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Abstract: We deal with 2D and 3D barotropic gas dynamics system of equations with two viscous
regularizations: so-called quasi-gas dynamics (QGD) and quasi-hydrodynamics (QHD) ones. The
system is linearized on a constant solution with any velocity, and an explicit two-level in time and
symmetric three-point in each spatial direction finite-difference scheme on the uniform rectangular
mesh is considered for the linearized system. We study L2-dissipativity of solutions to the Cauchy
problem for this scheme by the spectral method and present a criterion in the form of a matrix
inequality containing symbols of symmetric matrices of convective and regularizing terms. Analyzing
these inequality and matrices, we also derive explicit sufficient conditions and necessary conditions
in the Courant-type form which are rather close to each other. For the QHD regularization, such
conditions are derived for the first time in 2D and 3D cases, whereas, for the QGD regularization,
they improve those that have recently been obtained. Explicit formulas for a scheme parameter that
guarantee taking the maximal time step are given for these conditions. An important moment is a
new choice of an “average” spatial mesh step ensuring the independence of the conditions from the
ratios of the spatial mesh steps and, for the QGD regularization, from the Mach number as well.

Keywords: barotropic gas dynamics equations; regularization; explicit two-level scheme; dissipativity
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1. Introduction

Numerical methods for gas dynamics problems play an important role in compu-
tational mathematics, and a vast literature is devoted to them, see, in particular, the
monographs [1–5] and references therein. Stability conditions for such methods, including
those explicit in time, are of great practical and theoretical importance. For the explicit
schemes, computational costs are inversely proportional to the time step ∆t but the maxi-
mal value of ∆t is restricted by a Courant-type stability condition involving steps of the
spatial mesh and the sound speed.

Among the mentioned methods there exist a family of mesh methods based on
preliminary viscous regularization of the equations involving so-called quasi-gas dynamics
(QGD) and quasi-hydrodynamics (QHD) regularizations [6–9]. These methods are widely
used for numerical solution of various applied problems. In the barotropic case, gas
dynamics systems of equations with such regularizations were introduced and studied
in [10–13], and their numerous applications to computer simulation were given for various
1D and 2D shallow water models [14–19], some 2D astrophysical problems [20] and the
2D and 3D compressible Navier–Stokes–Cahn–Hilliard models [21–23], etc. Despite of a
lot of applications, almost nothing was known until recent years on rigorous theoretical
conditions for stability of schemes with the QGD and QHD regularizations thus leading
to additional time-consuming preliminary numerical experiments in order to choose the
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adequate parameters of schemes allowing to use larger values of ∆t. Notice that there exist
also other regularizations for gas dynamics equations, see in [24–26], etc., however, they
have not yet undergone such detailed practical testing.

The present paper is a contribution to the theoretical basis of schemes with the QGD
and QHD regularizations. We study an explicit two-level in time and symmetric three-
point in each spatial direction finite-difference scheme for the 2D and 3D barotropic gas
dynamics system of equations with such regularizations linearized on a constant solution
(with any velocity, though rather often previously much simpler case of the zero velocity
was considered only). The possibility of applying symmetric approximation in space is
related namely to application of the regularized equations. For this scheme, we give a
matrix criterion as well as simpler and rather close to each other sufficient conditions
and necessary conditions for L2-dissipativity of solutions to the Cauchy problem, for
any Mach number and the uniform rectangular mesh. To this end, we apply the spectral
method [4,27,28] and analyze matrix inequalities containing symbols of symmetric matrices
of convective and regularizing terms. Notice that we apply the version of the spectral
method based on the Fourier series [4,28] rather than the integral Fourier transform [27].
Moreover, the analysis of namely the L2-dissipativity is natural since the corresponding
results are known for the linearized QGD and QHD systems of equations [10,11], though
rather often only the von Neumann-type necessary stability conditions are studied that
is simpler but does not ensure stability in any norm. Furthermore, the advantage of the
spectral method versus an alternative energy approach is the possibility to derive not
only sufficient conditions for stability but necessary conditions as well. In this paper,
for the first time this analysis is generally performed in the unified manner for the both
regularizations, but for the simpler QHD regularization it turns out to be more complicated
since its regularizing terms are weaker with respect to the convective ones than in the
QGD regularization.

Explicit formulas for the scheme regularizing parameter that guarantee taking the
maximal time step ∆t are given for the derived conditions. We also present the choice of
the “average” spatial step in the Courant-type conditions on the time step and in the regu-
larizing parameter which ensures that the sufficient conditions and necessary conditions
are uniform with respect to the rectangular spatial mesh and, for the QGD regularization,
with respect to the Mach number as well (that can be valuable for simulation of super- and
hypersonic flows). This choice depends not only on the steps of the rectangular spatial
mesh, but also the Mach numbers in the respective directions. These results are valuable for
practical applications helping one to choose adequately the scheme parameters allowing to
use the maximal time step.

For the QHD regularization, these 2D and 3D results are derived for the first time
and, for the QGD regularization, they improve those that have recently been obtained
in [29]. Previously, the L2-dissipativity analysis of similar schemes in the much simpler 1D
barotropic case was accomplished for zero and any Mach number in [30–32], respectively.
In this paper, we base on the papers in [29,32] and aim to develop further their technique.
We also include the complete proof of the formula for the norm of the level-to-level
transition operator in terms of the eigenvalues of its symmetrized symbol that is essential
for the spectral technique; the main items of its proof have recently been presented in [33].
Importantly, the technique is general enough and applicable for various schemes, other
regularizations (for example, see in [34]) and in more general or different statements of the
equations, and some such studies are planned for the near future.

2. The Barotropic Gas Dynamics System of Equations with Two Regularizations, Its
Linearization and the Corresponding Difference Scheme

We write the barotropic gas dynamics system of equations with the QGD and QHD
regularizations in the form from [12] in a unified manner, setting for them ` = 1 and ` = 0,
respectively. They consist of the mass and momentum balance equations which in the
absence of external forces have the form
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∂tρ + div j` = 0, ∂t(ρu) + div(j` ⊗ u) +∇p(ρ) = div Π` (1)

in Rn, n = 2, 3, for t > 0. The sought functions are the density ρ > 0 and velocity
u = (u1, . . . , un) of a gas which depend on x = (x1, . . . , xn) and t, also p(ρ) ∈ C2(0,+∞)
is the pressure with p′(ρ) > 0. The operators div and ∇ = (∂1, . . . , ∂n) are taken in x,
also ∂t = ∂/∂t and ∂i = ∂/∂xi. The symbol ⊗ denote the tensor product of vectors. The
divergence of a tensor is taken with respect to its first index.

The regularized mass flux j` and the viscous stress tensor Π` = ΠNS + Πτ
` are as

follows:

j` = ρu−m`, m` = τ
[
`div(ρu)u + ρ(u · ∇)u +∇p(ρ)

]
, (2)

ΠNS = µ
[
∇u + (∇u)T]+ (λ− 2

3 µ
)
(div u)I, Πτ

` = u⊗m0 + `τp′(ρ)div(ρu)I, (3)

where u · ∇ = ui∂i, and hereafter the summation from 1 to n over the repeated indices
i, j (and only over them) is assumed. Furthermore, ΠNS is the Navier–Stokes tensor with
∇u = {∂iuj}n

i,j=1 and the artificial viscosity coefficients µ = αsτρp′(ρ) and λ = α1sτρp′(ρ)
with the parameters αs > 0 for ` = 1 or αs > 0 for ` = 0 (the Schmidt number) and α1s > 0,
I is the unit tensor, m` and Πτ

` are the regularizing momentum and viscosity tensor, and
τ = τ(ρ, u) > 0 is the regularizing parameter.

For τ = 0 and given µ > 0 and λ > 0, this system becomes the barotropic compressible
Navier–Stokes system of equations. For τ = µ = λ = 0, it is simplified as the barotropic
Euler system of equations.

We recall the linearization of system (1)–(3) on a constant solution ρ(x, t) ≡ ρ∗ > 0
and u(x, t) ≡ u∗ = (u∗1, . . . , u∗n) [10,11]. Let

c∗ =
√

p′(ρ∗), τ∗ = τ(ρ∗, u∗), µ∗ = αsτ∗ρ∗c2
∗, λ∗ = α1sτ∗ρ∗c2

∗

be the background sound speed and values of the parameters τ, µ and λ. We substitute
the solution in the form ρ = ρ∗ + ρ∗ρ̃ and u = u∗ + c∗ũ into Equations (1)–(3), where ρ̃
and ũ are the dimensionless small perturbations. We omit the terms of higher than the
first order of smallness with respect to them and get the linearized system of equations for
z := (ρ̃, ũ)T . Its vector symmetrized form is as follows:

∂tz + c∗B(i)∂iz− τ∗c2
∗A(ij)

` ∂i∂jz = 0 (4)

in Rn for t > 0, where B(i) and A(ij) are matrices of the order n + 1 (we omit the deriva-
tion details).

In order to write down these matrices, we introduce the column vectors e0, . . . , en of
the canonical basis in Rn+1, then

B(k) = Mk In+1 + e0eT
k + ekeT

0 ,

A(kk)
` = diag{1, αs, . . . , αs}+ M2

k I(`) + (`+ 1)Mk(e0eT
k + ekeT

0 ) + a`ekeT
k , (5)

A(ij)
` = Mi Mj I(`) + `+1

2 Mi(e0eT
j + ejeT

0 ) +
`+1

2 Mj(e0eT
i + eieT

0 ) +
a`
2 (eieT

j + ejeT
i ) (6)

for any k, i and j from 1 to n and i 6= j. Hereafter

Mk =
u∗k
c∗

, M = (M1, . . . , Mn)
T , a` =

1
3

αs + α1s + `,

also M = |M| is the Mach number, Ik is the unit matrix of the order k, the matrix I(`) =
diag{`, 1, . . . , 1} has the order n + 1, where diag{p1, . . . , pk} is the diagonal matrix of
the order k with diagonal elements listed sequentially. Clearly B(k), A(kk)

` and A(ij)
` are

symmetric matrices and A(ij)
` = A(ji)

` that is essential below.



Symmetry 2021, 13, 2184 4 of 17

For the solution to systems of equations like (4) supplemented with the initial condition
z|t=0 = z0, the following uniform in t > 0 bound is known [10,11]:

supt>0 ‖z(·, t)‖L2(Rn) 6 ‖z0‖L2(Rn) ∀ z0 ∈ L2(Rn). (7)

We define the uniform mesh ωkh in xk with the nodes lhk, l ∈ Z, and the step hk > 0,
1 6 k 6 n, and the mesh ω̄∆t in t with the nodes tm = m∆t, m > 0, and the step ∆t > 0. We
introduce the symmetric difference operators in xk and the forward difference operator in t

δ̊kvl =
vl+1 − vl−1

2hk
, (δ∗k δkv)l =

vl+1 − 2vl + vl−1

h2
k

, δty =
y+ − y

∆t
, y+,m = ym+1,

where vl = v(lhk) and ym = y(tm).
We define the rectangular mesh ωh := ω1h × . . .× ωnh in Rn with h = (h1, . . . , hn).

Let H be the Hilbert space of vector-functions v: ωh → Cn+1 defined and square summable
on ωh, equipped with the inner product

(v, y)H = h1 . . . hn ∑k∈Zn(vk, yk)Cn+1 , k = (k1, . . . , kn),

(where, for example, vk = v(k1h1, . . . , knhn)) and the corresponding norm ‖ · ‖H .
We approximate the system of Equation (4) using the defined difference operators and

get the explicit in t and symmetric three-point in each direction x1, . . . , xn difference scheme

δty + c∗B(i) δ̊iy− τ∗c2
∗
[
A(ii)δ∗i δi + (1− δ(ij))A(ij) δ̊i δ̊j

]
y = 0 (8)

on ωh ×ω∆t, where δ(ij) is the Kronecker symbol. A similar difference scheme arises after
the linearization of schemes for the original Equations (1)–(3) given, in particular, in [35].

We pose the question on conditions for the validity of the mesh counterpart of
bound (7), namely,

sup
m>0
‖ym‖H 6 ‖y0‖H ∀ y0 ∈ H. (9)

We define the level-to-level transition operator acting in H:

A := I − ∆t
{

c∗B(i) δ̊i − τ∗c2
∗[A

(ii)
` δ∗i δi + (1− δ(ij))A(ij)

` δ̊i δ̊j]
}

,

where I is the unit operator. Bound (9) is equivalent to the properties ‖A‖L(H) :=
sup‖y‖H=1 ‖Ay‖H 6 1 and the H–dissipativity (i.e., L2–dissipativity) of the scheme

‖ym‖H 6 ‖ym−1‖H 6 . . . 6 ‖y0‖H ∀y0 ∈ H, m > 1.

Notice that in the case of more general than (8) non-homogeneous scheme

δty + c∗B(i) δ̊iy− τ∗c2
∗
[
A(ii)δ∗i δi + (1− δ(ij))A(ij) δ̊i δ̊j

]
y = f

on ωh ×ω∆t, with any given y0 and f, under the above mentioned property ‖A‖L(H) 6 1,
it is easy to derive the following more general stability bound:

max
06m6m

‖ym‖H 6 ‖y0‖H + ∆t
m−1

∑
m=0
‖fm‖H ∀m > 1.

3. An Analysis of the L2–Dissipativity of the Scheme

Let ∆t and τ∗ be given by the formulas of the typical form [6–8]

∆t =
βĥ
c∗

, τ∗ =
αĥ
c∗

(10)
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with the parameters β > 0 (like the Courant number) and α > 0. Here, the “average”
spatial step ĥ = ĥ(h) > 0 is arbitrary during the whole analysis and can depend also on M
and other parameters. Its adequate choice arises as a result of the analysis, and it will be
given at the end of the paper. Below we derive conditions on β in dependence on α related
to the validity of bound (9).

According to the spectral method [4,28], we consider particular solutions of scheme (8)
in the form

ym
k (ξ) = eikξwm(ξ), k ∈ Zn, ξ = (ξ1, . . . , ξn)

T ∈ D := [−π, π]n, m > 0,

where i is the imaginary unit and ξ is the vector parameter. We substitute them into (8)
taking into account the formulas

δ̊keikξk = i
1
hk

(sin ξk)eikξk = i
2
hk

(
sin

ξk
2

)(
cos

ξk
2

)
eikξk , −δ∗k δkeikξk =

4
h2

k

(
sin2 ξk

2

)
eikξk

together with Formula (10) and derive the explicit recurrent formula

w+ = Gsw on ω̄∆t.

In it, Gs is the matrix-symbol of the operator A having the form

Gs = In+1 − βFs, Fs = 4αAs` + 2iBs,

Bs = disiB(i), As` = d2
i A(ii)

` + (1− δ(ij))didjsisj A
(ij)
` ,

where the matrices Bs and As` are proportional to the symbols of convective and viscous
(regularizing) terms as well as s = (s1, . . . , sn) and

dk = rk
√

σk, rk =
ĥ
hk

, σk = sin2 ξk
2
∈ [0, 1], sk = sgn ξk

√
1− σk, 1 6 k 6 n.

Hereafter, mainly it seems more convenient to take s ∈ S := [−1, 1]n as a parameter
instead of ξ; obviously, σk = 1− s2

k .
We define the row vector and number

ζ = ζ(s) ≡ (ζ1, . . . , ζn) with ζk = dksk = rk
√

σksk, d =
(
d2

1 + . . . + d2
n
)1/2.

Lemma 1. The matrices Bs and As` can be written in the 2× 2-block symmetric form

Bs =

(
ζM ζ

ζT (ζM)In

)
,

As` =

(
`aM + d2 (`+ 1)

[
(ζM)ζ + MTQ

]
(`+ 1)

[
(ζM)ζT + QM

] (
aM + αsd2)In + a`

(
ζTζ + Q

)), (11)

where

aM = (ζM)2 + MTQM, Q = diag{q1, . . . , qn} with qk = d2
kσk = r2

kσ2
k , 1 6 k 6 n.

Proof. For ` = 1, the result was proven in ([29], Lemma 1).
For ` = 0, by virtue of Formulas (5) and (6) for the matrices A(ij)

` together with
d2

k = d2
kσk + ζ2

k , we can write down

As0 = d2
i σi A

(ii)
0 + |ζ|2 diag{1, αs, . . . , αs}+ disidjsj A

(ij)
0 .
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Further, we obtain

d2
i σi A

(ii)
0 + |ζ|2 diag{1, αs, . . . , αs}

= qi M2
i I(`) + d2 diag{1, αs, . . . , αs}+ qi Mi(e0eT

i + eieT
0 ) + a0qieieT

i

= MTQMI(`) + d2
(

1 0
0 αs In

)
+

(
0 MTQ

QM 0

)
+ a0

(
0 0
0 Q

)
and

disidjsj A
(ij)
0

= ζiζ j
[
Mi Mj I(`) + 1

2 Mi(e0eT
j + ejeT

0 ) +
1
2 Mj(e0eT

i + eieT
0 ) +

a0
2 (eieT

j + ejeT
i )
]

= (ζM)2 I(`) + ζM
(

0 ζ

ζT 0

)
+ a0

(
0 0
0 ζTζ

)
.

These formulas imply form (11) with ` = 0 of the matrix As0.

In ([29], Lemma 1), the important matrix inequality was proven:

B2
s 6 As1 ∀s ∈ S. (12)

Recall that it follows from the formula

As1 − B2
s =

(
MTQM + tr Q 2MTQ

2QM
(
MTQM + αsd2)In + (a1 − 1)ζTζ + a1Q

)
, (13)

where tr Q = q1 + . . . + qn is the trace of Q, which can be straightforwardly verified.
Now, we derive the corresponding more complicated inequality between the matrices

B2
s and As0.

Lemma 2. 1. The following inequality holds:

bk(B(k))2 6 A(kk)
0 with bk =

â0

q(|Mk|)
, â0 := αs + a0 =

4
3

αs + α1s, 1 6 k 6 n,

where the given constant 0 < bk 6 1 is maximal in this inequality, with

q(m) = κ(m2 − 1), κ(θ) := κ0(θ) +
√
κ2

0(θ)− â0θ2, κ0(θ) := 1
2 [θ

2 + â0(θ + 2)] (14)

for m > 0. Herewith there holds the inequality

κ2
0(θ)− â0θ2 = 1

4 (θ
2 + â0θ)2 + â0(1 + θ) > 0 for θ > −1. (15)

2. The following inequality holds:

b(0)B2
s 6 As0 ∀s ∈ S, with b(0) :=

â0

max
06m6M

q(m)
. (16)

Proof. 1. The following formula holds:

(B(k))2 = M2
k In+1 + 2Mk(e0eT

k + ekeT
0 ) + e0eT

0 + ekeT
k .

It is not difficult to check that the inequality b(B(k))2 6 A(kk)
0 is equivalent to the

corresponding inequality for the 2× 2-blocks of the matrices (B(k))2 and A(kk)
0 :
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b

(
M2

k + 1 2Mk

2Mk M2
k + 1

)
6
(

1 Mk
Mk M2

k + â0

)
. (17)

In the proof of ([32], Theorem 3), it was shown that the maximal constant in this
inequality equals b = bk, where bk is given in Item 1 of this Lemma. Herewith inequality (17)
implies that b(M2

k + 1) 6 1 and therefore knowingly bk 6 1.

2. Let ζ 6= 0. Due to the formula d2 = tr Q + |ζ|2, we can write down

Bs = |ζ|B̃s, B̃2
s =

(
m2 + ζ̃ζ̃T 2mζ̃

2mζ̃T ζ̃T ζ̃ + m2 In

)
, (18)

As0 = A(0)
s0 + |ζ|2 Ã(1)

s0 ,

A(0)
s0 =

(
tr Q MTQ

QM (MTQM + αs tr Q)In + a0Q

)
, Ã(1)

s0 =

(
1 mζ̃

mζ̃T (m2 + αs)In + a0ζ̃T ζ̃

)
, (19)

where ζ̃ = ζ/|ζ| and m = ζ̃M.
The inequalities A(0)

s0 > 0 and Ã(1)
s0 − bB̃2

s > 0 mean that

(tr Q)v2
0 + 2v0MTQv + (MTQM + αs tr Q)|v|2 + a0vTQv > 0,[

1− b(m2 + 1)
]
v2

0 + 2(1− 2b)mv0ζ̃v +
[
m2 + αs − bm2)

]
|v|2 + (a0 − b)|ζ̃v|2 > 0 (20)

for any v0 ∈ R and v = (v1, . . . , vn)T ∈ Rn. The first of these inequalities is a consequence
of the inequality

(tr Q)v2
0 + 2v0MTQv + MTQM|v|2 > 0

that follows from the estimates (already used in [29])

2|v0MTQv| 6 2|v0|(tr Q)1/2(q1M2
1v2

1 + . . . + qn M2
nv2

n
)1/2

6 (tr Q)v2
0 + MTQM|v|2.

The second inequality (20) for m2 + αs − bm2 > 0 and due to the lower estimate
|v|2 > (ζ̃v)2 follows from the matrix inequality(

1 m
m m2 + â0

)
− b
(

m2 + 1 2m
2m m2 + 1

)
> 0. (21)

It coincides with (17) for m = M2
k and, therefore, is valid for b = â0/q(|m|) 6 1.

Consequently, we have m2 + αs − bm2 > 0. On the other hand, for v = wζ̃, inequality (20)
implies the inequality with any v0 and w that is equivalent to inequality (21), thus the
found constant b is maximal in (20).

Finally, we get

As − b(0)B2
s = A(0)

s0 + |ζ|2(Ã(1)
s0 − b(0)B̃2

s ) > 0 ∀s ∈ S,

with b(0) = â0/ max
|m|6M

q(|m|), since |m| = |ζ̃M| runs over [0, M] when s runs over S.

Herewith, in the inequality Ã(1)
s0 − bB̃2

s > 0 for any s ∈ S, the specified constant
b = b(0) is maximal. This additional result is essential below.

To apply Lemma 2, it is required to study behavior of the function q(m).

Lemma 3. 1. For â0 > 2/3, the function q(m) increases in m > 0.

2. Let â0 < 2/3. Then q(m) decreases in [0, m∗] and increases in m > m∗ and, moreover,
q(m0) = q(0) = 1, where
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0 < m∗ =
{
− â0

4
+
[( â0

4
+ 1
)2
− 2â0

]1/2}1/2
< m0 =

(2− 3â0

1− â0

)1/2
<
√

2.

3. As a consequence of Items 1–2, the following formula holds:

max
06m6M

q(m) =

{
q(M) for â0 > 2

3 or M > m0, â0 < 2
3

1 for M 6 m0, â0 < 2
3 .

Herewith, q(0) = max{â0, 1} and q(1) = 2â0.

Proof. Let θ > −1. The function κ(θ) is the larger root of the quadratic equation

κ2(θ)− 2κ0(θ)κ(θ) + â0θ2 = 0. (22)

Notice that due to Formula (15), we have κ2
0(θ)− â0θ2 > 0 excluding the particular

case θ = −1 = −â0. From (14) and (15), it also follows that κ(θ) increases in θ > 0.
Except for the specified case, there exists κ′(θ), and the differentiation of (22) gives

2κ′(θ)
[
κ(θ)−κ0(θ)

]
+ 2â0θ = 0.

As κ(θ) > κ0(θ), the property κ′(θ) = 0 is equivalent to κ(θ) = 2â0θ/(2θ + â0);
moreover, 2θ + â0 6= 0 (otherwise θ = 0 and â0 = 0). As κ(θ) > 0, here θ 6= 0. Inserting
this expression for κ(θ) into (22), after a series of simplifications we come to the quadratic
equation

2θ2 + (â0 + 4)θ + 4â0 = 0.

For â0 > 12 + 8
√

2 and â0 6 12− 8
√

2 ≈ 0.686 it has the real roots

θ± = −
( 1

4 â0 + 1
)
±
[( 1

4 â0 + 1)2 − 2â0
)]1/2.

Clearly θ− < 1 and θ− 6 θ+ < 0. It is not difficult to check that the property θ+ > −1
is equivalent to â0 < 2/3.

Therefore, for â0 < 2/3, there exists a unique root θ+ of the equation κ′(θ) = 0 for
θ > −1, and as κ(θ) increases in θ > 0, also κ(θ) decreases in [−1, θ+] and increases in
θ > θ+. Moreover, in this case, solving of the equation κ(θ0) = κ(−1) = 1 for θ0 > −1
after simple algebraic transformations leads to the quadratic equation

(1− â0)θ
2
0 + â0θ + 2â0 − 1 = 0.

One of its roots is −1, therefore θ0 = (1− 2â0)/(1− â0). In this case, we set m∗ =√
θ+ + 1 and m0 =

√
θ0 + 1, and get formulas given in Item 2 of this Lemma.

In the opposite case â0 > 2/3, the derivative κ′(θ) does not vanish for θ > −1, thus
κ(θ) increases for θ > −1. Notice also that here q(0) = 1

2 (â0 + 1) + 1
2 |1− â0| = max{â0, 1}.

Thus, the results of Lemma are valid.

Notice that in the case â0 > 2
3 (in particular, for αs > 1

2 ), we get

q(0) = max{â0, 1} 6 max
06m6M

q(m) 6 q(1) = 2â0,
1
2
6 b(0) 6

â0

max{â0, 1}

in the entire subsonic region M 6 1. On the other hand, in the case â0 = 1
2 (for example,

for αs =
3
8 and α1s = 0), the quantity max06m6M q(m) = 1 = q(0) is minimal in the entire

subsonic region M 6 m0 = 1 and b(0) = â0 = 1
2 .

Moreover, the following properties hold:

1
2
6

q(M)

(M2 − 1)2 + â0(M2 + 1)
6 1, b(0) ∼ â0

M4 for M→ +∞,
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thus, b(0) decreases rapidly as M grows.
We denote by λmax(A) the maximal eigenvalue of the Hermitian matrix A. In the

following theorem, we give the formula for the norm of the level-to-level transition
operator A in terms of the eigenvalues of its symmetrized symbol G∗(s)G(s) that is
essential for the applied spectral technique. It will be more convenient to consider that
Gs = G(ξ). LetH = [L2(D)]n+1 be the Hilbert space of vector functions w(ξ): D → Cn+1,
equipped with the norm ‖w‖H = ‖|w(ξ)|‖L2(D), where | · | = ‖ · ‖Cn+1 .

Theorem 1. The following chain of equalities hold:

‖A‖L(H) = ‖G(·)‖L(H) = max
ξ∈D
‖G(ξ)‖ = max

ξ∈D
λ1/2

max
(
G∗(ξ)G(ξ)

)
, (23)

where
‖G(·)‖L(H) := sup

‖w‖H=1
‖G(ξ)w(ξ)‖H, ‖G‖ := sup

|v|=1
|Gv|.

Proof. The complex Hilbert spaces H and H are isomorphic by means of the multiple
complex Fourier series: to any mesh function y ∈ H corresponds the function w ∈ H such
that w(ξ) = ∑k∈Zn yke−ikξ , and vice versa, for the Fourier coefficients of this function, the
following formula

yk =
1

(2π)n

∫
D

w(ξ)eikξ dξ, k ∈ Zn, (24)

is valid. Herewith, the Parseval equality holds:

‖w‖H = (2π)n‖y‖(`2)n+1 ≡ (2π)n
(

∑
k∈Zn

|yk|2
)1/2

.

Due to Formula (24) and definition of G(ξ), we obtain

(Ay)k =
1

(2π)n

∫
D
A
(

w(ξ)eikξ
)

dξ =
1

(2π)n

∫
D

G(ξ)w(ξ)eikξ dξ, k ∈ Zn,

i.e., {(Ay)k} are the Fourier coefficients of the function G(ξ)w(ξ). Thus, due to the Parseval
equality and the equality ‖y‖H = (h1 . . . hn)1/2‖y‖(`2)n+1 we derive

‖A‖L(H) = sup
y∈(`2)n+1,y 6=0

‖Ay‖(`2)n+1

‖y‖(`2)n+1
= sup

w∈H,w 6=0

‖Gw‖H
‖w‖H

= ‖G(·)‖L(H).

Further, clearly |G(ξ)w(ξ)| 6
(

maxξ∈D ‖G(ξ)‖
)
|w(ξ)|, and thus

‖G(·)‖L(H) 6 max
ξ∈D
‖G(ξ)‖;

here we take into account the continuity of G(ξ) on D.
It remains to prove the inequality of the opposite type

max
ξ∈D
‖G(ξ)‖ 6 ‖G(·)‖L(H), (25)

as the formula ‖G(ξ)‖2 = λmax
(
Ĝ(ξ)

)
with Ĝ(ξ) := G∗(ξ)G(ξ) is well known. To this

end, we first write down the formula

max
ξ∈D
‖G(ξ)‖ = ‖G(ξ0)‖ = λ1/2

max
(
Ĝ(ξ0)

)
(26)
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for some ξ0 ∈ D. Let w0 ∈ Cn+1 be an eigenvector corresponding to the eigenvalue
λmax

(
Ĝ(ξ0)

)
:

Ĝ(ξ0)w0 = λmax
(
Ĝ(ξ0)

)
w0, w0 6= 0.

We construct the function w(ξ) = χε(ξ)w0, where χε(ξ) is the characteristic function
of the ball Bε = {|ξ − ξ0|} 6 ε with ε > 0. By definition of ‖G(·)‖L(H), we can write

‖G(·)‖2
L(H) >

‖G(χεw0)‖2
H

‖χεw0‖2
H

=
1

|w0|2|Dε|

∫
Dε

|G(ξ)w0|2 dξ,

where Dε = D ∩ Bε and |Dε| is the measure of Dε. Next, we transform and bound from
below the arisen integral as follows:

1
|Dε|

∫
Dε

|G(ξ)w0|2 dξ =
1
|Dε|

∫
Dε

(Ĝ(ξ)w0, w0)Cn+1 dξ

=
1
|Dε|

∫
Dε

(Ĝ(ξ0)w0, w0)Cn+1 dξ +
1
|Dε|

∫
Dε

(
(Ĝ(ξ)− Ĝ(ξ0))w0, w0

)
Cn+1 dξ

> λmax
(
Ĝ(ξ0)

)
|w0|2 −max

ξ∈Dε

‖Ĝ(ξ)− Ĝ(ξ0)‖|w0|2.

Therefore, using the right Formula (26), we derive the lower bound

‖G(·)‖2
L(H) > λmax

(
Ĝ(ξ0)

)
−max

ξ∈Dε

‖Ĝ(ξ)− Ĝ(ξ0)‖

= ‖G(ξ0)‖2 −max
ξ∈Dε

‖Ĝ(ξ)− Ĝ(ξ0)‖.

Due to continuity of G(ξ), the matrix Ĝ(ξ) is continuous on D as well, thus we get

lim
ε→0

max
ξ∈Dε

‖Ĝ(ξ)− Ĝ(ξ0)‖ = 0.

Therefore, ‖G(·)‖2
L(H) > ‖G(ξ0)‖2, and due to the left Formula (26) we get inequal-

ity (25).

The main items of the presented full proof have recently been described briefly in [33]
(Theorem 1). Clearly, neither the specific form of A nor the specific dimension n + 1 of the
involved vectors are essential in it (though the continuity of G(ξ) on D has been exploited).

Now, we present a criterion, sufficient conditions and necessary conditions for the
validity of bound (9). Recall that the quantity b(0) has been introduced in (12), and we set
b(1) := 1 to unify the form of inequalities (12) and (16).

Theorem 2. Let ` = 0, 1.
1. For the validity of bound (9), the matrix inequality

β
(
2αA2

s` +
1

2α B2
s + i[As`, Bs]

)
6 As` ∀s ∈ S (27)

serves as a criterion. Here, [As`, Bs] = As`Bs − Bs As` is the commutator of the matrices As` and
Bs, and the matrix i[As`, Bs] is Hermitian.

2. For the validity of bound (9), the matrix inequality

β
[
2α(1 + ε)A2

s` +
1

2α

(
1 + ε−1)B2

s
]
6 As` ∀s ∈ S, (28)

with any ε > 0, is a sufficient condition.
Consequently, for maxs∈S λmax(As`) 6 λ̄`, the same is valid concerning the inequality

β 6 βsu f (α) :=
1[

(2αλ̄`)1/2 + (2αb(`))−1/2
]2 =

1[
2αλ̄` + 2(λ̄`/b(`))1/2 + (2αb(`))−1

] . (29)



Symmetry 2021, 13, 2184 11 of 17

3. For the validity of bound (9), the inequalities

2βαλ ` 6 1 with λ ` = max
{

r2
i (`M2

i + 1), r2
i (M2

i + αs) + a`r2
max
}

, (30)

β 6 2b(`)α (31)

with rmax := max16k6n rk are necessary conditions.

Proof. 1. Justifications of criterion (27) and the sufficient condition (28) (as well as (29)
for ` = 1) were given in ([29], Theorem 2). Herewith, the derivation of the criterion is
based on Theorem 1 and the equivalence of the properties λmax

(
G∗(ξ)G(ξ)

)
6 1 and

G∗(ξ)G(ξ) 6 In+1.
By virtue of (12) and (16) inequality (28) follows from the inequality

β
[
2α(1 + ε)A2

s` +
1

2αb(`)
(
1 + ε−1)As`

]
6 As` ∀s ∈ S.

The last inequality means the following inequality for the eigenvalues λk(As`) of the
matrix As`:

β
[
2α(1 + ε)λ2

k(As`) +
1

2αb(`)
(
1 + ε−1)λk(As`)

]
6 λk(As`) ∀s ∈ S.

As λk(As`) > 0, it is equivalent to

β
[
2α(1 + ε)max

s∈S
λmax(As`) +

1
2αb(`)

(
1 + ε−1)] 6 1.

For maxs∈S λmax(As`) 6 λ̄`, choosing ε = 1/
[
2α(b(`)λ̄`)

1/2] we get the sufficient
condition (29).

2. For s = 0, we find σ1 = . . . = σn = 1 and

d2 = r2 := r2
1 + . . . + r2

n, ζ = 0, Q = diag{r2
1, . . . , r2

n}, aM = MTQM = r2
i M2

i ,

thus Bs = 0 and

A0` := As`|s=0 =

(
`r2

i M2
i + r2 (`+ 1)MTQ

(`+ 1)QM
(
r2

i M2
i + αsr2)In + a`Q

)
. (32)

Now criterion (27) leads to the necessary condition 2βαA2
0` 6 A0`, i.e., 2βαλmax(A0`) 6 1.

We write down the lower bound by the maximal diagonal element:

max
{

r2
i (`M2

i + 1), r2
i (M2

i + αs) + a`r2
max
}
6 λmax(A0`), (33)

by means of which the latter necessary condition implies (30). Note that, for M = 0, the
matrix A0` is diagonal, and bound (33) turns into the equality max{r2, r2αs + a`r2

max} =
λmax(A0`).

To derive condition (31), we set ξ = 2εξ̃ with ε→ 0 and ξ̃ = (ξ̃1, . . . , ξ̃n) 6= 0 similarly
to the proof of ([36], Theorem 4). Then, we obtain

σk ∼ ε2ξ̃2
k , dk ∼ ε|ηk|, ζ ∼ εη, qk = O(ε4), 1 6 k 6 n,

with ηk := rk ξ̃k, η := (η1, . . . , ηn) and therefore Bs ∼ εB(0) and As` ∼ ε2 A0
` with

B(0) =

(
ηM η

ηT (ηM)In

)
, A0

` =

(
|η|2 (`+ 1)(ηM)η

(`+ 1)(ηM)ηT [
(ηM)2 + αs|η|2

]
In + a`ηTη

)
, (34)

where the asymptotic relations for vectors and matrices are understood componentwise.
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Herewith, A2
s` = O(ε4) and [As`, Bs] = O(ε3), therefore here criterion (27), after

division by ε2 and passing to the limit as ε→ 0, leads to the necessary condition

β

2α
(B(0))2 6 A0

` ∀η ∈ Rn, η 6= 0.

After division of the both sides by |η|2 and the formal replacement of η/|η| by ζ̃, it
takes the form

β

2α
B̃2

s 6 Ã(1)
s` ∀ζ̃ ∈ Rn with |ζ̃| = 1 (35)

with the symmetric matrix

Ã(1)
s` =

(
1 (`+ 1)(ζ̃M)ζ̃

(`+ 1)(ζ̃M)ζ̃T [
(ζ̃M2 + αs

]
In + a` ζ̃T ζ̃

)
.

Recall that the matrices B̃s and Ã(1)
s` for ` = 0 have been introduced in (18) and (19).

In the inequality

Ã(1)
s` − bB̃2

s > 0 ∀ζ̃ ∈ Rn with |ζ̃| = 1,

the constant b = b(`) is maximal. For ` = 0, this has been established in the proof of
Lemma 2, whereas for ` = 1 this is a consequence of the relations

Ã(1)
s1 − B̃2

s =

(
0 0

0 αs In + a0ζ̃T ζ̃

)
> 0

which follow from (13). Therefore, condition (35) implies the necessary condition (31).

Corollary 1. For the validity of bound (9), the following inequality

β 6 βnec(α) := min
{

2b(`)α,
1

2λ `α

}
(36)

is a necessary condition.

Notice that βsu f (α) → 0 and βnec(α) → 0 as α → +0 or α → +∞. The maximum of
the right-hand side of the sufficient condition (29) is attained at α = 1

2 (b
(`)λ̄`)

−1/2 and
equals

max
α>0

βsu f (α) =
1
4

( b(`)

λ̄`

)1/2
.

The maximum of the right-hand side of the necessary condition (36) is attained at
α = 1

2 (b
(`)λ `)

−1/2 and equals

max
α>0

βnec(α) =
( b(`)

λ `

)1/2
.

For comparison, notice that for the validity of bound (9), the matrix inequalities

2βαr2
k A(kk)

` 6 I,
β

2α
(B(k))2 6 A(kk)

` , 1 6 k 6 n,

serve as necessary conditions as well. For ` = 1, this was proved in ([29], Theorem 2) by
reducing to the 1D case and, for ` = 0, this is proved in the same way (recall that the 1D
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case was previously studied in [32]). The form of matrices A(ij)
` , i 6= j, is inessential in

this proof.
Due to Lemma 2, Item 1, for ` = 0, and due to ([32], Theorem 1 and Remark 2), for

` = 1, these inequalities are equivalent to the number inequalities

2βα max
16k6n

r2
kλmax(A(kk)

` ) 6 1, β 6 2b(`)α, (37)

where b(0) = min16k6n bk and b(1) = 1. As max16k6n q(|Mk|) 6 max06m6M q(M), for
` = 0, condition (31) is more sharp than the second condition (37), whereas for ` = 1 they
coincide.

It is not difficult to calculate eigenvalues of the matrix A(kk)
` , in particular, the maximal

one, which is the maximal eigenvalue of its 2× 2 block:

A(kk)
`k :=

(
`M2

k + 1 (`+ 1)Mk

(`+ 1)Mk M2
k + â`

)
with â` = a` + αs =

4
3

αs + α1s + `

(recall that â0 first appeared in Lemma 2), namely,

λmax(A(kk)
1 ) = M2

k +
1
2 (â1 + 1) +

{
4M2

k +
[ 1

2 (â1 − 1)
]2}1/2,

λmax(A(kk)
0 ) = 1

2 (M2
k + â0 + 1) +

{[ 1
2 (M2

k + â0 + 1)
]2 − â0

}1/2, 1 6 k 6 n,

see in [29] and ([32], Theorem 3). For them, the following two-sided bounds hold:

max
{
(|Mk|+ 1)2 + 1

2 (â1 + 1), M2
k + â1

}
6 λmax(A(kk)

1 ) 6 (|Mk|+ 1)2 + â1,

max{M2
k + â0, 1} 6 λmax(A(kk)

0 ) 6 M2
k + â0 + 1 6 2 max{M2

k + â0, 1}.

Furthermore, the following lower bounds hold:

max
16k6n

r2
k(M2

k + â1) 6 λ ` = max
{

r2
i (M2

i + 1), r2
i (M2

i + αs) + a1r2
max
}

for ` = 1,

max
16k6n

r2
k max{M2

k + â0, 1} 6 λ ` = max
{

r2, r2
i (M2

i + αs) + a0r2
max
}

for ` = 0,

therefore, the necessary condition (30) is qualitatively stronger than the first condition (37).
It is not difficult to ensure this property on the quantitative level as well. To this end, it is
required to strengthen bound (33) by means of using the 2× 2 blocks of matrix (32):

λmax(A0`k) 6 λmax(A0`) with A0`k :=

(
`r2

i M2
i + r2 (`+ 1)Mkr2

k

(`+ 1)Mkr2
k r2

i M2
i + αsr2 + a`r2

k

)
,

for 1 6 k 6 n, since then

r2
kλmax(A(kk)

`k ) = λmax(r2
k A(kk)

`k ) 6 λmax(A0`k), 1 6 k 6 n.

This has not been implemented above in order not to complicate bound (30) essentially.
To apply the sufficient condition (29), we present the uniform in s upper bound for

λmax(As`).

Theorem 3. For ` = 0, 1 and n = 2, 3, for the eigenvalues of the matrix As`, see (11), the following
bound holds:

max
s∈S

λmax(As`) 6 λ̄` := r2
i
[
(1 + `ε)cn M2

i + max{1, αs}
]
+ cn(a` + ε−1)r2

max, (38)

where c2 = 1, c3 = 9
8 and also ε = 1 for ` = 0 or ε > 0 is arbitrary for ` = 1.
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In the particular case M = 0, it holds that λ̄` = r2 max{1, αs}+ cna1r2
max.

Proof. The following quadratic form corresponds to the matrix As`:

As`(v0, v) =

= (`aM + d2)v2
0 + 2(`+ 1)v0

[
(ζM)ζv + MTQv

]
+
(
aM + αsd2)|v|2 + a`

[
(ζv)2 + vTQv

]
with any v0 ∈ R and v = (v1, . . . , vn)T ∈ Rn. As Q = QT > 0, we have

|MTQv| 6 (MTQM)1/2(vTQv)1/2,

and therefore the following bound holds:

2v0
[
(ζM)ζv + MTQv

]
6 2|v0|

[
(ζM)2 + MTQM

]1/2[
(ζv)2 + vTQv

]1/2. (39)

As σi + s2
i = 1 and 0 6 σi 6 1, due to the Cauchy inequality we obtain

(ζv)2 + vTQv = disividjsjvj + d2
i σiv2

i = d2
i v2

i + (1− δ(ij))disividjsjvj

6 d2
i v2

i + (n− 1)d2
i s2

i v2
i = r2

i σi
[
n− (n− 1)σi

]
v2

i 6 cnr2
i v2

i 6 cnr2
max|v|2 (40)

using the formula max06σ61 σ[n − (n − 1)σ] = cn with cn introduced in the Lemma,
similarly to the proof of ([29], Theorem 4). Replacing v with M here, we also obtain

aM = (ζM)2 + MTQM 6 cnr2
i M2

i =: āM.

Therefore, using bound (39) we get

As`(v0, v) 6 (`āM + r2)v2
0 + 2(`+ 1)

(
āMcnr2

max
)1/2|v0||v|+κ`|v|2 (41)

with κ` := āM + αsr2 + cna`r2
max, and due to the classical Rayleigh formula for λmax(A),

we derive

max
s∈S

λmax(As`) 6 λmax(C`), C` :=

(
`āM + r2 (`+ 1)

(
āMcnr2

max
)1/2

(`+ 1)
(
āMcnr2

max
)1/2 κ`

)
.

It is not difficult to calculate that

λmax(C`) =
1
2
{
κ` + `āM + r2 +

[(
κ` − (`āM + r2)

]2
+ 4(`+ 1)2 āMcnr2

max
]1/2}

6 1
2
(
κ` + `āM + r2 + |κ` − (`āM + r2)|

)
+ (`+ 1)(āMcn)

1/2rmax

= max{κ`, `āM + r2}+ (`+ 1)(āMcn)
1/2rmax.

Further, for ` = 1, we write down the estimates

max{κ1, āM + r2}+ 2(āMcn)
1/2rmax

6 (1 + ε)āM + max{αsr2 + cna`r2
max, r2}+ ε−1cnr2

max

6 λ̄1 := (1 + ε)āM + max{αs, 1}r2 + cn(a` + ε−1)r2
max ∀ε > 0.

On the other hand, for ` = 0, the right-hand side of inequality (41) can be estimated
as follows:

r2v2
0 + 2

(
āMcnr2

max
)1/2|v0||v|+κ0|v|2 6 (āM + r2)v2

0 + (κ0 + cnr2
max)|v|2

6
(
āM + max

{
r2, αsr2 + cn(a0 + 1)r2

max
})

(v2
0 + |v|2)

6 λ̄0(v2
0 + |v|2) with λ̄0 := āM + max{αs, 1}r2 + cn(a0 + 1)r2

max.
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Consequently, due to the classical Rayleigh formula for λmax(C0), we get λmax(C0) 6
λ̄0.

Of course, on the right-hand side of bound (38), we could strengthen λ̄` to the value
λmax(C`) given in the proof; above this has not been done in order to avoid too cumbersome
result.

In accordance with the derived bounds, the natural choice of ĥ, depending on h and
M only, is as follows:

1
ĥ2

=
M2

1 + 1
h2

1
+ . . . +

M2
n + 1
h2

n
.

Such a formula is suggested for the first time for schemes based on the QGD or QHD
regularizations. For it, the following two-sided bound holds:

1√
n
6

ĥ

min
16k6n

hk√
M2

k+1

6 1

together with the equality

r2
i (M2

i + 1) ≡ ĥ2

h2
i
(M2

i + 1) = 1.

Due to this equality, we can estimate the constant on the right-hand side of bound (38)
as follows:

λ̄` 6 max{(1 + `ε)cn, max{1, αs}+ cn(a` + ε−1)}

and, furthermore,
λ̄` 6 max{1, αs}+ cn(a` + 1).

For ` = 0 and ε = 1 the latter estimate is obvious, whereas for ` = 1 it arises after
taking the minimum in ε > 0 and simplifying the result a little.

Furthermore, for λ ` in the necessary condition (30), the following lower bounds hold:

λ 0 > min
{

1, αs +
1
n a0
}

, λ 1 > 1.

Importantly, the given bounds lead to the sufficient condition and necessary condition
independent of h. Moreover, in the case ` = 1, i.e., for the QGD regularization, they are
also uniform in the Mach number M > 0 that can be valuable for computing super- and
hypersonic gas flows.

In addition, Formula (10) can be rewritten in the form

c∗
ĥ

∆t = c∗
(M2

1 + 1
h2

1
+ . . . +

M2
n + 1
h2

n

)1/2
∆t = β, τ =

α

c∗
(

M2
1+1
h2

1
+ . . . + M2

n+1
h2

n

)1/2 .

For some other schemes, a similar formula for β but without powers 2 and 1/2 is
contained in ([1], Chapter 2).
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