses). It is used to control the switching sequence of each load to
keep the three phases balanced. The recorded data are distributed as follows: training set
75%, validation set 10%, and testing set 15%. The ANN inputs are the unbalanced 27 load
currents, and the outputs are the switch sequences for each load. The network’s output is
in the range of (1, 2, 3) for each load. It means the phase number on which switch should
be closed or opened for that specific load. The balanced output loads are obtained from
implementing a heuristic technique, and they are used to train, test, and validate the ANN.
A Matlab/Mathworks command (newff) is used to implement FFBPNN for the whole
feeder with an input and output matrices are (10,000 × 27) and (3× 10,000), respectively.
Figure 14 shows the best validation performance for FFBPNN.

0 10 20 30 40 50 60 70 80 90 100
100 Epochs

100

101

M
ea

n
Sq

ua
re

d
E

rr
or

 (
m

se
)

Best Validation Performance is 1.5967 at epoch 28

Train
Validation
Test
Best

Figure 14. FFBPNN training performance, epoch = 100, and maximum epoch reached.

Tables 1–3 evaluate MAPE, MSE, and RMSE errors, respectively for 10,000 current
samples for Iph1, Iph2, and Iph3 using FFBPNN for different layer architecture and different
iterations (10,100,1000). For example, the first row (10-10-10) means that there are three
hidden layers. Each hidden layer contains ten neurons. The optimal performance belongs to
the configuration 2000, which means one hidden layer with 2000 neurons. Error evaluations
for this technique failed in the load balance test, and therefore it is not recommended in
such cases. The distribution of the currents on the three phases was far from the actual
currents, and the rate errors were not acceptable. Tables 4–6 evaluate the average error
current in terms of spread constant and the number of neurons for 10,000 samples on
Iph1, Iph2, and Iph3, respectively using RBFNN. The configuration (5:1000) has optimum
evaluation in terms of MAPE, MSE, and RMSE. The errors were 0.15%, 3274, and 57.22%
for phase 1, 0.24%, 3560, and 59.67% for phase 2, and 0.15%, 3274, and 57.22% for phase 3,
respectively. Tables 7–9 evaluate errors for the three phases using the hybrid technique.
This technique has much better results than the two individual techniques in terms of
performance and errors calculations.

The configuration (5:1000) has optimum evaluation in terms of MAPE, MSE, and RMSE
errors. The results were 0.06%, 664, and 25.75% for phase 1, 0.06%, 663.67, and 25.67% for
phase 2, and 0.06%, 678.33, and 26.04% for phase 3, respectively. It is highly recommended
for three phases of electrical load balance. Figures 15–17 show the three phases currents
via Iideal for the three techniques. Hence, the hybrid technique has the best performance in
phase balancing studies. It is practical, flexible, and recommended to IDECO.

Symmetry 2021, 13, 2195 12 of 20

Table 1. Error evaluations in terms of MAPE, MSE, and RMSE for Iph1 using FFBPNN for different layers architecture and iterations.

Hidden Layer Average MAPE (%) for Iph1 Average MAPE of Average MSE (%) for Iph1 Average MSE of RMSE (%) for Iph1 Average RMSE of
Architecture on Test Set after Each Iteration Three Iterations on Test Set after Each Iteration Three Iterations on Test Set after Each Iteration Three Iterations

10 100 1000 10 100 1000 10 100 1000

10 0.61 0.6 0.58 0.6 7661 7650 7589 7633.33 87.53 87.46 87.11 87.37

10-10 0.63 0.59 0.55 0.59 7700 7601 7500 7600.33 87.75 87.18 86.60 87.18

10-10-10 0.66 0.65 0.53 0.61 7850 7842 7390 7694.00 88.60 88.56 85.97 87.71

100 0.59 0.55 0.50 0.55 7610 7500 7345 7485.00 87.24 86.60 85.70 86.5

100-150 0.62 0.60 0.55 0.59 7690 7650 7500 7613.33 87.69 87.46 86.60 87.25

150-160-170 0.71 0.65 0.54 0.63 8850 7830 7480 8053.33 94.07 88.49 86.49 89.68

1000 0.55 0.53 0.54 0.54 7500 7390 7480 7456.67 86.60 85.97 86.49 86.35

1000-1250 0.6 0.55 0.50 0.55 7650 7501 7345 7498.67 87.46 86.61 85.70 86.59

1500 0.50 0.49 0.49 0.49 7345 7340 7340 7341.67 85.70 85.67 85.67 85.68

1500-1600 0.59 0.62 0.50 0.57 7610 7630 7345 7528.33 87.24 87.35 85.70 86.76

1750 0.50 0.51 0.52 0.51 7346 7455 7380 7393.67 85.71 86.34 85.91 85.99

1750-1750 0.58 0.59 0.53 0.57 7589 7601 7390 7526.67 87.11 87.18 85.97 86.75

2000 0.49 0.47 0.45 0.47 7340 7331 7311 7327.33 85.67 85.62 85.50 85.60

2000-2000 0.52 0.55 0.47 0.51 7380 7500 7340 7406.67 85.91 86.60 85.67 86.06

2100 0.55 0.59 0.48 0.54 7501 7610 7338 7483.00 86.61 87.24 85.66 86.50

2100-2100 0.60 0.62 0.50 0.57 7650 7689 7345 7561.33 87.46 87.69 85.70 86.95

Symmetry 2021, 13, 2195 13 of 20

Table 2. Error evaluations in terms of MAPE, MSE, and RMSE for Iph2 using FFBPNN for different layers architecture and iterations.

Hidden Layer Average MAPE (%) for Iph2 Average MAPE of Average MSE (%) for Iph2 Average MSE of RMSE (%) for Iph2 Average RMSE of
Architecture on Test Set after Each Iteration Three Iterations on Test Set after Each Iteration Three Iterations on Test Set after Each Iteration Three Iterations

10 100 1000 10 100 1000 10 100 1000

10 0.97 0.98 0.98 0.97 9870 9901 9901 9890.67 99.35 99.50 99.50 99.45

10-10 0.97 0.99 1 0.987 9870 9985 10,000 9951.67 99.35 99.92 100.00 99.76

10-10-10 1 1 0.98 0.993 10,000 10,000 9901 9967.00 100.00 100.00 99.50 99.83

100 1 1 1 1 10,000 10,000 10,000 10,000 100 100 100 100

100-150 0.98 0.99 0.98 0.983 9901 9985 9901 9929 99.5 99.92 99.5 99.64

150-160-170 0.97 0.98 0.98 0.97 9870 9901 9901 9890.67 99.35 99.50 99.50 99.45

1000 1 0.97 1 0.99 10,000 9870 10,000 9956.67 100.00 99.35 100.00 99.78

1000-1250 0.99 1 0.98 0.99 9985 10,000 9901 9962 99.92 100 99.50 99.81

1500 0.97 1 1 0.99 9870 10,000 10,000 9956.67 99.35 100 100 99.78

1500-1600 0.99 0.98 0.98 0.983 9985 9901 9901 9929 99.92 99.50 99.50 99.64

1750 0.98 1 0.98 0.987 9901 10,000 9901 9934 99.5 100 99.5 99.67

1750-1750 1 1 0.97 0.99 10,000 10,000 9870 9935.00 100 100 99.35 99.78

2000 0.99 0.99 0.97 0.983 9985 9985 9870 9946.67 99.92 99.92 99.35 99.73

2000-2000 1 0.99 0.98 0.99 10,000 9985 9901 9962 100 99.92 99.5 99.81

2100 0.98 0.98 0.99 0.983 9901 9901 9985 9929 99.5 99.5 99.92 99.64

2100-2100 0.99 0.97 1 0.987 9985 9870 10,000 9951.67 99.92 99.35 100 99.76

Symmetry 2021, 13, 2195 14 of 20

Table 3. Error evaluations in terms of MAPE, MSE, and RMSE for Iph3 using FFBPNN for different layers architecture and iterations.

Hidden Layer Average MAPE (%) for Iph3 Average MAPE of Average MSE (%) for Iph3 Average MSE of RMSE (%) for Iph3 Average RMSE of
Architecture on Test Set after Each Iteration Three Iterations on Test Set after Each Iteration Three Iterations on Test Set after Each Iteration Three Iterations

10 100 1000 10 100 1000 10 100 1000

10 0.6 0.59 0.59 0.59 7650 7610 7610 7623.23 87.46 87.24 87.24 87.31

10-10 061 0.6 0.58 0.6 7661 7650 7589 7633.33 87.53 87.46 87.11 87.37

10-10-10 0.66 0.65 0.65 0.65 7850 7842 7842 7844.67 88.60 88.56 88.56 88.57

100 0.57 0.55 0.60 0.57 7580 7501 7650 7577 87.06 86.61 87.46 87.05

100-150 0.58 0.61 0.61 0.6 7589 7661 7661 7637 87.11 87.53 87.53 87.39

150-160-170 0.67 0.7 0.6 0.66 7856 8847 7650 8117.67 88.63 94.06 87.46 90.05

1000 0.56 0.56 0.54 0.55 7520 7520 7480 7506.67 86.72 86.72 86.49 86.64

1000-1250 0.62 0.62 0.55 0.6 7690 7690 7501 7627 87.69 87.69 86.61 87.33

1500 0.53 0.57 0.60 0.57 7470 7580 7650 7566.67 86.43 87.06 87.46 86.99

1500-1600 0.58 0.59 0.54 0.57 7589 7610 7480 7559.67 87.11 87.24 86.49 86.95

1750 0.56 0.4 0.58 0.51 7520 7214 7589 7441 86.72 84.94 87.11 86.26

1750-1750 0.58 0.59 0.57 0.58 7589 7610 7580 7584.5 87.11 87.23 87.06 87.14

2000 0.55 0.54 0.52 0.54 7501 7480 7380 7453.67 86.61 86.49 85.91 86.33

2000-2000 0.59 0.56 0.55 0.57 7610 7520 7501 7543.67 87.24 86.72 86.61 86.85

2100 0.6 0.6 0.59 0.6 7650 7650 7610 7636.67 87.46 87.46 87.24 87.39

2100-2100 0.65 0.6 0.6 0.62 7842 7650 7650 7714 88.56 87.46 87.46 87.83

Symmetry 2021, 13, 2195 15 of 20

Table 4. Error evaluations in terms of MAPE, MSE, and RMSE for Iph1 using RBFNN for different
spread constants and number of neurons.

Speed
Constant

No. of
Neurons

Average MAPE
(%) for Iph1

Average MSE (%)
for Iph1 on Set Test

RMSE (%) for Iph1 on
Test Set after Iteration

1 10 0.2 3542 59.51

2 20 0.22 3589 59.91

10 50 0.25 3685 60.7

100 100 0.3 3752 61.25

1000 150 0.33 3789 61.55

1 100 0.24 3560 59.67

2 500 0.18 3489 59.07

5 1000 0.15 3274 57.22

10 1500 0.19 3589 59.91

20 2000 0.25 3685 60.7

Table 5. Error evaluations in terms of MAPE, MSE, and RMSE for Iph2 using RBFNN for different
spread constants and number of neurons.

Speed
Constant

No. of
Neurons

Average MAPE
(%) for Iph2

Average MSE (%)
for Iph2 on Set Test

RMSE (%) for Iph2 on
Test Set after Iteration

1 10 0.33 3789 61.55

2 20 0.3 3752 61.25

10 50 0.31 3789 61.55

100 100 0.35 3890 62.37

1000 150 0.32 3801 61.65

1 100 0.28 3739 61.15

2 500 0.26 3699 60.82

5 1000 0.24 3560 59.67

10 1500 0.27 3701 60.84

20 2000 0.3 3752 61.25

Table 6. Error evaluations in terms of MAPE, MSE, and RMSE for Iph3 using RBFNN for different
spread constants and number of neurons.

Speed
Constant

No. of
Neurons

Average MAPE
(%) for Iph3

Average MSE (%)
for Iph3 on Set Test

RMSE (%) for Iph3 on
Test Set after Iteration

1 10 0.21 3502 59.18

2 20 0.22 3589 59.9

10 50 0.26 3699 60.82

100 100 0.29 3785 61.52

1000 150 0.32 3801 61.65

1 100 0.22 3460 58.82

2 500 0.17 3354 57.91

5 1000 0.15 3274 57.22

10 1500 0.18 3489 59.07

20 2000 0.26 3699 60.82

Symmetry 2021, 13, 2195 16 of 20

Table 7. Error evaluations in terms of MAPE, MSE, and RMSE for Iph1 using hybrid technique for different spread constants, number of neurons, and iterations.

Spread No. of Average MAPE (%) for Iph1 Average MAPE of Average MSE (%) for Iph1 Average MSE of RMSE (%) for Iph1 Average RMSE of
Constants Neurons on Test Set after Each Iteration Three Iterations on Test Set after Each Iteration Three Iterations on Test Set after Each Iteration Three Iterations

10 100 1000 10 100 1000 10 100 1000

1 10 0.11 0.12 0.09 0.11 856 892 747 831.67 29.26 29.87 27.33 28.82

2 20 0.12 0.12 0.09 0.11 892 892 747 843.67 29.87 29.87 27.33 29.02

10 50 0.13 0.13 0.08 0.11 942 941 723 868.67 30.69 30.68 26.89 29.42

100 100 0.11 0.12 0.08 0.1 856 894 723 824.33 29.26 29.9 26.89 28.68

1000 150 0.09 0.1 0.07 0.08 747 842 699 762.67 27.33 29.02 26.44 27.6

1 100 0.09 0.09 0.06 0.08 747 749 682 726 27.33 27.37 26.12 26.94

2 500 0.08 0.08 0.05 0.07 723 724 643 696.67 26.91 26.91 25.36 26.39

5 1000 0.06 0.07 0.04 0.06 701 689 601 663.67 26.25 26.25 24.52 25.67

10 1500 0.09 0.09 0.07 0.08 747 746 699 730.67 27.31 27.31 26.44 27.02

20 2000 0.11 0.12 0.09 0.1 856 892 745 831 29.87 29.87 27.29 29.01

Table 8. Error evaluations in terms of MAPE, MSE, and RMSE for Iph2 using hybrid technique for different spread constants, number of neurons, and iterations.

Spread No. of Average MAPE (%) for Iph2 Average MAPE of Average MSE (%) for Iph2 Average MSE of RMSE (%) for Iph2 Average RMSE of
Constants Neurons on Test Set after Each Iteration Three Iterations on Test Set after Each Iteration of Three Iterations on Test Set after Each Iteration Three Iterations

10 100 1000 10 100 1000 10 100 1000

1 10 0.22 0.22 0.1 0.18 1821 1821 842 1494.67 42.67 42.67 29.02 38.12

2 20 0.2 0.22 0.1 0.17 1224 1821 842 1295.67 42.67 42.67 29.02 38.12

10 50 0.2 0.21 0.08 0.16 1242 1412 723 1125.67 37.58 37.58 26.89 34.01

100 100 0.18 0.17 0.07 0.14 1105 1022 699 942 31.97 31.97 26.44 30.13

1000 150 0.14 0.13 0.07 0.11 901 940 699 846.67 30.66 30.66 26.44 29.25

1 100 0.1 0.12 0.05 0.09 842 892 642 792 29.87 29.87 25.34 28.36

2 500 0.08 0.08 0.05 0.07 723 723 642 696 26.89 26.89 25.34 26.37

5 1000 0.06 0.07 0.04 0.06 701 689 601 663.67 26.25 26.25 24.52 25.67

10 1500 0.09 0.09 0.07 0.08 747 746 699 730.67 27.31 27.31 26.44 27.02

20 2000 0.11 0.12 0.09 0.1 856 892 745 831 29.87 29.87 27.29 29.01

Symmetry 2021, 13, 2195 17 of 20

Table 9. Error evaluations in terms of MAPE, MSE, and RMSE for Iph3 using hybrid technique for different spread constants, number of neurons, and iterations.

Spread No. of Average MAPE (%) for Iph3 Average MAPE of Average MSE (%) for Iph3 Average MSE of RMSE (%) for Iph3 Average RMSE of
Constants Neurons on Test Set after Each Iteration Three Iterations on Test Set after Each Iteration Three Iterations on Test Set after Each Iteration Three Iterations

10 100 1000 10 100 1000 10 100 1000

1 10 0.12 0.12 0.13 0.12 892 892 941 908.33 29.87 29.87 30.68 30.14

2 20 0.13 0.12 0.11 0.12 941 892 856 896.33 30.68 29.87 29.26 29.93

10 50 0.11 0.12 0.11 0.11 856 892 856 868 29.26 29.87 29.26 29.46

100 100 0.1 0.1 0.11 0.1 842 842 856 846.67 29.02 29.02 29.26 29.1

1000 150 0.1 0.09 0.09 0.09 842 747 747 778.67 29.02 27.33 27.33 27.89

1 100 0.09 0.08 0.08 0.08 747 723 723 731 27.33 26.89 26.89 27.04

2 500 0.08 0.08 0.06 0.07 723 723 701 715.67 26.89 26.89 26.48 26.75

5 1000 0.07 0.06 0.05 0.06 689 701 645 678.33 26.25 26.48 25.4 26.04

10 1500 0.1 0.08 0.08 0.09 842 723 723 762.67 29.02 26.89 26.89 27.6

20 2000 0.12 0.12 0.11 0.12 892 892 856 880 29.87 29.87 27.26 29.66

Symmetry 2021, 13, 2195 18 of 20

0 10 20 30 40 50 60 70 80 90 100
Number of Samples

0

50

100

150

200

I ph
1 (

A
)

ideal FFBPNN RBFNN Hybrid

Figure 15. Iph1 via Iideal for different samples and techniques.

0 10 20 30 40 50 60 70 80 90 100
Number of Samples

0

50

100

150

200

I p
h

2
 (

A
)

Ideal FFBPNN RBFN Hybrid

Figure 16. Iph2 via Iideal for different samples and techniques.

0 10 20 30 40 50 60 70 80 90 100
Number of Samples

0

50

100

150

200

I
p

h
3
 (

A
)

Ideal FFBPNN RBFNN Hybrid

Figure 17. Iph3 via Iideal for different samples and techniques.

6. Conclusions

This work presents a MATLAB-based solution for ANN techniques for load balancing
investigation. These techniques are successfully tested and validated using simulated
real data. The testing results obtained show that the FFBPNN technique has a significant
deviation from the desired ideal current. The results obtained using this technique are
the worst. On the other hand, the hybrid technique is more guaranteed to give analytical
results for load balancing problems than using FFBPNN or RBFNN techniques individually.
It showed a better convergence, faster training, and classification thoroughness using a
discrete data set; moreover, the results were very close to the ideal values of currents and
the acceptable error profiles. This technique is considered the most operative, and it is
highly recommended that IDECO use it in load balancing studies since the three-phase
balancing has many advantages for customers and utilities.

Symmetry 2021, 13, 2195 19 of 20

Author Contributions: Conceptualization, L.A., Q.N. and W.M.; methodology, L.A., Q.N. and W.M.;
software, Q.N.; validation, L.A., Q.N. and W.M.; investigation, Q.N.; resources, Q.N. and W.M.; data
curation, W.M.; writing—original draft preparation, L.A. and W.M.; writing—review and editing,
L.A. and W.M.; visualization, L.A. and Q.N.; supervision, L.A., project administration, L.A., Q.N.
and W.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express special thanks to IDECO for providing access
to the research data.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ANN Artificial Neural Network
FFBPNN Feed-forward Back-Propagation Neural Network
IDECO Irbid Distribution Electricity Company
MAPE Mean Squared Percentage Error
MSE Mean Square Error
RBFNN Radial Basis Function Neural Network
RMSE Root Mean Squared Error

References
1. Kong, W.; Ma, K.; Fang, L.; Wei, R.; Li, F. Cost-Benefit Analysis of Phase Balancing Solution for Data-Scarce LV Networks by

Cluster-Wise Gaussian Process Regression. Power Syst. IEEE Trans. 2020, 35, 3170–3180. [CrossRef]
2. Zheng, W.; Huang, W.; Hill, D.J.; Hou, Y. An adaptive distributionally robust model for three-phase distribution network

reconfiguration. IEEE Trans. Smart Grid 2020, 12, 1224–1237. [CrossRef]
3. Civanlar, S.; Grainger, J.J.; Yin, H.; Lee, S.S.H. Distribution feeder reconfiguration for loss reduction. IEEE Trans. Power Deliv. 1988,

3, 1217–1223. [CrossRef]
4. Wang, W.; Yu, N. Maximum marginal likelihood estimation of phase connections in power distribution systems. IEEE Trans.

Power Syst. 2020, 35, 3906–3917. [CrossRef]
5. Ukil, A.; Siti, M.; Jordaan, J. Feeder load balancing using combinatorial optimization-based heuristic method. In Proceedings

of the 2008 13th International Conference on Harmonics and Quality of Power, Wollongong, NSW, Australia, 28 September–1
October 2008; pp. 1–6. [CrossRef]

6. Chen, C.S.; Cho, M.Y. Energy loss reduction by critical switches. IEEE Trans. Power Deliv. 1993, 8, 1246–1253. [CrossRef]
7. Ma, K.; Fang, L.; Kong, W. Review of distribution network phase unbalance: Scale, causes, consequences, solutions, and future

research directions. CSEE J. Power Energy Syst. 2020, 6, 479–488.
8. Ganesh, S.; Kanimozhi, R. Meta-heuristic technique for network reconfiguration in distribution system with photovoltaic and

D-STATCOM. IET Gener. Transm. Distrib. 2018, 12, 4524–4535. [CrossRef]
9. Al-Kharsan, I.H.; Marhoon, A.F.; Mahmood, J.R. A New Strategy for Phase Swapping Load Balancing Relying on a Meta-Heuristic

MOGWO. Algorithm. J. Mech. Contin. Math. Sci 2020, 15, 84–102. [CrossRef]
10. Jena, U.K.; Das, P.K.; Kabat, M.R. Hybridization of meta-heuristic algorithm for load balancing in cloud computing environment.

J. King Saud-Univ.-Comput. Inf. Sci. 2020, in press. [CrossRef]
11. Grigoras, , G.; Neagu, B.C.; Gavrilas, , M.; Tris, tiu, I.; Bulac, C. Optimal phase load balancing in low voltage distribution networks

using a smart meter data-based algorithm. Mathematics 2020, 8, 549. [CrossRef]
12. Kocarev, L.; Zdraveski, V.; Todorovski, M. Method and System for Dynamic Intelligent Load Balancing. U.S. Patent 10,218,179, 26

February 2019.
13. Azizivahed, A.; Narimani, H.; Naderi, E.; Fathi, M.; Narimani, M.R. A hybrid evolutionary algorithm for secure multi-objective

distribution feeder reconfiguration. Energy 2017, 138, 355–373. [CrossRef]
14. Fu, L.; Liu, B.; Meng, K.; Dong, Z.Y. Optimal restoration of an unbalanced distribution system into multiple microgrids considering

three-phase demand-side management. IEEE Trans. Power Syst. 2020, 36, 1350–1361. [CrossRef]
15. Aprilia, E.; Meng, K.; Zeineldin, H.H.; Al Hosani, M.; Dong, Z.Y. Modeling of distributed generators and converters control for

power flow analysis of networked islanded hybrid microgrids. Electr. Power Syst. Res. 2020, 184, 106343. [CrossRef]

http://doi.org/10.1109/TPWRS.2020.2966601
http://dx.doi.org/10.1109/TSG.2020.3030299
http://dx.doi.org/10.1109/61.193906
http://dx.doi.org/10.1109/TPWRS.2020.2977071
http://dx.doi.org/10.1109/ICHQP.2008.4668832
http://dx.doi.org/10.1109/61.252650
http://dx.doi.org/10.1049/iet-gtd.2018.5629
http://dx.doi.org/10.26782/jmcms.2020.02.00008
http://dx.doi.org/10.1016/j.jksuci.2020.01.012.
http://dx.doi.org/10.3390/math8040549
http://dx.doi.org/10.1016/j.energy.2017.07.102
http://dx.doi.org/10.1109/TPWRS.2020.3015384
http://dx.doi.org/10.1016/j.epsr.2020.106343

Symmetry 2021, 13, 2195 20 of 20

16. Ramadhani, U.H.; Shepero, M.; Munkhammar, J.; Widén, J.; Etherden, N. Review of probabilistic load flow approaches for power
distribution systems with photovoltaic generation and electric vehicle charging. Int. J. Electr. Power Energy Syst. 2020, 120, 106003.
[CrossRef]

17. Lin, W.M.; Chin, H.C. A current index based load balance technique for distribution systems. In Proceedings of the POWER-
CON’98. 1998 International Conference on Power System Technology. Proceedings (Cat. No. 98EX151), Beijing, China, 18–21
August 1998; Volume 1, pp. 223–227.

18. Huang, M. A Receiver-Initiated Approach with Fuzzy Logic Control in Load Balancing. J. Comput. Commun. 2020, 8, 107–119.
[CrossRef]

19. Juneja, K. A fuzzy-controlled differential evolution integrated static synchronous series compensator to enhance power system
stability. IETE J. Res. 2020. [CrossRef]

20. Torkzadeh, S.; Soltanizadeh, H.; Orouji, A.A. Energy-aware routing considering load balancing for SDN: A minimum graph-based
Ant Colony Optimization. Clust. Comput. 2021, 24, 2293–2312. [CrossRef]

21. Siti, M.W.; Jimoh, A.A.; Jordaan, J.A.; Nicolae, D.V. The Use of Support Vector Machine for Phase Balancing in the Distribution
Feeder. In Proceedings of the International Conference on Neural Information Processing 2007, Kitakyushu, Japan, 13–16
November 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 721–729.

22. Jordaan, J.A.; Siti, M.W.; Jimoh, A.A. Distribution feeder load balancing using support vector machines. In Proceedings of
the International Conference on Intelligent Data Engineering and Automated Learning, Daejeon, Korea, 2–5 November 2008;
Springer: Berlin/Heidelberg, Germany, 2008; pp. 65–71.

23. Xuan Tung, N.; Fujita, G.; Horikoshi, K. Phase load balancing in distribution power system using discrete passive compensator.
IEEJ Trans. Electr. Electron. Eng. 2010, 5, 539–547. [CrossRef]

24. Baghaee, H.R.; Mirsalim, M.; Gharehpetian, G.B.; Talebi, H.A. Unbalanced harmonic power sharing and voltage compensation of
microgrids using radial basis function neural network-based harmonic power-flow calculations for distributed and decentralised
control structures. IET Gener. Transm. Distrib. 2017, 12, 1518–1530. [CrossRef]

25. Tabatabaei, S. A probabilistic neural network based approach for predicting the output power of wind turbines. J. Exp. Theor.
Artif. Intell. 2017, 29, 273–285. [CrossRef]

26. Ivanov, O.; Neagu, B.; Gavrilas, M.; Grigoras, G.; Sfintes, C. Phase Load Balancing in Low Voltage Distribution Networks Using
Metaheuristic Algorithms. In Proceedings of the 2019 International Conference on Electromechanical and Energy Systems
(SIELMEN), Craiova, Romania, 9–11 October 2019; pp. 1–6. [CrossRef]

27. Gavrilas, M. Heuristic and metaheuristic optimization techniques with application to power systems. In Proceedings of the 12th
WSEAS International Conference on Mathematical Methods and Computational Techniques in Electrical Engineering, Stevens
Point, WI, USA, 21–23 October 2010; pp. 95–103.

28. Nicolae, D.V.; Siti, M.W.; Jimoh, A.A. LV self balancing distribution network reconfiguration for minimum losses. In Proceedings
of the 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 28 June–2 July 2009; pp. 1–6. [CrossRef]

29. Singh, N.K.; Tripathy, M.; Singh, A.K. A radial basis function neural network approach for multi-hour short term load-price
forecasting with type of day parameter. In Proceedings of the 2011 6th International Conference on Industrial and Information
Systems, Kandy, Sri Lanka, 16–19 August 2011; pp. 316–321. [CrossRef]

30. Cecati, C.; Kolbusz, J.; Różycki, P.; Siano, P.; Wilamowski, B.M. A Novel RBF Training Algorithm for Short-Term Electric Load
Forecasting and Comparative Studies. IEEE Trans. Ind. Electron. 2015, 62, 6519–6529. [CrossRef]

31. Shafie, A.H.E.; El-Shafie, A.; Almukhtar, A.; Taha, M.R.; Mazoghi, H.G.E.; Shehata, A. Radial basis function neural networks for
reliably forecasting rainfall. J. Water Clim. Chang. 2012, 3, 125–138. [CrossRef]

32. Masoumi, A.; Jabari, F.; Zadeh, S.G.; Mohammadi-Ivatloo, B. Long-Term Load Forecasting Approach Using Dynamic Feed-
Forward Back-Propagation Artificial Neural Network. In Optimization of Power System Problems; Springer: Cham, Switzerland,
2020; pp. 233–257.

33. Albaradeyia, I.; Hani, A.; Shahrour, I. WEPP and ANN models for simulating soil loss and runoff in a semi-arid Mediterranean
region. Environ. Monit Assess. 2011, 180, 537–556. [CrossRef] [PubMed]

34. Gupta, D.K.; Kumar, P.; Mishra, V.N.; Prasad, R.; Dikshit, P.K.S.; Dwivedi, S.B.; Ohri, A.; Singh, R.S.; Srivastava, V. Bistatic
measurements for the estimation of rice crop variables using artificial neural network. Adv. Space Res. 2015, 55, 1613–1623.
[CrossRef]

http://dx.doi.org/10.1016/j.ijepes.2020.106003
http://dx.doi.org/10.4236/jcc.2020.85007
http://dx.doi.org/10.1080/03772063.2020.1795936
http://dx.doi.org/10.1007/s10586-021-03263-x
http://dx.doi.org/10.1002/tee.20570
http://dx.doi.org/10.1049/iet-gtd.2016.1277
http://dx.doi.org/10.1080/0952813X.2015.1132272
http://dx.doi.org/10.1109/SIELMEN.2019.8905900
http://dx.doi.org/10.1109/PTC.2009.5282233
http://dx.doi.org/10.1109/ICIINFS.2011.6038087
http://dx.doi.org/10.1109/TIE.2015.2424399
http://dx.doi.org/10.2166/wcc.2012.017
http://dx.doi.org/10.1007/s10661-010-1804-x
http://www.ncbi.nlm.nih.gov/pubmed/21170584
http://dx.doi.org/10.1016/j.asr.2015.01.003

	Introduction
	Load Balancing
	System under Study
	ANN Techniques
	Results and Discussion
	Conclusions
	References

