
symmetryS S

Article

Software Defect Prediction Using Wrapper Feature Selection
Based on Dynamic Re-Ranking Strategy

Abdullateef Oluwagbemiga Balogun 1,2,* , Shuib Basri 1, Luiz Fernando Capretz 3 , Saipunidzam Mahamad 1 ,
Abdullahi Abubakar Imam 1, Malek A. Almomani 4, Victor Elijah Adeyemo 5 , Ammar K. Alazzawi 1 ,
Amos Orenyi Bajeh 2 and Ganesh Kumar 1

����������
�������

Citation: Balogun, A.O.; Basri, S.;

Capretz, L.F.; Mahamad, S.;

Imam, A.A.; Almomani, M.A.;

Adeyemo, V.E.; Alazzawi, A.K.;

Bajeh, A.O.; Kumar, G. Software

Defect Prediction Using Wrapper

Feature Selection Based on Dynamic

Re-Ranking Strategy. Symmetry 2021,

13, 2166. https://doi.org/

10.3390/sym13112166

Academic Editor: SeongKi Kim

Received: 12 October 2021

Accepted: 3 November 2021

Published: 12 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer and Information Science, Universiti Teknologi PETRONAS,
Seri Iskandar 32610, Perak, Malaysia; shuib_basri@utp.edu.my (S.B.);
saipunidzam_mahamad@utp.edu.my (S.M.); imam.abubakar@utp.edu.my (A.A.I.);
ammar_16000020@utp.edu.my (A.K.A.); ganesh_17005106@utp.edu.my (G.K.)

2 Department of Computer Science, University of Ilorin, Ilorin 1515, Nigeria; bajehamos@unilorin.edu.ng
3 Department of Electrical and Computer Engineering, Western University, London, ON N6A 5B9, Canada;

lcapretz@uwo.ca
4 Department of Software Engineering, The World Islamic Sciences and Education University,

Amman 11947, Jordan; malek.almomani@wise.edu.jo
5 School of Built Environment, Engineering and Computing, Headingley Campus, Leeds Beckett University,

Leeds LS6 3QS, UK; v.adeyemo@leedsbeckett.ac.uk
* Correspondence: abdullateef_16005851@utp.edu.my or balogun.ao1@unilorin.edu.ng

Abstract: Finding defects early in a software system is a crucial task, as it creates adequate time for
fixing such defects using available resources. Strategies such as symmetric testing have proven useful;
however, its inability in differentiating incorrect implementations from correct ones is a drawback.
Software defect prediction (SDP) is another feasible method that can be used for detecting defects
early. Additionally, high dimensionality, a data quality problem, has a detrimental effect on the
predictive capability of SDP models. Feature selection (FS) has been used as a feasible solution for
solving the high dimensionality issue in SDP. According to current literature, the two basic forms of
FS approaches are filter-based feature selection (FFS) and wrapper-based feature selection (WFS).
Between the two, WFS approaches have been deemed to be superior. However, WFS methods have a
high computational cost due to the unknown number of executions available for feature subset search,
evaluation, and selection. This characteristic of WFS often leads to overfitting of classifier models
due to its easy trapping in local maxima. The trapping of the WFS subset evaluator in local maxima
can be overcome by using an effective search method in the evaluator process. Hence, this study
proposes an enhanced WFS method that dynamically and iteratively selects features. The proposed
enhanced WFS (EWFS) method is based on incrementally selecting features while considering
previously selected features in its search space. The novelty of EWFS is based on the enhancement
of the subset evaluation process of WFS methods by deploying a dynamic re-ranking strategy that
iteratively selects germane features with a low subset evaluation cycle while not compromising the
prediction performance of the ensuing model. For evaluation, EWFS was deployed with Decision
Tree (DT) and Naïve Bayes classifiers on software defect datasets with varying granularities. The
experimental findings revealed that EWFS outperformed existing metaheuristics and sequential
search-based WFS approaches established in this work. Additionally, EWFS selected fewer features
with less computational time as compared with existing metaheuristics and sequential search-based
WFS methods.

Keywords: high dimensionality; re-ranking strategy; software defect prediction; wrapper feature
method; Cuckoo search method

Symmetry 2021, 13, 2166. https://doi.org/10.3390/sym13112166 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-7411-3639
https://orcid.org/0000-0001-6966-2369
https://orcid.org/0000-0002-9300-4363
https://orcid.org/0000-0002-8398-3609
https://orcid.org/0000-0002-0960-1588
https://orcid.org/0000-0002-0098-0948
https://doi.org/10.3390/sym13112166
https://doi.org/10.3390/sym13112166
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13112166
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13112166?type=check_update&version=2

Symmetry 2021, 13, 2166 2 of 23

1. Introduction

The software development lifecycle (SDLC) is a formal framework that has been
specifically planned and built for the production or development of high-quality software
systems. To ensure a timely and reliable software system, the SDLC incorporates gradual
steps such as requirement elicitation, software system review, software system design,
and software system maintenance, which must be carefully followed and applied [1–3].
However, since the SDLC step-by-step operations are done by human professionals, failures
are inevitable. Because of the large scale and dependencies in modules or parts of software
systems today, these errors are common and recurring. If not corrected immediately, these
errors will result in unreliable computing structures and, ultimately, software failure. That
is, the occurrence of errors in information system modules or components will result
in flawed and low-quality software systems. Furthermore, vulnerabilities in software
systems can irritate end-users and customers when the failed software system does not
work as expected after having wasted scarce resources (time and effort) [4–7]. Hence, it is
important to consider early prediction and recognition of software flaws before product
delivery or during the software development processes. Early detection or prediction of
incorrect (defective) modules or components in a software system allows those modules or
components to be automatically corrected and available resources to be used wisely [8,9].

At the unit level, testing critical source codes necessitates selecting test data from
the input domain, running the source codes with the selected test data, and checking the
accuracy of the computed outputs [3]. The symmetric testing strategy is an applicable
example. Symmetric testing tries to test source code that does not require an oracle or any
formal specification. The permutation relations between source code runs are typically
used to automate the testing process. Primarily, symmetric testing uses a combination of au-
tomated test data production and symmetries, checking to identify flaws or vulnerabilities
in a software system [10]. However, one disadvantage of automated testing methodologies
is the difficulty in designing and troubleshooting automated test scripts [11]. Another
viable approach is the use of machine learning (ML) methods to determine the defectivity
of modules or components in a software system. This approach is known as software defect
prediction (SDP). Specifically, SDP is the application of ML methods to software features
identified by software metrics to identify faults in software modules or components [12–15].
Several researchers have suggested and applied both supervised and unsupervised ML
approaches for SDP [16–21].

Nonetheless, the predictive accuracy of SDP models is entirely dependent on the con-
sistency and inherent design of the software datasets used in their creation. The magnitude
and complexities of information systems are closely related to the software metrics used
to characterize the consistency and performance of software systems. To put it another
way, large and scalable software systems necessitate many software metric structures to
deliver functionality that best reflects the output of those software systems [22,23]. In
general, software systems with many features are composed of redundant and insignificant
features, resulting from the accumulation of software metrics. This can be described as a
high dimensionality problem. Several studies have shown that the high dimensionality of
software metrics has a negative effect on the predictive performance of SDP models [24,25].
Researchers agree that the feature selection (FS) approach is an effective method for ad-
dressing high-dimensionality problems [26–29]. For each SDP operation, these FS methods
essentially extract valuable and critical software features from the initial software defect
dataset [27,28,30].

The implementation of FS methods will lead to the formation of a subset of features
that contains germane and crucial features from a set of irrelevant and excessive features,
thus overcoming the high dimensionality of the dataset. The application of FS methods
results in the creation of a subset of features containing germane and critical features
from a collection of trivial and unnecessary features, thus resolving the dataset’s high
dimensionality. In other words, FS methods select important features while retaining
dataset accuracy. Finally, this solves the issue of the high dimensionality of software defect

Symmetry 2021, 13, 2166 3 of 23

datasets. FS methods select prominent features while ensuring the quality of the dataset.
In the end, this solves the high dimensionality problem of software defect datasets [30,31].
There are two types of FS methods: filter feature selection (FFS), and wrapper feature
selection (WFS). FFS approaches test dataset attributes by using the dataset’s underlying
computational or predictive properties. Following that, the top-ranked features are selected
depending on the predefined threshold score. In contrast to FSS, WFS methods test dataset
functionality based on their usefulness in improving the efficiency of underlining classifiers.
In other words, WFS chooses features based on classifier results.

However, there are still notable issues with WFS methods. The process of subsets
generation in WFS methods largely depends on the search strategy used. A key problem
with WFS is how to search into the space of feature subsets. Using an exhaustive search
strategy leads to high time complexity, since all possible feature subsets are considered,
while a heuristic search strategy does not consider all possible feature subsets, being a
stochastic process [28,32–35]. While several WFS methods based on metaheuristic and
sequential searches have been proposed and developed, the local maxima stagnation
problem and high computational costs due to large search space persist [30–33,36]. WFS
approaches have been recognized to have significant computational costs, since the number
of executions necessary for feature subset search, assessment, and selection are unknown
in advance, which often leads to overfitting of prediction models owing to easy entrapment
in local maxima. In the WFS subset evaluator phase, using the right search technique may
resolve its entrapment in local maxima.

In addition, finding a way to reduce the evaluation time of WFS, that is, computational
cost, while maintaining its performance, is imperative. As a result, this study proposes a
novel re-ranking strategy-based WFS method to dynamically and iteratively select features.
The proposed enhanced WFS (EWFS) method is based on incrementally selecting features
while considering previously selected features in its search space.

The main contributions of this study are as follows:

1. An enhanced wrapper feature selection (EWFS) method based on a dynamic re-
ranking strategy was developed.

2. The performance of the proposed EWFS was evaluated and compared with existing
sequential and metaheuristic search-based WFS methods.

3. The effectiveness of EWFS as a solution for high dimensionality in SDP was validated.

The remainder of this paper is structured as follows: Reviews on existing related
works are presented in Section 2. Details on proposed EWFS and experimental methods
are described in Section 3. Experimental results are analyzed and discussed in Section 4,
and the research is concluded with highlights of future work in Section 5.

2. Related Works

High dimensionality is a well-known data quality issue that typically harms the
predictive capabilities of SDP models. In other words, a wide range of technological
features or metrics affects the predictive performance of SDP models. FS methods are used
to resolve high dimensionality as a data preprocessing activity by choosing appropriate
and irredundant features. In this case, SDP is no exception, and many FS approaches have
been used to improve the predictive performance of SDP models.

Wahono, et al. [37] used a metaheuristic-based WFS approach to improve an ensemble-
based SDP model. They integrated Particle Swarm Optimization (PSO) and Genetic
Algorithm as search methods for the wrapper. Their experimental results showed that the
applied WFS method enhanced the predictive performance of the ensemble method.

Specifically, a hybrid metaheuristic search method based on PSO and GA was de-
ployed as a search mechanism in the proposed WFS method. Findings from their study
indicated that the proposed WFS can improve the implemented ensemble method’s pre-
diction accuracy. This observation indicates that metaheuristic search approaches may
be equally as effective as conventional BFS or GSW techniques as search methods in
WFS. However, the performance of metaheuristic search methods depends on their hyper-

Symmetry 2021, 13, 2166 4 of 23

parameterization. That is, getting the right or appropriate parameters for the metaheuristic-
based WFS method is a problem.

Similarly, Song, et al. [38] utilized two WFS approaches in their study: forward-
selection and backwards-elimination. Based on their findings, they concluded that both
types of WFS had a beneficial impact on SDP models, asserting that there is no discernible
distinction between their respective performances. Moreover, their work seems to have
a drawback in that it only uses forward selection and backward removal as methods
of analysis. Other search approaches, such as metaheuristics, may be as efficient as, if
not more efficient than, forward-selection and backwards-elimination in terms of finding
relevant results.

Muthukumaran, et al. [39] performed a detailed empirical study on 16 defect datasets
using 10 diverse FS techniques. In their analysis, WFS founded on greedy stepwise search
(GSS) methods outperformed other FS methods. Rodríguez, et al. [40] studied the impact of
FS methods on prediction models in SDP. Particularly, they compared the effectiveness of
correlation-based FS (CFS), consistency-based FS (CNS), fast correlation-based filter (FCBF),
and WFS methods. The researchers claimed that selecting fewer features from datasets
has greater prediction capabilities than the original dataset, and that the WFS approach
outperforms the other tested FFS approaches. WFS approaches, on the other hand, are
computationally expensive, perhaps as a result of relying on classical exhaustive search
techniques. Moreover, testing the chosen features against a different base classifier does
not ensure optimality.

Cynthia, et al. [41] looked into how FS methods affected SDP prediction models. The
impact of five FS approaches on a set of classifiers was studied. From their results, they
deduced that the prediction output of the selected classifiers was impacted (positively) by
experimented FS methods. Despite this, the scope of their study (the number of FS methods
and datasets used) was limited. Akintola, Balogun, Lafenwa-Balogun and Mojeed [2]
investigated filter-based FS techniques on heterogeneous prediction models, focusing on
principal component analysis (PCA), correlation-based feature selection (CFS), and filtered
subset evaluation classifiers (FSE). They also observed that utilizing FS techniques in SDP
is useful since it improves the prediction accuracy of selected classifiers.

Balogun, Basri, Jadid, Mahamad, Al-momani, Bajeh and Alazzawi [26] studied the
performance of the WFS technique using several feature search methods. The effective-
ness of 13 metaheuristics and 2 sequential search-based WFS systems was specifically
examined. According to their experimental observations, WFS based on metaheuristic
search approaches beat sequential search-based WFS methods in the majority of conducted
experiments. Similarly, Mabayoje, et al. [42] investigated the effect of different WFS meth-
ods on prediction performances of SDP models. According to their findings, using WFS
approaches may improve the accuracy of SDP model predictions. Furthermore, Ding [43],
in their study, applied a GA as a search method in WFS to enhance the prediction per-
formance of an isolation forest classifier (IFC). Findings from their results revealed the
effectiveness of the proposed WFS method on implemented IFC. Yet, the computing time
of metaheuristic search-based WFS techniques, on the other hand, was rather significant.
This can be attributed to the easy trapping of metaheuristic search-based methods in local
maxima and its convergence uncertainty.

Overall, WFS techniques are quite effective in reducing the number of data characteris-
tics while simultaneously improving the prediction model’s performance. Despite this, the
downsides of easily falling into local maxima and large computing costs continue to crop
up. Consequently, this study proposes an EWFS method based on a dynamic re-ranking
strategy to select relevant and irredundant features in SDP. Specifically, an entropy measure
(in this case, Information Gain) is used to rank features, and then the ranked features are
passed through an incremental wrapper method using conditional mutual information
maximization (CMIM) while considering the initially selected features. CMIM balances
and selects features by maximizing their respective mutual information with the class label
while minimizing the co-dependency that may exist between or amongst features using a

Symmetry 2021, 13, 2166 5 of 23

Multi-Objective Cuckoo search method. This process will reduce the number of wrapper
evaluations, as only a few features are considered during each iteration while maintaining
or amplifying the prediction performance of the selected features.

3. Methodology

This section presents and discusses the implemented classification algorithms, the
proposed EWFS approach, experimented datasets, performance assessment measures, and
experimental procedures.

3.1. Classification Algorithm

Decision Tree (DT) and Naive Bayes (NB) algorithms were chosen and used as pre-
diction models in this analysis. The two were chosen because of their high prediction
efficiency and potential to deal with imbalanced datasets [34,44]. In addition, parameter
tuning seldom affects DT and NB. Furthermore, DT and NB have been used extensively
in previous SDP reports. Details on implemented DT and NB classifiers are presented in
Table 1.

Table 1. Selected prediction models.

Prediction Algorithms Parameter Settings

Decision Tree (DT) ConfidenceFactor = 0.25; MinObj = 2

Naïve Bayes (NB) NumDecimalPlaces = 2;
NumAttrEval = Normal Dist.

3.2. Enhanced Wrapper Feature Selection Method (EWFS) Based on Dynamic
Re-Ranking Strategy

The proposed EWFS method is based on incrementally selecting features while con-
sidering previously selected features in its search space. First, an entropy measure is
used to rank features from a dataset, and then the ranked features are passed through
an incremental wrapper method. However, it is only the first B ranked feature selected
by the entropy-based on log2 N that is passed to the incremental wrapper method. The
use of log2 N features is per existing empirical studies in SDP [25,27,28]. Thereafter, the
remaining features in B are re-ranked using conditional mutual information maximization
(CMIM) (see Function 1) while considering the initially selected features. CMIM balances
and selects features by maximizing their respective mutual information with the class label
while minimizing the co-dependency that may exist between or amongst features using
a Multi-Objective Cuckoo search method (see Function 2). In particular, CMIM attempts
to balance the quantity of information provided for each possible attribute Ai and class C,
as well as the possibility that this information has already been captured by some feature
Aj ∈ S. As a result, this technique picks characteristics based on their mutual information
with the class while reducing pair-to-pair dependence. For instance, given subset S and
a subset of features {X1, . . . , Xn}, the merit M(Xi, C

∣∣Xj) , i = 1, . . . , n is computed as

M(Xi, C|S)= minIAj∈ S(Xi, C
∣∣∣Xj) .

Then, the incremental wrapper method is applied to the newly ranked list after having
been initialized by the first selected features from B. This process is repeated until there
are no changes in the selected features. This process will reduce the number of wrapper
evaluations, as only a few features are considered during each iteration while maintaining
or amplifying the prediction performance of the selected features. Algorithm 1 shows the
pseudocode for the proposed EWFS method.

Symmetry 2021, 13, 2166 6 of 23

Algorithm 1 Pseudocode of proposed Enhanced WFS (EWFS)

Input:
D: Dataset
C: Classifier = |NB, DT| // to be used for subset evaluation in WFS
E: Entropy Measure = |IG| // to be used for subset evaluation in WFS
T: Threshold = log2

n

B: Block Size A = {0 ≤ B ≤ T},
N: Number of features
CS: Multi-Objective Cuckoo Search Method
Output:
S[]—Subset of Optimal Features
1. for each f eature Fi in D { do
2. Rank = f eature ED (Fi, Class)
3. R[] = Fi } // assign ranked features in ascending order into R
4. S = { }
5. S.eval = null
6. B = log2 N (R) .// select top-ranked features in R as the first block
7. S = CMIM (D, B, C, S, CS)
8. continue =: True
9. while (continue){ do
10. R′[] = { }
11. for each f eature Fi in R { do
12. Rank = f eature ED (Fi, Class|S)
13. R′[] = Fi } // assign ranked features in ascending order into R
14. R[] = R′[]
15. B = log2 N (R) .// select top-ranked features in R as the first block
16. S′ = CMIM(D, B, C, S, CS)
17. if (S == S′) P∗t [i]← Pi[i] // append optimal features from P′ based
on T
18. continue =: False }
19. else S = S′

20. Return S[]

Function 1 Pseudocode of Conditional Mutual Information Maximization (CMIM) [45]

Input:
N: Number of features
C: Class labels
O: Initial set of features
Output:
Y[]—Subset of Selected Features
1. for each f eature Oi in O { do
2. a

′ ← Oi

3. ps[Oi]← ÎR

(
C : a

′
)

4. m[Oi]← 0
5. for i = 1 to I do
6. y∗ ← 0
7. for each f eature Oi in O { do
8. while (py[Oi] > y∗ && m[Oi] < i− 1) do
9. m[Oi] + +

10. py[Oi]← min
(

py[Oi], ÎRC

(
C : a

′
∣∣∣ S[y[Oi]]

)
)

11. If (py[Oi] > y∗) then
12. y∗ ← py[Oi]
13. Y[I]← a

′

14. Return Y[]

Symmetry 2021, 13, 2166 7 of 23

Function 2 Pseudocode of Multi-Objective Cuckoo Search Method [46]

Initialize objective functions f 1(x), . . . ,f k(x);x = (x1, . . . xd)T

Generate an initial population of n host nests xi and each with K eggs
while (t < MaxGeneration) or (stop criterion)
Get a cuckoo (say I) randomly by Levy flights
Evaluate and check if it is Pareto optimal
Choose a nest among n (say j) randomly
Evaluate K solutions for nest j
If new solutions of nest j dominate those of nest i,
Replace nest i with the new solutions set of nest j
End
Abandon a fraction (po) of worse nests
Keep the best solution s (or nest with non-dominated sets)
Sort and find the current Pareto optimal solutions
End

3.3. Software Defect Datasets

This research employed defect datasets from four software repositories for experi-
mentation. Specifically, twenty-five defect datasets were culled from PROMISE, NASA,
AEEEM, and ReLink repositories. For the NASA repository, the Shepperd, et al. [47] version
of defect datasets were selected in this research. The datasets consist of software properties
produced by static code analysis. Static code analysis is derived from the source code size
and complexity [25,27]. The PROMISE repository contains defect datasets derived from
object-oriented metrics and additional information from software modules. This additional
information is derived from Apache software [24,27,48]. Concerning the ReLink reposi-
tory, datasets from this repository are derived from source code information taken from
version control. These datasets were created by Wu, et al. [48] as linkage data, and these
datasets have been frequently employed in previous SDP experimental studies [49–51].
Lastly, the AEEEM datasets comprise software features derived from software source
code analysis that is dependent on software change metrics, entropy, and software code
churn [25,27,39,48]. The description of these datasets is presented in Table 2.

3.4. Experimental Procedure

In this section, details on the experimental procedure followed in this research as
depicted in Figure 1 are described.

To evaluate the impact and effectiveness of the proposed EWFS on the predictive
performance of SDP models, software defect datasets were used to construct SDP models
based on NB and DT classification algorithms. Various scenarios were tested and investi-
gated with non-biased and consistent performance comparative analyses of the resulting
SDP models.

• Scenario A: In this case, the effectiveness of the proposed EWFS method is tested
and correlated with the metaheuristic search-based WFS methods used in this study.
The essence of this scenario is to evaluate and validate the performance of the EWFS
against BAT, BEE, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and
Cuckoo search-based WFS methods.

• Scenario B: In this scenario, the EWFS method’s performance is evaluated against
sequential search-based WFS approaches as proposed in [52,53]. Findings from this
scenario are used to validate the effectiveness of the proposed EWFS against Best
First Search (BFS), GreeDy Step-Wise Search (GDS), Linear Forward Search (LFS), and
Sequential Forward Search (SFS)-based WFS methods.

Experimental results and findings based on scenarios A and B are used to answer the
following research questions.

• RQ1. How effective is the EWFS method in comparison to existing metaheuristic
search-based WFS methods?

Symmetry 2021, 13, 2166 8 of 23

• RQ2. How effective is the EWFS method in comparison to existing sequential search-
based WFS methods?

Table 2. Description of software defect datasets.

Datasets Number of Attributes Number of Instances

EQ 62 324
JDT 62 997
ML 62 1862
PDE 62 1497
CM1 38 327
KC1 22 1162
KC2 22 522
KC3 40 194

MW1 38 250
PC1 38 679
PC3 38 1077
PC4 38 1287
PC5 39 1711
ANT 22 292

CAMEL 21 339
JEDIT 22 312

REDKITOR 21 176
TOMCAT 22 852

VELOCITY 21 196
XALAN 22 797

SAFE 27 56
ZXING 27 399

APACHE 27 194
ECLIPSE 19 1065

SWT 18 1485

Figure 1. Flowchart for the experimental procedure.

SDP models generated based on the above-listed scenarios are trained and tested
using the 10-fold cross-validation (CV) technique. The CV technique guides against data
variability issues that may occur in defect datasets. Moreover, the CV technique has been
known to produce models with low bias and variance [54–56]. The prediction performances
of generated SDP models are assessed using performance evaluation metrics such as

Symmetry 2021, 13, 2166 9 of 23

accuracy, AUC, and f-measure. The Scott–Knott ESD statistical rank test is also used to
ascertain the significant differences in the prediction performances of the various models
studied. The Waikato Environment for Knowledge Analysis (WEKA) machine learning
library [57], R programming language [58], and Origin Plot are used for the experimentation
on an Intel(R) Core™ machine equipped with i7-6700, running at speed 3.4 GHz CPU with
16 GB RAM.

3.5. Performance Evaluation Assessment

In terms of performance evaluation, SDP models based on the proposed and other
methods were analyzed using accuracy, the area under the curve (AUC), and f-measure
values, metrics most often used in existing SDP studies to assess the performance of SDP
models [9,59].

i. Accuracy is the amount of data accurately estimated out of the actual number of data
and can be represented as shown in Equation (1).

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

ii. F-measure is computed based on the harmonic mean of precision and recall values of
observed data. Equation (2) presents the formula for calculating the f-measure value.

F−measure = 2× Precision × Recall/Precision + Recall (2)

iii. The area under curve (AUC) signifies the trade-off between true positives and false
positives. It demonstrates an aggregate output assessment across all possible classifi-
cation thresholds.

Recall =
(

TP
TP+FN

)
, precision =

(
TP

TP+FP

)
, TP = true positive (represents accurate pre-

diction); FP = false positive (represents inaccurate prediction); TN = true negative (represents
accurate mis-prediction); and FN = false negative (represents inaccurate mis-prediction).

4. Results and Discussion

In this section, findings from experiments concerning the experimental procedure
as outlined in Section 3.4 are reported and discussed. Performance metrics such as accu-
racy, AUC, and f-measure values were used to test the predictive efficiency of NB and
DT classifiers based on proposed EWFS, metaheuristic search-based WFS, and sequen-
tial search-based WFS. Table 3 presents the experimental results of the proposed EWFS
method with NB and DT classifiers on twenty-five defect datasets based on the selected
performance metrics. SDP models using EWFS on selected classifiers (NB and DT) were
generated utilizing the 10-fold CV method and each experimental process was repeated
10 times. As depicted in Table 3, the proposed EWFS with NB and DT classifier had an
average accuracy value of 82.57% and 83.07%, respectively, which shows that models (NB
and DT) based on EWFS have a high chance of correctly predicting the average defects
in SDP, which translates to a good prediction performance of models based on EWFS.
Concerning AUC values, EWFS with NB and DT recorded average AUC values of 0.783
and 0.723, respectively. The high AUC values of models based on EWFS signifies that the
prediction process is effective. In addition, the high average AUC values of EWFS on NB
(0.768) and DT (0.708) further support its high accuracy value such that the developed
models can identify defective and non-defective modules or components. Concerning the
average f-measure value, the proposed EWFS had high average f-measure values on NB
(0.807) and DT (0.820), which means that the models based on EWFS models have good
precision and recall values. That is, the high f-measure of EWFS with NB and DT indicates
that the developed models are precise and robust in identifying defective modules or com-
ponents. Additionally, EWFS selects an average of five features at a relatively low average
computational time of 3.318 s. This can be attributed to the dynamism of the re-ranking

Symmetry 2021, 13, 2166 10 of 23

strategy which selects features iteratively and reduces the sunset search evaluation method
without compromising the performance of the ensuing prediction model.

Table 3. Analysis of experimental performance results of proposed EWFS method.

Datasets

Accuracy Value (%) AUC Value F-Measure Value Selected
Features Time (in Seconds)

NB DT NB DT NB DT NB DT NB DT

EWFS EWFS EWFS EWFS EWFS EWFS EWFS EWFS EWFS EWFS

EQ 74.7 75 0.798 0.782 0.71 0.723 6 2 4.45 1.28
JDT 84.85 84.85 0.848 0.797 0.844 0.819 6 5 5.55 7.73
ML 86.9 86.57 0.743 0.682 0.853 0.835 6 2 4.83 7.39
PDE 86.24 86.64 0.749 0.667 0.832 0.82 7 4 4.94 6.41
CM1 87.16 85.63 0.722 0.509 0.81 0.809 4 7 1.65 7.19
KC1 75.3 75.9 0.683 0.64 0.714 0.713 2 4 3.09 3.99
KC2 83.14 84.48 0.816 0.786 0.821 0.828 5 3 4.14 1.66
KC3 82.47 85.41 0.662 0.601 0.755 0.811 3 3 2.42 1.71
MC2 75.2 72.8 0.674 0.569 0.731 0.655 5 1 6.74 1.3
MW1 90 89.2 0.756 0.536 0.884 0.884 3 3 3.31 1.58
PC1 91.9 91.9 0.826 0.726 0.892 0.889 5 6 4.35 4.75
PC3 84.59 86.54 0.806 0.687 0.934 0.934 3 5 2.77 21.12
PC4 82.67 88.89 0.845 0.878 0.837 0.864 6 3 3.18 2.58
PC5 74.87 76.04 0.711 0.698 0.721 0.726 3 6 3.21 12.51
Safe 76.79 71.43 0.853 0.74 0.752 0.728 3 4 1.7 4.61

Zxing 67.42 68.17 0.592 0.627 0.621 0.622 2 3 3.22 1.76
Apache 74.23 74.74 0.709 0.7 0.742 0.722 4 4 2.09 2.4
Eclipse 100 100 1 1 1 1 1 1 1.86 1.73

SWT 83.64 89.9 0.887 0.915 0.832 0.894 3 6 2.05 8.03
ANT 90.07 88.36 0.768 0.685 0.953 0.863 4 4 2.5 4.79
JEDIT 82.69 80.45 0.793 0.707 0.85 0.792 4 3 2.86 2.44

REDKITOR 90.34 89.77 0.733 0.709 0.962 0.885 5 3 3.24 1.3
TOMCAT 90.96 92.02 0.824 0.706 0.953 0.896 6 4 2.69 4.09

VELOCITY 88.27 85.71 0.796 0.675 0.871 0.823 4 2 2.67 1.67
XALAN 59.97 66.25 0.611 0.688 0.65 0.675 3 4 3.44 6.1
Average 82.57 83.07 0.768 0.708 0.821 0.826 4.120 3.680 3.318 4.805

The experimental results analysis shows the applicability and performance of the
proposed EWFS in selecting optimal features in a relatively low computational time without
limiting its performance. The following sub-sections focus on the performance comparison
of the proposed EWFS against existing metaheuristic search-based WFS and sequential
search-based WFS. The essence of the comparison is to compare the performance of the
proposed EWFS against existing WFS methods with different subset search approaches.

4.1. Comparison of Proposed EWFS Method against Metaheuristic Search-Based WFS Methods

In this sub-section, the performance of the proposed EWFS is compared with meta-
heuristic search-based WFS. Specifically, the prediction performance of NB and DT models
based on the proposed EWFS and WFS based on Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), Bat Search (BAT), Bee Search (BEE), and Cuckoo Search (Cuckoo) are
compared and contrasted.

Figure 2 presents box-plot representations based on average accuracy values of NB and
DT models with EWFS and metaheuristic search-based WFS methods. In terms of average
accuracy values, the proposed EWFS with NB and DT classifiers had superior average
accuracy values when compared with NB and DT models based on the metaheuristic
search-based WFS method. EWFS with NB and DT recorded average accuracy values
of 82.57% and 83.07%, respectively, compared with the metaheuristic search-based WFS
method based on GA (NB: 81.57%, DT: 81.58%), PSO (NB: 81.7%, DT: 81.55%), BAT (NB:
81.4%, DT: 81.64%), BEE (NB: 81.79%, DT: 81.9%), and Cuckoo (NB: 81.66%, DT: 81.84%).
Specifically, NB and DT models based on EWFS outperformed models based on GA by

Symmetry 2021, 13, 2166 11 of 23

+1.23% and +1.83%, PSO by +1.06% and +1.49%, BAT by +1.44% and +1.75%, BEE by
+0.95% and +1.43%, and Cuckoo by +1.11% and +1.5%, respectively, based on average
accuracy values. Thus, these analyses indicate the performance and superiority of EWFS
over metaheuristic search-based WFS (GA, PSO, BAT, BEE, and Cuckoo) methods based
on average accuracy values.

Figure 2. Box-plot representations of the performance (accuracy) of EWFS and metaheuristic search-based WFS methods on
NB and DT classifiers. (a) Average accuracy values of NB (b) Average accuracy values of DT.

Figure 3 presents the box-plot representations based on average AUC values of NB
and DT models with EWFS and metaheuristic search-based WFS methods. NB and DT
classifiers with the EWFS method recorded higher average AUC values when compared
against models based on metaheuristic search-based WFS methods. EWFS with NB and
DT recorded average AUC values of 0.768 and 0.708, respectively, compared with the meta-
heuristic search-based WFS method based on GA (NB: 0.739, DT: 0.683), PSO (NB: 0.722,
DT: 0.683), BAT (NB: 0.722, DT: 0.68), BEE (NB: 0.728, DT: 0.683), and Cuckoo (NB: 0.725,
DT: 0.686). In particular, NB and DT models based on EWFS outperformed models based
on GA by +3.92% and +3.66%, PSO by +6.37% and +3.66%, BAT by +6.37% and +4.11%,
BEE by +5.49% and +3.66%, and Cuckoo by +5.93% and +3.21%, respectively, based on
average AUC values.

Figure 3. Box-plot representations of the performance (AUC) of EWFS and metaheuristic search-based WFS methods on NB
and DT classifiers. (a) Average AUC values of NB (b) Average AUC values of DT.

Additionally, Figure 4 shows box-plot representations based on average f-measure
values of NB and DT models with EWFS and metaheuristic search-based WFS methods.
Prediction models (NB and DT) with EWFS methods recorded average f-measure values of
0.821 and 0.826, respectively, which are superior to the average f-measure values of models

Symmetry 2021, 13, 2166 12 of 23

based on metaheuristic search-based WFS methods such as GA (NB: 0.791, DT: 0.796), PSO
(NB: 0.794, DT: 0.799), BAT (NB: 0.797, DT: 0.796), BEE (NB: 0.793, DT: 0.8), and Cuckoo
(NB: 0.793, DT: 0.798).

Figure 4. Box-plot representations of the performance (f-measure) of EWFS and metaheuristic search-based WFS methods
on NB and DT classifiers. (a) Average F-measure values of NB (b) Average F-measure values of DT.

Specifically, NB and DT models based on EWFS outperformed models based on GA by
+3.79% and +3.77%, PSO by +3.4% and +3.38%, BAT by +3.01% and +3.77%, BEE by +3.53%
and +3.25%, and Cuckoo by +3.53% and +3.51%, based on average f-measure values. Hence,
NB and DT models with EWFS recorded superior f-measure values when compared against
models with metaheuristic search-based WFS methods. Table 4 presents and compares the
number of selected features by the proposed EWFS and metaheuristic search-based WFS
methods. It can be observed that the proposed method selected, on average, fewer features
compared with the average number of features selected by the metaheuristics search-based
WFS methods. Additionally, as shown in Table 5, the average computational time (in
seconds) taken by the proposed EWFS in selecting features was less than the computational
time of other methods. Specifically, EWFS took an average computational time of 3.32 and
4.8 s for selecting on average five and four features (approximately) for NB and DT models
respectively. As compared with GA (NB: (7.2 features, 3.65 s), DT (9.2 features, 22.15 s)),
PSO (NB: (6.44 features, 2.85 s), DT: (5.84 features, 18.55 s)), BAT (NB: (6.44 features, 5.84 s),
DT: (7.36 features, 29.74 s)), BEE (NB: (5.44 features, 6.37 s), DT: (5.64 features, 31.92 s)),
and Cuckoo (NB: (6.2 features, 2.76 s), DT: (7.44 features, 12.1 s)). This analysis indicates
that the proposed EWFS method can select better and important features in a reasonable
computational time. The relatively low computational time for EFWS may be attributed
to the re-ranking strategy deployed at the subset evaluation stage for dynamically and
iteratively selecting relevant features, thereby reducing the wrapper evaluation cycle and
subsequently the computational time.

Based on the aforementioned experimental results and analyses, it is evident that the
proposed EWFS method outperformed existing metaheuristic search-based WFS methods.
For further analyses, the performance of EWFS and the existing metaheuristic search-based
WFS methods were subjected to the Scott–Knott ESD statistical rank test to determine the
statistically significant differences in their respective performances.

Figure 5 presents the Scott–Knott ESD statistical rank test results of the proposed
EWFS method and the metaheuristics search-based WFS methods we evaluated on NB
and DT, based on average accuracy values. From Figure 5, it can be observed that average
accuracy performances of NB and DT based on the EWFS method, although superior, are
not statistically superior to models based on metaheuristics search-based WFS methods.
That is, although models based on EWFS had superior average accuracy values, there is
not much difference between the average accuracy values of the proposed method when
compared to existing metaheuristic search-based WFS methods. The average accuracy

Symmetry 2021, 13, 2166 13 of 23

value may not be sufficient for the evaluation. Consequently, other metrics such as AUC
and f-measure can be used for performance evaluations.

Table 4. Comparison of average selected features by the EWFS and metaheuristic-search-based WFS methods.

Dataset NB+GA NB+PSO NB+BAT NB+BEE NB+Cuckoo NB+EWFS DT+GA DT+PSO DT+BAT DT+BEE DT+Cuckoo DT+EWFS

EQ 22 15 26 16 23 6 23 9 7 14 21 2
JDT 20 18 16 8 15 6 10 5 7 8 11 5
ML 8 12 5 3 3 6 9 6 9 4 10 2
PDE 16 8 7 6 8 7 11 2 12 9 11 4
CM1 3 3 3 1 1 4 5 9 6 2 3 7
KC1 3 4 3 3 2 2 5 4 5 2 2 4
KC2 4 3 2 2 3 5 4 4 5 5 10 3
KC3 4 3 6 3 3 3 15 9 17 3 10 3
MC2 15 8 16 5 16 5 5 1 3 4 2 1
MW1 5 5 4 4 5 3 14 12 12 7 11 3
PC1 6 1 4 3 1 5 17 6 8 6 5 6
PC3 4 3 3 5 1 3 2 1 4 4 6 5
PC4 10 6 7 7 7 6 12 6 5 6 14 3
PC5 10 19 9 18 21 3 10 14 10 6 7 6
Safe 5 4 4 2 2 3 9 5 4 5 6 4

Zxing 5 6 10 9 2 2 14 13 14 14 12 3
Apache 11 11 8 9 9 4 7 4 6 4 6 4
Eclipse 1 1 1 1 2 1 6 2 4 1 4 1

SWT 2 2 2 2 2 3 8 10 10 11 9 6
ANT 3 3 2 5 4 4 8 6 10 6 6 4
JEDIT 7 7 7 5 6 4 11 4 6 6 6 3

REDKITOR 5 1 4 2 2 5 4 2 4 2 2 3
TOMCAT 1 3 1 1 1 6 7 1 1 1 1 4
VELOCITY 6 6 6 7 7 4 2 2 2 2 2 2
XALAN 4 9 10 9 9 3 12 9 13 9 9 4
Average 7.20 6.44 6.64 5.44 6.20 4.12 9.20 5.84 7.36 5.64 7.44 3.68

Table 5. Comparison of average computational time (in seconds) by the EWFS and metaheuristic-search-based
WFS methods.

Dataset NB+GA NB+PSO NB+BAT NB+BEE NB+Cuckoo NB+EWFS DT+GA DT+PSO DT+BAT DT+BEE DT+Cuckoo DT+EWFS

EQ 6.67 5.42 9.99 11.37 5.3 4.45 32.6 17.96 19.23 48.7 17.61 1.28
JDT 12.1 8.44 24.95 23.48 12.91 5.55 46.62 23.88 37.06 80.56 19.2 7.73
ML 8.9 5.41 12.78 15.59 5.38 4.83 72.02 81.06 91.86 100.73 43.11 7.39
PDE 6.49 6.17 10.46 15.6 5 4.94 81.58 42.83 87.2 124.7 46.77 6.41
CM1 2.22 1.41 3.5 2.52 1.37 1.65 5.73 6.14 8 8.21 3 7.19
KC1 2.16 1.96 3.12 2.72 1.16 3.09 12.76 12.01 20.05 13.44 5.62 3.99
KC2 1.61 1.29 2.46 2.04 1.21 4.14 4.54 7.83 16.73 17.1 4.77 1.66
KC3 1.62 1.26 2.58 2.63 1.62 2.42 7.92 5.28 11.18 12.06 5.09 1.71
MC2 1.77 1.48 2.91 2.58 2.09 6.74 2.82 2.02 3.7 4.22 1.83 1.3
MW1 1.69 1.47 2.36 2.97 1.84 3.31 9.9 10.9 12.43 14.53 6.81 1.58
PC1 3.92 2.31 5.34 5.43 1.86 4.35 18.28 9.81 17.09 26.26 7.43 4.75
PC3 6.45 3.45 6.53 10.16 2.6 2.77 16.92 12.7 17.31 36.03 9.29 21.12
PC4 10.7 7.51 16.27 14.61 5.29 3.18 51.15 30.99 62.89 64.38 23.36 2.58
PC5 7.45 9.12 11.25 22.16 5.51 3.21 80.27 110.31 112.94 93.08 31.67 12.51
Safe 0.97 0.56 0.96 0.83 0.72 1.7 1.4 1.33 2.13 2.49 1.08 4.61

Zxing 1.81 2.14 4.33 3.5 1 3.22 11.94 12.05 19.09 21.01 6.47 1.76
Apache 1.56 2.31 2.46 2.3 1.1 2.09 3.63 2.78 4.83 4.68 2.54 2.4
Eclipse 3.15 1.58 3.98 3.53 1.96 1.86 1.76 5.25 6.08 4.31 2.83 1.73

SWT 2.08 1.01 4.63 2.21 1.51 2.05 31.77 22.8 77.04 52.72 14.59 8.03
ANT 1.1 0.74 1.8 2.06 0.95 2.5 4.9 5.06 9.69 7.74 5.09 4.79
JEDIT 1.66 1.43 2.57 1.98 1.3 2.86 4.86 6.01 7.87 7.87 7.84 2.44

REDKITOR 0.84 0.8 1.81 1.26 1.19 3.24 1.75 1.77 9 2.56 8.5 1.3
TOMCAT 1.71 1.12 2.03 2.11 1.53 2.69 10.45 5.26 7.53 6.64 5.2 4.09
VELOCITY 1.14 0.83 2.51 1.76 1.9 2.67 2.71 2.2 4.98 3.15 2.4 1.67
XALAN 1.57 1.95 4.49 3.73 2.71 3.44 35.56 25.45 77.52 40.76 20.5 6.1
Average 3.65 2.85 5.84 6.37 2.76 3.32 22.15 18.55 29.74 31.92 12.10 4.80

Symmetry 2021, 13, 2166 14 of 23

Figure 5. Scott–Knott ESD statistical rank test representations of the performance (accuracy) of EWFS and metaheuristic
search-based WFS methods on NB and DT classifiers. (a) Average accuracy values of NB (b) Average accuracy values of DT.

Figure 6 shows the Scott–Knott ESD statistical rank test results of the proposed EWFS
method and the metaheuristics search-based WFS methods we studied on NB and DT
based on average AUC values. Significant statistical differences in the average AUC values
of NB and DT models based on EWFS methods when compared with metaheuristic search-
based WFS were observed. Specifically, NB and DT models based on EWFS outrank and
outperform the metaheuristic search-based WFS methods examined. This analysis showed
that the high accuracy and low AUC values of models based on metaheuristic search-based
WFS might be a result of overfitting, which is one of the inherent problems in metaheuristic
search-based WFS, as they can easily get trapped in the local minima. Additionally, similar
findings are observed in the case average f-measure value. As indicated in Figure 7, NB and
DT models based on the EWFS method outranked and outperformed metaheuristic search-
based WFS, as evidenced by a significant statistical difference in the average f-measure
values in favor of NB and DT models based on EWFS. Table 6 presents a summary of the
Scott–Knott ESD statistical rank test results of NB and DT models based on EWFS and
metaheuristic-search-based WFS (GA, PSO, BEE, BAT, and Cuckoo) methods.

Figure 6. Scott–Knott ESD statistical rank test representations of the performance (AUC) of EWFS and metaheuristic
search-based WFS methods on NB and DT classifiers. (a) Average AUC values of NB (b) Average AUC values of DT.

From Table 6, it can be deduced that NB and DT models based on EWFS are superior
and rank best when compared against models based on metaheuristic search-based WFS
methods. This indicates that there are significant statistical differences in the average
performance of models based on EWFS when compared with existing metaheuristic search-
based WFS methods, in favor of EWFS methods, based on average accuracy, average AUC,
and average f-measure values. This further confirms and supports the superiority of EFWS
over existing metaheuristic search-based WFS methods such as GA, PSO, BEE, BAT, and

Symmetry 2021, 13, 2166 15 of 23

Cuckoo searches for the feature selection process in SDP. However, for generalizability, the
performance of EWFS is compared against other forms of WFS which are the sequential
search-based WFS in the succeeding subsection.

Figure 7. Scott–Knott ESD statistical rank test representations of the performance (f-measure) of EWFS and metaheuristic
search-based WFS methods on NB and DT classifiers. (a) Average F-measure values of NB (b) Average F-measure values
of DT.

Table 6. Analysis of Scott–Knott ESD statistical rank test results of EWFS and metaheuristic search-based WFS methods.

Statistical Ranking Based on Average
Accuracy

Statistical Ranking Based on Average
AUC

Statistical Ranking Based on Average
F-Measure

NB DT NB DT NB DT

Rank FS
Methods Rank FS

Methods Rank FS
Methods Rank FS

Methods Rank FS
Methods Rank FS

Methods

1

EWFS, BEE,
PSO,

Cuckoo,
BAT, GA

1

EWFS, BEE,
PSO,

Cuckoo,
BAT, GA

1 EWFS 1 EWFS 1

EWFS, BAT,
PSO, BEE,
Cuckoo,

GA

1 EWFS

2
GA, BEE,
Cuckoo,

PSO, BAT
2

Cuckoo,
GA, POS,
BEE, BAT

2
BEE, PSO,
Cuckoo,
GA, BAT

4.2. Comparison of Proposed EWFS Method against Sequential Search-Based WFS Methods

In this sub-section, the performance of the proposed EWFS is compared with sequen-
tial search-based WFS methods. Specifically, the prediction performance of NB and DT
models based on the proposed EWFS and WFS are compared using Best First Search (BFS),
Greedy Step-wise Search (GDS), Linear Forward Search (LFS), and Sequential Forward
Search (SFS).

Figure 8 shows the box-plot representation of average accuracy values of NB and DT
models with EWFS and sequential search-based WFS methods. Like the metaheuristic
search-based WFS, concerning average accuracy values, the proposed EWFS with NB
and DT classifier had superior average accuracy values when compared with NB and
DT models based on the sequential search-based WFS method. EWFS with NB and DT
recorded an average accuracy value of 82.57% and 83.07%, respectively, compared with
metaheuristic search-based WFS methods based on BFS (NB: 81.9%, DT: 81.81%), GDS
(NB: 81.93%, DT: 81.88%), LFS (NB: 81.91%, DT: 81.69%), and SFS (NB: 81.88%, DT: 81.8).
Specifically, NB and DT models based on EWFS outperformed models based on BFS
by +0.8% and +1.54%, GDS by +0.78% and +1.45%, LFS by +0.8% and +1.69%, and SFS
by +0.84% and +1.55%, respectively, based on average accuracy values. Based on these
analyses, the performance and superiority of EWFS over sequential search-based WFS
(BFS, GDS, LFS, and SFS) methods based on average accuracy values can be observed.

Symmetry 2021, 13, 2166 16 of 23

Figure 8. Box-plot representations of the performance (accuracy) of EWFS and sequential search-based WFS methods on
NB and DT classifiers. (a) Average accuracy values of NB (b) Average accuracy values of DT.

Additionally, Figure 9 showcases box-plot representations based on average AUC
values of NB and DT models with EWFS and sequential search-based WFS methods. NB
and DT classifiers with the EWFS method recorded higher average AUC values when
compared against models based on sequential search-based WFS methods. EWFS with
NB and DT recorded an average AUC value of 0.768 and 0.708, respectively, compared
with metaheuristic search-based WFS methods based on BFS (NB: 0.732, DT: 0.679), GDS
(NB: 0.725, DT: 0.668), LFS (NB: 0.731, DT: 0.683), and SFS (NB: 0.733, DT: 0.676). That is,
NB and DT models based on EWFS outperformed models based on BFS by +4.92% and
+4.66%, GDS by +5.93% and +5.98%, LFS by +5.06% and +3.66%, and SFS by +4.77% and
+4.73%, respectively, based on average AUC values.

Figure 9. Box-plot representations of the performance (AUC) of EWFS and sequential search-based WFS methods on NB
and DT classifiers. (a) Average AUC values of NB (b) Average AUC values of DT.

Furthermore, Figure 10 presents the box-plot representation based on average f-
measure values of NB and DT models with EWFS and sequential search-based WFS
methods. Prediction models (NB and DT) with EWFS methods recorded average f-measure
values of 0.821 and 0.826, respectively, which are superior to average f-measure values of
models based on sequential search-based WFS methods such as BFS (NB: 0.804, DT: 0.808),
GDS (NB: 0.801, DT: 0.81), LFS (NB: 0.801, DT: 0.8), and SFS (NB: 0.8, DT: 0.806). Specifically,
NB and DT models based on EWFS outperformed models based on LFS by +2.11% and
+2.23%, GDS by +2.5% and +1.97%, LFS by +2.5% and +3.25%, and SFS by +2.63% and
+2.48%, respectively, based on average f-measure values. Consequently, NB and DT models
with EWFS recorded superior f-measure values when compared against models with
sequential search-based WFS methods.

Symmetry 2021, 13, 2166 17 of 23

Figure 10. Box-plot representations of the performance (f-measure) of EWFS and sequential search-based WFS methods on
NB and DT classifiers. (a) Average F-measure values of NB (b) Average F-measure values of DT.

In terms of the number of selected features, Table 7 presents and compares the number
of selected features by the proposed EWFS and sequential search-based WFS methods. It
can be observed that the proposed EWFS selected, on average, a relatively fewer number of
features compared with the average number of features selected by the sequential search-
based WFS methods studied. In some cases, the sequential search-based WFS (GDS and
SFS) selected fewer features than the proposed EWFS. However, EWFS still outperformed
these sequential search-based WFS methods (GDS and SFS). Perhaps, the features selected
by these methods have low prediction performance, unlike the EWFS, which dynamically
selects features based on their relevance while maintaining or enhancing its performance.

Table 7. Comparison of average selected features by the EWFS and sequential search-based WFS methods.

Dataset NB+GA NB+PSO NB+BAT NB+BEE NB+Cuckoo NB+EWFS DT+GA DT+PSO DT+BAT DT+BEE DT+Cuckoo DT+EWFS

EQ 10 8 10 5 6 8 7 8 4 2 10 8
JDT 15 4 8 5 6 12 3 7 1 5 15 4
ML 2 2 2 1 6 11 4 12 1 2 2 2
PDE 4 4 4 5 7 3 3 3 6 4 4 4
CM1 5 1 4 1 4 1 1 1 1 7 5 1
KC1 4 2 4 3 2 3 3 3 2 4 4 2
KC2 3 3 3 1 5 4 2 4 2 3 3 3
KC3 3 3 3 2 3 2 2 2 1 3 3 3
MC2 8 3 8 3 5 1 1 4 1 1 8 3
MW1 5 1 3 3 3 7 1 5 2 3 5 1
PC1 7 1 1 1 5 8 5 5 1 6 7 1
PC3 1 1 1 1 3 5 1 1 1 5 1 1
PC4 6 6 6 6 6 5 4 5 2 3 6 6
PC5 6 3 6 4 3 9 4 9 2 6 6 3
Safe 3 3 3 1 3 7 1 7 1 4 3 3

Zxing 2 2 2 1 2 2 1 9 10 3 2 2
Apache 11 2 11 4 4 4 2 2 1 4 11 2
Eclipse 1 1 1 1 1 1 1 1 1 1 1 1

SWT 2 2 2 2 3 12 8 12 9 6 2 2
ANT 2 2 2 1 4 1 1 1 1 4 2 2
JEDIT 3 3 3 2 4 5 5 5 2 3 3 3

REDKITOR 1 1 1 1 5 1 1 1 4 3 1 1
TOMCAT 1 1 1 1 6 1 1 1 1 4 1 1
VELOCITY 3 3 3 2 4 4 4 3 3 2 3 3
XALAN 8 6 8 4 3 7 7 7 14 4 8 6
Average 4.64 2.72 4.00 2.44 4.12 4.96 2.92 4.72 2.96 3.68 4.64 2.72

In addition, as presented in Table 8, the average computational time (in seconds) taken
by the proposed EWFS in selecting features is relatively less than the computational time of
the sequential search-based WFS methods studied. On NB models, EWFS had a relatively
low computational time, although other sequential search-based WFS methods recorded

Symmetry 2021, 13, 2166 18 of 23

a shorter time. However, in the case of DT models, EWFS had low computational time,
which was better than that of the sequential search-based WFS methods, which had high
computational times. The high computational time of the sequential search-based WFS
methods we tested can be attributed to their respective stagnation and trapping in local op-
tima during the subset evaluation phase. Specifically, EWFS took an average computational
time of 3.32 and 4.8 s for selecting an average of five and four features (approximately)
for NB and DT models, respectively, as compared with BFS (NB: (4.64 features, 3.24 s),
DT: (4.96 features, 21.13 s)), GDS (NB: (2.72 features, 0.7 s), DT: (2.92 features, 2.8 s)), LFS
(NB: (4 features, 2.17 s), DT: (4.72 features, 13.76 s)), and SFS (NB: (2.44 features, 1.39 s), DT:
(2.96 features, 9.13 s)). The preceding findings demonstrate that the proposed EWFS can
select better and more important features in a reasonable computational time. The relatively
low computational time for EFWS may be attributed to the re-ranking strategy deployed
at the subset evaluation stage for dynamically and iteratively selecting relevant features,
thereby reducing the wrapper evaluation cycle, and subsequently computational time.

Table 8. Comparison of average computational time (in seconds) by the EWFS and sequential search-based WFS methods.

Dataset NB+GA NB+PSO NB+BAT NB+BEE NB+Cuckoo NB+EWFS DT+GA DT+PSO DT+BAT DT+BEE DT+Cuckoo DT+EWFS

EQ 6.96 2.81 5.43 2.63 4.45 46.97 6.27 11.86 5.9 1.28 6.96 2.81
JDT 29.07 2.07 8.74 4.46 5.55 133.64 4.06 32.47 14.76 7.73 29.07 2.07
ML 5.38 1.63 4.76 3.05 4.83 141.98 11.51 115.55 41.16 7.39 5.38 1.63
PDE 6.77 3.07 5.96 6.5 4.94 14.55 4.92 11.85 46.09 6.41 6.77 3.07
CM1 2.26 0.1 2.19 0.68 1.65 1.01 0.1 0.69 1.46 7.19 2.26 0.1
KC1 1.63 0.32 1.19 1.27 3.09 6.33 2 6.35 6.12 3.99 1.63 0.32
KC2 0.84 0.34 0.93 0.31 4.14 2.86 0.55 3 1.82 1.66 0.84 0.34
KC3 1.02 0.43 1.11 0.8 2.42 1.36 0.43 1.39 1.41 1.71 1.02 0.43
MC2 1.54 0.3 1.54 0.67 6.74 0.91 0.25 2 1.19 1.3 1.54 0.3
MW1 1.44 0.08 1.16 0.85 3.31 5.44 0.1 2.6 1 1.58 1.44 0.08
PC1 5.19 0.32 1.47 0.68 4.35 15.65 3.41 8.49 2.51 4.75 5.19 0.32
PC3 0.95 0.16 1.16 0.47 2.77 13.92 0.18 1.67 0.57 21.12 0.95 0.16
PC4 4.94 2.61 5.08 4.29 3.18 34.44 6.3 29.35 12.57 2.58 4.94 2.61
PC5 4.85 1.02 5.05 3.33 3.21 63.38 9.98 62.79 45.29 12.51 4.85 1.02
Safe 0.33 0.14 0.35 0.24 1.7 1.36 0.14 1.53 0.52 4.61 0.33 0.14

Zxing 0.51 0.22 0.58 0.42 3.22 1.91 0.1 9.57 4.56 1.76 0.51 0.22
Apache 1.51 0.18 1.55 0.72 2.09 1.9 0.37 1.1 0.85 2.4 1.51 0.18
Eclipse 0.92 0.21 0.95 0.3 1.86 0.53 0.21 0.67 0.47 1.73 0.92 0.21

SWT 0.96 0.35 1.04 0.73 2.05 22.92 10.91 23.46 15.65 8.03 0.96 0.35
ANT 0.52 0.2 0.56 0.32 2.5 0.89 0.21 0.93 0.53 4.79 0.52 0.2
JEDIT 0.58 0.26 0.63 0.43 2.86 2.23 1.31 2.32 1.56 2.44 0.58 0.26

REDKITOR 0.29 0.07 0.32 0.18 3.24 0.26 0.09 0.29 0.55 1.3 0.29 0.07
TOMCAT 0.45 0.08 0.53 0.23 2.69 1.14 0.26 1.26 1.61 4.09 0.45 0.08
VELOCITY 0.46 0.18 0.44 0.38 2.67 1.29 0.6 1.09 0.9 1.67 0.46 0.18
XALAN 1.52 0.72 1.57 0.87 3.44 11.39 5.86 11.65 19.08 6.1 1.52 0.72
Average 3.24 0.71 2.17 1.39 3.32 21.13 2.80 13.76 9.13 4.80 3.24 0.71

Based on the aforementioned experimental results and findings, it is evident that
the proposed EWFS method is superior to existing sequential search-based WFS methods.
Nonetheless, further statistical analysis was conducted on the performance of EWFS
and the experimented sequential search-based WFS methods using the Scott–Knott ESD
statistical rank test to determine the statistically significant differences in their respective
performances based on average accuracy, average AUC, and average f-measure values.

Figure 11 shows the Scott–Knott ESD statistical rank test results of the proposed
EWFS method and sequential search-based WFS methods on NB and DT based on average
accuracy values. As shown in Figure 11, like the metaheuristic search-based WFS case, it
can be observed that average accuracy performances of NB and DT based on the EWFS
method, although superior, showed no statistically significant differences compared to NB
and DT models based on sequential search-based WFS methods. That is, although models
based on EWFS had superior average accuracy values, there is not much difference between
the average accuracy values of EWFS and existing sequential search-based WFS methods.

Symmetry 2021, 13, 2166 19 of 23

Figure 11. Scott–Knott ESD statistical rank test representations of the performance (accuracy) of EWFS and sequential
search-based WFS methods on NB and DT classifiers. (a) Average accuracy values of NB (b) Average accuracy values of DT.

Figure 12 illustrates the Scott–Knott ESD statistical rank test results of the proposed
EWFS method and sequential search-based WFS methods based on average AUC values.
There existed significant statistical differences in the average AUC values of NB and
DT models based on EWFS methods when compared to sequential search-based WFS.
Specifically, NB and DT models based on EWFS outranked and outperformed the sequential
search-based WFS methods we tested. These findings suggest that the high accuracy
and low AUC values of models based on sequential search-based WFS might be due to
overfitting, which is one of the prominent problems in sequential search-based WFS.

Figure 12. Scott–Knott ESD statistical rank test representations of the performance (AUC) of EWFS and sequential search-
based WFS methods on NB and DT classifiers. (a) Average AUC values of NB (b) Average AUC values of DT.

Furthermore, similar findings were observed in the case of the average f-measure
value, as presented in Figure 13. NB and DT models based on the EWFS method outranked
and outperformed sequential search-based WFS, as evidenced by significant statistical
differences in the average f-measure values in favor of NB and DT models based on EWFS.
In summary, Table 9 tabulates the Scott–Knott ESD statistical rank test results of EWFS and
sequential search-based WFS (BFS, GDS, LFS, and SFS) methods.

As depicted in Table 9, it can be deduced that NB and DT models based on EWFS are
superior and rank best when compared against models based on sequential search-based
WFS methods. These findings indicate that there are significant statistical differences in
the average performance of NB and DT models based on EWFS when compared with
existing sequential search-based WFS methods based on average accuracy, average AUC,
and average f-measure values. This further confirms and supports the superiority of the
proposed EWFS over existing sequential search-based WFS methods such as BFS, GDS,
LFS, and SFS in terms of selecting relevant features at a reasonable computational time in
SDP processes.

Symmetry 2021, 13, 2166 20 of 23

Figure 13. Scott–Knott ESD statistical rank test representations of the performance (f-measure) of EWFS and sequential
search-based WFS methods on NB and DT classifiers. (a) Average F-measure values of NB (b) Average F-measure values
of DT.

Table 9. Analysis of Scott–Knott ESD statistical rank test results of EWFS and sequential search-based WFS methods.

Statistical Ranking Based on Average
Accuracy

Statistical Ranking Based on Average
AUC

Statistical Ranking Based on Average
F-Measure

NB DT NB DT NB DT

Rank FS
Methods Rank FS

Methods Rank FS
Methods Rank FS

Methods Rank FS
Methods Rank FS

Methods

1
EWFS,

GDS, LFS,
BFS, SFS

1
EWFS,

GDS, BFS,
SFS, LFS

1 EWFS 1 EWFS 1 EWFS, 1 EWFS

2 SFS, BFS,
LFS, GDS 2 LFS, BFS,

SFS, BFS
BFS, GDS,
LFS, SFS 2 GDS, BFS,

SFS, LFS

In summary, the proposed EWFS approach outperformed current metaheuristic and
sequential search-based WFS approaches on the analyzed defect datasets in terms of
positive effects on the predictive performance of SDP models (NB and DT). These findings,
therefore, answer RQ1 and RQ2 (see Section 3.4), as presented in Table 10. As a result,
we recommend enhancing the subset evaluation process of WFS methods by deploying
a dynamic re-ranking strategy that iteratively selects germane features with a low subset
evaluation cycle, while not compromising the prediction performance of the ensuing model.

Table 10. Answers to research questions.

Research Questions Answers

RQ1. How effective is the EWFS method in
comparison to existing metaheuristic

search-based WFS methods?

The proposed EWFS method outperforms
metaheuristics search-based WFS with

significant differences.

RQ2. How effective is the EWFS method in
comparison to existing sequential search-based

WFS methods?

The proposed EWFS outperforms sequential
search-based WFS with significant differences.

5. Conclusions and Future Work

This study focuses on resolving the high dimensionality problem in software defect
prediction. Specifically, this study addresses the local minima stagnation and computational
cost problems of the WFS method by proposing a novel EWFS method. The proposed
EWFS method dynamically and iteratively selects optimal features with good prediction
performance values for SDP. The proposed EWFS, in particular, was able to produce a
more robust and complete subset of features that best represented the datasets we studied.

Symmetry 2021, 13, 2166 21 of 23

Thus, these results justify the use of a dynamic re-ranking mechanism in the WFS process
to improve the subset evaluation time and prediction efficacies of SDP models.

In a broader context, the observations and conclusions of this study can be used by
experts and researchers in SDP and other relevant research domains who utilize WFS
methods to solve the high dimensionality problem.

As a drawback of this research, there is a need to explore and broaden the application
of this research later on by analyzing other WFS system re-ranking configurations with
more prediction models. Furthermore, the effects of using ensemble-based WFS as opposed
to a single classifier in WFS is worth exploring.

Author Contributions: Conceptualization, A.O.B. (Abdullateef Oluwagbemiga Balogun), S.B., L.F.C.
and V.E.A.; Data curation, A.O.B. (Abdullateef Oluwagbemiga Balogun), A.A.I., A.K.A., A.O.B.
(Amos Orenyi Bajeh) and G.K.; Formal analysis, A.O.B. (Abdullateef Oluwagbemiga Balogun), A.A.I.,
M.A.A. and A.K.A.; Funding acquisition, S.M.; Investigation, A.O.B. (Abdullateef Oluwagbemiga
Balogun), A.K.A. and G.K.; Methodology, A.O.B. (Abdullateef Oluwagbemiga Balogun) and V.E.A.;
Project administration, S.B., L.F.C. and G.K.; Resources, A.O.B. (Abdullateef Oluwagbemiga Balogun),
S.M., M.A.A., A.O.B. (Amos Orenyi Bajeh) and G.K.; Software, A.O.B. (Abdullateef Oluwagbemiga
Balogun), S.M. and A.O.B. (Amos Orenyi Bajeh); Supervision, S.B., L.F.C., S.M. and A.O.B. (Amos
Orenyi Bajeh); Validation, L.F.C., A.A.I., M.A.A. and V.E.A.; Visualization, A.A.I. and M.A.A.;
Writing—original draft, A.O.B. (Abdullateef Oluwagbemiga Balogun); Writing—review & editing,
Abdullateef Oluwagbemiga Balogun, L.F.C. and V.E.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by Yayasan Universiti Teknologi PETRONAS (YUTP) Research
Grant Scheme under grant numbers (YUTP-FRG/015LC0240) and (YUTP-FRG/015LC0297).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Afzal, W.; Torkar, R. Towards benchmarking feature subset selection methods for software fault prediction. In Computational

Intelligence and Quantitative Software Engineering; Springer: New York, NY, USA, 2016; pp. 33–58.
2. Akintola, A.G.; Balogun, A.; Lafenwa-Balogun, F.B.; Mojeed, H.A. Comparative Analysis of Selected Heterogeneous Classifiers

for Software Defects Prediction Using Filter-Based Feature Selection Methods. FUOYE J. Eng. Technol. 2018, 3, 134–137. [CrossRef]
3. Alazzawi, A.K.; Rais, H.M.; Basri, S.; Alsariera, Y.A.; Capretz, L.F.; Balogun, A.O.; Imam, A.A. HABCSm: A Hamming Based

t-way Strategy based on Hybrid. Artificial Bee Colony for Variable Strength Test. Sets Generation. Int. J. Comput. Commun.
Control. 2021, 16, 1–18. [CrossRef]

4. Bajeh, A.O.; Oluwatosin, O.J.; Basri, S.H.U.I.B.; Akintola, A.G.; Balogun, A.O. Object-oriented measures as testability indicators:
An empirical study. J. Eng. Sci. Technol. 2020, 15, 1092–1108.

5. Balogun, A.; Bajeh, A.; Mojeed, H.; Akintola, A. Software defect prediction: A multi-criteria decision-making approach. Niger. J.
Technol. Res. 2020, 15, 35–42. [CrossRef]

6. Ameen, A.O.; Mojeed, H.A.; Bolariwa, A.T.; Balogun, A.O.; Mabayoje, M.A.; Usman-Hamzah, F.E.; Abdulraheem, M. Application
of shuffled frog-leaping algorithm for optimal software project scheduling and staffing. In International Conference of Reliable
Information and Communication Technology; Springer: New York, NY, USA, 2020.

7. Balogun, A.O.; Lafenwa-Balogun, F.B.; Mojeed, H.A.; Usman-Hamza, F.E.; Bajeh, A.O.; Adeyemo, V.E.; Adewole, K.S.; Jimoh, R.G.
Data sampling-based feature selection framework for software defect prediction. In The International Conference on Emerging
Applications and Technologies for Industry 4.0; Springer: Cham, Switzerland, 2020.

8. Chauhan, A.; Kumar, R. Bug severity classification using semantic feature with convolution neural network. In Computing in
Engineering and Technology; Springer: Cham, Switzerland, 2020; pp. 327–335.

9. Jimoh, R.G.; Balogun, A.O.; Bajeh, A.O.; Ajayi, S. A PROMETHEE based evaluation of software defect predictors. J. Comput. Sci.
Its Appl. 2018, 25, 106–119.

10. Gotlieb, A. Exploiting symmetries to test programs. In Proceedings of the 14th International Symposium on Software Reliability
Engineering, Denver, CO, USA, 17–21 November 2003.

11. Alazzawi, A.K.; Rais, H.M.; Basri, S.; Alsariera, Y.A.; Balogun, A.O.; Imam, A.A. A hybrid artificial bee colony strategy for t-way
test set generation with constraints support. J. Phys. Conf. Ser. 2020, 1529, 042068. [CrossRef]

http://doi.org/10.46792/fuoyejet.v3i1.178
http://doi.org/10.15837/ijccc.2021.5.4308
http://doi.org/10.4314/njtr.v15i1.7
http://doi.org/10.1088/1742-6596/1529/4/042068

Symmetry 2021, 13, 2166 22 of 23

12. Catal, C.; Diri, B. Investigating the effect of dataset size, metrics sets, and feature selection techniques on software fault prediction
problem. Inf. Sci. 2009, 179, 1040–1058. [CrossRef]

13. Li, L.; Leung, H. Mining static code metrics for a robust prediction of software defect-proneness. In Proceedings of the 2011
International Symposium on Empirical Software Engineering and Measurement, Banff, AB, Canada, 22–23 September 2011.

14. Mabayoje, M.A.; Balogun, A.O.; Bajeh, A.O.; Musa, B.A. Software defect prediction: Effect of feature selection and ensemble
methods. FUW Trends Sci. Technol. J. 2018, 3, 518–522.

15. Aleem, S.; Capretz, L.F.; Ahmed, F. Comparative performance analysis of machine learning techniques for software bug
detection. In Proceedings of the 4th International Conference on Software Engineering and Applications, Vienna, Austria,
19–20 December 2015.

16. Lessmann, S.; Baesens, B.; Mues, C.; Pietsch, S. Benchmarking Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings. IEEE Trans. Softw. Eng. 2008, 34, 485–496. [CrossRef]

17. Li, N.; Shepperd, M.; Guo, Y. A systematic review of unsupervised learning techniques for software defect prediction. Inf. Softw.
Technol. 2020, 122, 106287. [CrossRef]

18. Okutan, A.; Yıldız, O.T. Software defect prediction using Bayesian networks. Empir. Softw. Eng. 2012, 19, 154–181. [CrossRef]
19. Rodriguez, D.; Herraiz, I.; Harrison, R.; Dolado, J.; Riquelme, J.C. Preliminary comparison of techniques for dealing with

imbalance in software defect prediction. In Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering, London, UK, 13–14 May 2014.

20. Usman-Hamza, F.; Atte, A.; Balogun, A.; Mojeed, H.; Bajeh, A.; Adeyemo, V. Impact of feature selection on classification via
clustering techniques in software defect prediction. J. Comput. Sci. Appl. 2020, 26, 73–88. [CrossRef]

21. Balogun, A.; Oladele, R.; Mojeed, H.; Amin-Balogun, B.; Adeyemo, V.E.; Aro, T.O. Performance analysis of selected clustering
techniques for software defects prediction. Afr. J. Comput. ICT 2019, 12, 30–42.

22. Rodriguez, D.; Ruiz, R.; Cuadrado-Gallego, J.; Aguilar-Ruiz, J.; Garre, M. Attribute selection in software engineering datasets
for detecting fault modules. In Proceedings of the 33rd EUROMICRO Conference on Software Engineering and Advanced
Applications (EUROMICRO 2007), Lubeck, Germany, 28–31 August 2007.

23. Wang, H.; Khoshgoftaar, T.M.; van Hulse, J.; Gao, K. Metric selection for software defect prediction. Int. J. Softw. Eng. Knowl. Eng.
2011, 21, 237–257. [CrossRef]

24. Rathore, S.S.; Gupta, A. A comparative study of feature-ranking and feature-subset selection techniques for improved fault
prediction. In Proceedings of the 7th India Software Engineering Conference, Chennai, India, 19–21 February 2014.

25. Xu, Z.; Liu, J.; Yang, Z.; An, G.; Jia, X. The impact of feature selection on defect prediction performance: An empirical comparison.
In Proceedings of the IEEE 27th International Symposium on Software Reliability Engineering (ISSRE), Ottawa, ON, Canada,
23–27 October 2016.

26. Balogun, A.O.; Basri, S.; Jadid, S.A.; Mahamad, S.; Al-momani, M.A.; Bajeh, A.O.; Alazzawi, A.K. Search-based wrapper
feature selection methods in software defect prediction: An empirical analysis. In Computer Science On-line Conference; Springer:
Cham, Switzerland, 2020.

27. Ghotra, B.; McIntosh, S.; Hassan, A.E. A large-scale study of the impact of feature selection techniques on defect classification
models. In Proceedings of the IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), Buenos Aires,
Argentina, 20–28 May 2017.

28. Balogun, A.O.; Basri, S.; Mahamad, S.; Abdulkadir, S.J.; Almomani, M.A.; Adeyemo, V.E.; Al-Tashi, Q.; Mojeed, H.A.; Imam, A.A.;
Bajeh, A.O. Impact of Feature Selection Methods on the Predictive Performance of Software Defect Prediction Models: An
Extensive Empirical Study. Symmetry 2020, 12, 1147. [CrossRef]

29. Balogun, A.O.; Basri, S.; Capretz, L.F.; Mahamad, S.; Imam, A.A.; Almomani, M.A.; Adeyemo, V.E.; Kumar, G. An adaptive rank
aggregation-based ensemble multi-filter feature selection method in software defect prediction. Entropy 2021, 23, 1274. [CrossRef]

30. Balogun, A.O.; Basri, S.; Abdulkadir, S.J.; Hashim, A.S. Performance Analysis of Feature Selection Methods in Software Defect
Prediction: A Search Method Approach. Appl. Sci. 2019, 9, 2764. [CrossRef]

31. Anbu, M.; Mala, G.S.A. Feature selection using firefly algorithm in software defect prediction. Clust. Comput. 2017, 22,
10925–10934. [CrossRef]

32. Kakkar, M.; Jain, S. Feature selection in software defect prediction: A comparative study. In Proceedings of the 6th International
Conference on Cloud System and Big Data Engineering, Noida, India, 14–15 January 2016.

33. Al-Tashi, Q.; Kadir, S.J.A.; Rais, H.M.; Mirjalili, S.; Alhussian, H. Binary Optimization Using Hybrid Grey Wolf Optimization for
Feature Selection. IEEE Access 2019, 7, 39496–39508. [CrossRef]

34. Al-Tashi, Q.; Rais, H.; Jadid, S. Feature selection method based on grey wolf optimization for coronary artery disease classification.
In Proceedings of the 3rd International Conference of Reliable Information and Communication Technology (IRICT), Kuala
Lumpur, Malaysia, 23–24 July 2018.

35. Balogun, A.O.; Basri, S.; Abdulkadir, S.J.; Sobri, A.H. A hybrid multi-filter wrapper feature selection method for software defect
predictors. Int. J. Supply Chain. Manag. 2019, 8, 916–922.

36. Gao, K.; Khoshgoftaar, T.M.; Wang, H.; Seliya, N. Choosing software metrics for defect prediction: An investigation on feature
selection techniques. Software Pr. Exp. 2011, 41, 579–606. [CrossRef]

37. Wahono, R.S.; Suryana, N.; Ahmad, S. Metaheuristic optimization based feature selection for software defect prediction. J. Softw.
2014, 9, 1324–1333. [CrossRef]

http://doi.org/10.1016/j.ins.2008.12.001
http://doi.org/10.1109/TSE.2008.35
http://doi.org/10.1016/j.infsof.2020.106287
http://doi.org/10.1007/s10664-012-9218-8
http://doi.org/10.4314/jcsia.v26i1.8
http://doi.org/10.1142/S0218194011005256
http://doi.org/10.3390/sym12071147
http://doi.org/10.3390/e23101274
http://doi.org/10.3390/app9132764
http://doi.org/10.1007/s10586-017-1235-3
http://doi.org/10.1109/ACCESS.2019.2906757
http://doi.org/10.1002/spe.1043
http://doi.org/10.4304/jsw.9.5.1324-1333

Symmetry 2021, 13, 2166 23 of 23

38. Song, Q.; Jia, Z.; Shepperd, M.; Ying, S.; Liu, J. A General Software Defect-Proneness Prediction Framework. IEEE Trans. Softw.
Eng. 2010, 37, 356–370. [CrossRef]

39. Muthukumaran, K.; Rallapalli, A.; Murthy, N.B. Impact of feature selection techniques on bug prediction models. In Proceedings
of the 8th India Software Engineering Conference, Bangalore, India, 18–20 February 2015.

40. Rodríguez, D.; Ruiz, R.; Cuadrado-Gallego, J.; Aguilar-Ruiz, J. Detecting fault modules applying feature selection to classifiers. In
Proceedings of the IEEE International Conference on Information Reuse and Integration, Las Vegas, NV, USA, 13–15 August 2007.

41. Cynthia, S.T.; Rasul, M.G.; Ripon, S. Effect of feature selection in software fault detection. In International Conference on Multi-
disciplinary Trends in Artificial Intelligence; Springer: Cham, Switzerland, 2019.

42. Ekundayo, A. Wrapper feature selection based heterogeneous classifiers for software defect prediction. Adeleke Univ. J. Eng.
Technol. 2019, 2, 1–11.

43. Ding, Z. Isolation forest wrapper approach for feature selection in software defect prediction. In IOP Conference Series: Materials
Science and Engineering; IOP Publishing: Bristol, UK, 2021.

44. Yu, Q.; Jiang, S.; Zhang, Y. The performance stability of defect prediction models with class imbalance: An empirical study. IEICE
Trans. Inf. Syst. 2017, 100, 265–272. [CrossRef]

45. Bermejo, P.; Gámez, J.A.; Puerta, J.M. Adapting the CMIM algorithm for multilabel feature selection. A comparison with existing
methods. Expert Syst. 2017, 35, e12230. [CrossRef]

46. Yang, X.-S.; Deb, S. Multiobjective cuckoo search for design optimization. Comput. Oper. Res. 2013, 40, 1616–1624. [CrossRef]
47. Shepperd, M.; Song, Q.; Sun, Z.; Mair, C. Data Quality: Some Comments on the NASA Software Defect Datasets. IEEE Trans.

Softw. Eng. 2013, 39, 1208–1215. [CrossRef]
48. Kondo, M.; Bezemer, C.-P.; Kamei, Y.; Hassan, A.E.; Mizuno, O. The impact of feature reduction techniques on defect prediction

models. Empir. Softw. Eng. 2019, 24, 1925–1963. [CrossRef]
49. Wu, R.; Zhang, H.; Kim, S.; Cheung, S.C. Relink: Recovering links between bugs and changes. In Proceedings of the 19th

ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, Szeged, Hungary, 5–9
September 2011.

50. Song, Q.; Guo, Y.; Shepperd, M. A Comprehensive Investigation of the Role of Imbalanced Learning for Software Defect Prediction.
IEEE Trans. Softw. Eng. 2018, 45, 1253–1269. [CrossRef]

51. Nam, J.; Fu, W.; Kim, S.; Menzies, T.; Tan, L. Heterogeneous defect prediction. IEEE Trans. Softw. Eng. 2017, 44, 874–896.
[CrossRef]

52. Tantithamthavorn, C.; McIntosh, S.; Hassan, A.E.; Matsumoto, K. The Impact of Automated Parameter Optimization on Defect
Prediction Models. IEEE Trans. Softw. Eng. 2018, 45, 683–711. [CrossRef]

53. Balogun, A.O.; Basri, S.; Abdulkadir, S.J.; Mahamad, S.; Al-momamni, M.A.; Imam, A.A.; Kumar, G.M. Rank aggregation based
multi-filter feature selection method for software defect prediction. In Proceedings of the International Conference on Advances
in Cyber Security, Penang, Malaysia, 30 July–1 August 2020.

54. Balogun, A.O.; Basri, S.; Mahamad, S.; Abdulkadir, S.J.; Capretz, L.F.; Imam, A.A.; Almomani, M.A.; Adeyemo, V.E.; Kumar, G.
Empirical analysis of rank aggregation-based multi-filter feature selection methods in software defect prediction. Electronics 2021,
10, 179. [CrossRef]

55. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013;
Volume 112.

56. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin, Germany, 2013; Volume 26.
57. Balogun, A.O.; Adewole, K.S.; Raheem, M.O.; Akande, O.N.; Usman-Hamza, F.E.; Mabayoje, M.A.; Akintola, A.G.;

Asaju-Gbolagade, A.W.; Jimoh, M.K.; Jimoh, R.G.; et al. Improving the phishing website detection using empirical analysis of
Function Tree and its variants. Heliyon 2021, 7, e07437. [CrossRef]

58. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM
SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]

59. Crawley, M.J. The R Book; John Wiley & Sons: Hoboken, NJ, USA, 2012.

http://doi.org/10.1109/tse.2010.90
http://doi.org/10.1587/transinf.2016EDP7204
http://doi.org/10.1111/exsy.12230
http://doi.org/10.1016/j.cor.2011.09.026
http://doi.org/10.1109/TSE.2013.11
http://doi.org/10.1007/s10664-018-9679-5
http://doi.org/10.1109/TSE.2018.2836442
http://doi.org/10.1109/TSE.2017.2720603
http://doi.org/10.1109/TSE.2018.2794977
http://doi.org/10.3390/electronics10020179
http://doi.org/10.1016/j.heliyon.2021.e07437
http://doi.org/10.1145/1656274.1656278

	Introduction
	Related Works
	Methodology
	Classification Algorithm
	Enhanced Wrapper Feature Selection Method (EWFS) Based on Dynamic Re-Ranking Strategy
	Software Defect Datasets
	Experimental Procedure
	Performance Evaluation Assessment

	Results and Discussion
	Comparison of Proposed EWFS Method against Metaheuristic Search-Based WFS Methods
	Comparison of Proposed EWFS Method against Sequential Search-Based WFS Methods

	Conclusions and Future Work
	References

