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Abstract: Power domain non-orthogonal multiple access (PD-NOMA) is one of the most perspective
multiplexing technologies that allows improving the capacity of actual networks. Unlike orthogonal
multiple access (OMA), the PD-NOMA non-orthogonally schedules multiple users in the power
domain in the same orthogonal time-spectrum resource segment. Thus, a non-orthogonal multiplexed
signal is a combination of several user signals (usually, modulation and coding schemes (MCS) based
on quadrature amplitude modulation) with different power weights. The symbol error rate (SER)
and bit error rate (BER) performances are one of the main quality characteristics of any commutation
channel. The issue is that a known analytical expression for BER and SER calculation for conventional
OMA cannot be applied in terms of the PD-NOMA. In the following work, we have derived the SER
and BER analytical expressions for gray-coded square quadrature amplitude modulation (QAM)
user channels that are transmitted in two-user PD-NOMA channel under additive white Gaussian
noise (AWGN). Through the simulation, the verification of the provided expressions is presented for
four multiplexing configurations with various user power weights and QAM order combinations.

Keywords: NOMA; OMA; PD-NOMA; QAM; BER; SER

1. Introduction

The power domain non-orthogonal multiple access (PD-NOMA) is a perspective
technology for user multiplexing in future networks [1–7]. It is based on non-orthogonal
channel multiplexing by user signal superposition in the power domain at the same time-
frequency resource segment (for example, a subcarrier in orthogonal frequency division
multiplexing). Thus, there is a controlled co-channel interference which is cancelled at the
receiver side by the successive interference cancellation (SIC) method [8] in the SIC detector.
In comparison to orthogonal multiple access (OMA), such as orthogonal frequency division
multiple access (OFDMA), the PD-NOMA exploits the channel state differences between
users. Thus, the available power of a resource segment is divided between multiplexed
users, according to the required quality of the service and channel state information of
each user. Therefore, resource allocation occurs in power, frequency, and time domains
simultaneously. Due to the non-orthogonal power allocation techniques, the spectral and
energy efficiency advantages of multiuser communication systems can be obtained.

There is a significant number of PD-NOMA articles; most of them are aimed at
the design of new analytical resource scheduling [9–15] and research of system gains in
comparison to OMA systems [16,17]. Mostly, these results are based on the Shannon–
Hartley theorem [18] and do not take into account bit error rate (BER) and symbol error
rate (SER) performances, which are different from OMA systems. However, it is necessary
to consider BER and SER to obtain a more reliable result because the BER and SER are the
main performance parameters of real signals in an additive white Gaussian noise (AWGN)
channel. Usually, the signal construction based on quadrature amplitude modulation
(QAM) is used in both OMA and PD-NOMA. However, there is an issue that the analytical
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expressions for calculating the error probability are not equal. Those expressions are given
in [19] for OMA. For the PD-NOMA, this issue has not been well-studied, and only a few
works provide a solution for these problems.

The SER and BER analysis using SIC detectors has received attention in recent works.
In [20], the BER is explored for PD-NOMA under Rayleigh fading channel where exact and
approximate expressions are obtained. However, the presented expressions are applicable
only for two-user PD-NOMA with binary phase shift keying (BPSK) and quadrature phase
shift keying (QPSK). The BER expressions over Nakagami-m channel for two and three-user
scenarios using QPSK are derived in [21]. In [22], the authors present BER expressions for
PD-NOMA systems while using only QPSK in both user channels. Work [23] also considers
the study of SER and BER in PD-NOMA systems, and the authors present a closed-form
expression within the conditions of Gray coding and QPSK. In [24], the researchers study
the analytical SER in visible light communication systems with the NOMA; however,
QAM is not considered. SER expression using QAM is presented in [25] which has non-
ideal accuracy for the second non-orthogonal layer. As can be seen from the discussion
above, there is no paper that considers the exact SER expressions of toe first and second
non-orthogonal user in PD-NOMA with square QAM.

The purpose of our work is to derive the analytical SER and BER expressions for a
two-layer PD-NOMA system under the conditions of square QAM multiplexing. First of all,
we describe a two-layer PD-NOMA system model and known expressions for conventional
square QAM in the OMA system. Secondly, we give SER and BER expressions for a QAM
signal in the first and second non-orthogonal layers consistently. Finally, the simulation
and analytical calculation results of BER and SER are compared.

2. System Model

Our work considers only the two-layer PD-NOMA multiplexing in the downlink. The
PD-NOMA system model includes a one-base station (BS), two user’s equipments (UE1
and UE2), and AWGN channel propagation between them. The downlink group signal s at
BS output is given by the superposition of two user signals according to

s =
√

p1x +
√

p2y, (1)

where x and y are the modulation symbols, and p1, p2 are the power weights of UE1 and
UE2. The total power of the output signal is Es = p1 + p2. We use a typical scenario for the
PD-NOMA that UE1 and UE2 are located far from the BS and near it. In this scenario, the
channel state of UE1 is worse compared to UE2; therefore, p1 > p2. We assume that users
utilize signal constructions based on Gray coding and square QAM with the modulation
orders Q1 Q2 ∈ 2R (R = 2t (bits/symbol), t ∈ N). The possible states of x and y are given
by the alphabets A1 (x ∈ A1) and A2 (y ∈ A2). Figure 1 offers an example of two 16-QAM
(Q1, Q2 = 16) user constellations and the superposed PD-NOMA constellation. The mini-
mum Euclidean distance Dk between the nearest points on the power-weighted constella-
tion of UEk is given by

Dk = 2
√

pk
Mk

, (2)

where Mk= 2/3× (Qk − 1) is the normalization factor.
The group signal is transmitted to users via the AWGN channel with a complex

additive noise w ∼ CN(0, N0) that follows the Gaussian probability distribution function
with zero mean and noise power spectral density N0. The PD-NOMA symbol received by
the one of the users is given by

s =
√

p1x +
√

p2y + w. (3)
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Figure 1. Signal constellations.

To decode a PD-NOMA symbol, the successive interference cancellation (SIC) method
is employed. Thus, the symbol x is decoded from the first non-orthogonal layer by the
minimum Euclidean distance criterion from s and by treating y as interference. It can be
expressed as

x̂ = arg min
x∈A1
|s−√p1x|2. (4)

Then, the symbol y is decoded from the second non-orthogonal layer using SIC by
following these three steps. Firstly, the symbol x is decoded by treating its own symbol
y as the interference. Secondly, the decoded symbol x̂ is cancelled from s as follows:
s′ = s−√p1 x̂. Finally, its own symbol y is decoded from s′ by

ŷ = arg min
y∈A2
|s′ − √p2y|2. (5)

3. BER and SER for Conventional Square QAM Signal

First, we shortly describe a conventional square QAM decoding process and show
the known analytical SER and BER over the Es/N0 expressions for it. Let the received
square Q-QAM symbol be u = u′+ w, where u′ is the transmitted symbol using alphabet
A (u′ ∈ A), and w is the AWGN realization. The receiver decodes u by the minimum
Euclidean distance criterion as follows

û = arg min
u′∈A
|u− u′|2.

There are Q possible states on the Q-QAM constellation, which can be divided into
three groups: corner, inside, and outside symbols. It is observed on the 16-QAM constella-
tion of UE1 shown in Figure 1. Thus, let ρ(ucor), ρ(uins), ρ(uout) be occurrence probabilities,
and ρ(u|ucor), ρ(u|uins), ρ(u|uout) be error decoding probabilities of the corner, inside, and
outside symbols. Next, we obtain the symbol error probability ρ(u) as follows

ρ(u) = ρ(ucor)ρ(u|ucor) + ρ(uins)ρ(u|uins) + ρ(uout)ρ(u|uout), (6)

where occurrence probabilities are known from the ratio number of each type of symbol
position to the constellation order Q and given by

ρ(ucor) =
4
Q

ρ(uins) =
Q−4(

√
Q− 1)

Q

ρ(uout) =
4(
√

Q− 2)
Q

(7)
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The corner, inside, and outside symbols have different correct decoding areas. The
calculation of the decoding probabilities is based on obtaining the detecting areas and
the probability u that falls outside due to AWGN with the Es/N0 ratio. The derivation
of the analytical expressions for the error decoding probabilities of the square QAM is
well-described in [26]. We introduce these expressions below

ρ(u|ucor) = er f c
(√

Es
MN0

)
− 1

4 er f c2
(√

Es
MN0

)
ρ(u|uins) = 2er f c

(√
Es

MN0

)
− er f c2

(√
Es

MN0

)
ρ(u|uout) =

3
2 er f c

(√
Es

MN0

)
− 1

2 er f c2
(√

Es
MN0

) (8)

where er f c(x) represents the complementary error function, which is defined as

er f c(x) = 2√
π

∞∫
x

e−x2
dx.

The common probability of error decoding ρ(u) in the AWGN channel with the Es/N0
ratio is obtained by putting (7) and (8) into (6) and simplifying the resulting expression
as follows

ρ(u) = 2
(

1− 1√
Q

)
er f c

(√
Es

MN0

)
−
(

1− 2√
Q

+
1
Q

)
er f c2

(√
Es

MN0

)
, (9)

Finally, the BER value ρb(u) can be obtained under the same conditions by averaging
the result of (9) with help of log2Q by

ρb(u) ≈
ρ(u)

log2Q
. (10)

4. BER and SER for PD-NOMA Square QAM Signal

Now, let us derive analytical expressions for SER and BER against the Es/N0 ratio in
the PD-NOMA scenario. We consider that the first layer receives the largest power portion
p1 of the total transmit power Es, and the second layer receives the remainder p2 = Es − p1.
According to the SIC, the first layer is decoded in the first instance, considering that
the second layer and AWGN are interferences. The second layer is decoded under the
conditions of AWGN only after the perfect interference cancellation of the first layer;
however, the incorrect cancellation causes the additional signal corruption. Further, we
describe the signal decoding process in both PD-NOMA layers and get BER and SER
expressions for them.

4.1. First Layer Decoding

The received PD-NOMA symbol s is expressed in (3), where the information symbol x
of UE1 is transmitted in the first non-orthogonal layer. Denote ρ(x) and ρb(x) as symbol
and bit error probabilities while decoding x from s. Similar to conventional QAM, we
define three types of the received symbols: the corner symbol scor contains corner symbol
xcor; sins contains xcor, and sout contains xout. The occurrence probabilities are the same as
for QAM, and they can be obtained from (7) by

ρ(scor) =
4

Q1

ρ(sins) =
Q1−4(

√
Q1−1)

Q1

ρ(sout) =
4(
√

Q1− 2)
Q1

(11)

Then, ρ(x) is obtained by using the same ideas as in (6) and given by

ρ(x) = ρ(scor)ρ(xcor|scor) + ρ(sins)ρ(xins|sins) + ρ(sout)ρ(xout|sout), (12)
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where ρ(xcor|scor), ρ(xins|sins), ρ(xout|sout) are the probabilities of the error decoding xcor,
xins, xout from scor, sins, sout. In turn, the probability of the error decoding for ∀x ∈ A1
is given by ρ(x|s) = 1− ρ(x|s), where ρ(x|s) is the probability of the correct decoding x.
Further, the symbol x is decoded correctly when the real and imaginary components of s
fall into its own decoding area. Let <s and =s be the real and imaginary components of s,
then ρ(x|s) is calculated by

ρ(x|s) = ρ(<s ∈ Ox)× ρ(=s ∈ Ox), (13)

where Ox is the decoding area of x.
The symbol x can be simultaneously combined with ∀y ∈ A2; thus, we denote x + yn

as the combination presented in one region (real or imaginary) for n = 1 . . .
√

Q2. For
example, x + yn in the real region are shown on the group constellation in Figure 1. Further,
we focus on the real region and <s. Thus, let us note the equation for ρ(<s ∈ Ox) as follows

ρ(<s ∈ Ox) =

√
Q2

∑
n=1

ρ(x + yn)× ρ
(
<x+yn ∈ Ox

)
,

where ρ(x + yn) is the occurrence probability of the x + yn combination, and ρ(<x+yn ∈ Ox) is
the probability that the real component of x + yn falls into Ox. The occurrence probabilities
are equal for all the combinations; therefore, ρ(x + yn) = 1/

√
Q2. Then, the expression for

ρ(<s ∈ Ox) can be rewritten by

ρ(<s ∈ Ox) =
1√
Q2

√
Q2

∑
n=1

ρ
(
<x+yn ∈ Ox

)
. (14)

Now, we need to obtain the probabilities for the corner, inside, and outside symbols, us-
ing (14), and put them in (12). Firstly, we obtain the expression for finding the correct decod-
ing probability for xins. The decoding area Oins is limited by two sides in the real and imag-
inary regions (Figure 1) equally, so, using (13), we have ρ(xins

∣∣∣sins) = ρ(Rsins ∈ Oins)
2 . In

turn, ρ(<sins ∈ Oins) is obtained by (14). As we can see, it is enough to find ρ
(
<xins+yn ∈ Oins

)
and substitute it to (14).

The Euclidian distance from the reference constellation point
√

p1xins +
√

p2yn to the
left bound of Oins is

Lle f t
n =

1
2

[
D1 −

(√
Q2 − 2n + 1

)
D2

]
, (15)

and to the right bound is

Lright
n =

1
2

[
D1 +

(√
Q2 − 2n + 1

)
D2

]
. (16)

where D1 and D2 are obtained by (2). Note that Lle f t
n , Lright

n > 0∀n; otherwise, the power
weight ratio p1/p2 is unallowable, and the PD-NOMA signal is formed wrong.

The reference constellation point xins + yn is between Lle f t
n and Lright

n ; thus, it is de-
coded correctly when <xins+yn under noise falls between Lle f t

n and Lright
n , respectively. We

obtain these probabilities by using this Gauss error function for the left side

ρ
(
<xins+yn < Lle f t

n

)
=

1
2

er f

(
Lle f t

n√
N0

)
, (17)

and this one for the right side

ρ
(
<xins+yn < Lright

n

)
=

1
2

er f

(
Lright

n√
N0

)
,



Symmetry 2021, 13, 2153 6 of 13

where er f (x) represents the error function which is defined as er f (x) = 2√
π

x∫
0

e−x2
dt. Then,

ρ
(
<xins+yn ∈ Oins

)
is given by

ρ(<xins+yn ∈ Oins) =
1
2

er f

(
Lle f t

n√
N0

)
+

1
2

er f

(
Lright

n√
N0

)
.

By substituting the top expression to (14), we can write

ρ(<sins ∈ Oins) =
1

2
√

Q2

√
Q2

∑
n=1

[
er f

(
Lle f t

n√
N0

)
+ er f

(
Lright

n√
N0

)]
.

Let us denote the new variable as follows

Z1 =
1

2
√

Q2

√
Q2

∑
n=1

[
er f

(
Lle f t

n√
N0

)
+ er f

(
Lright

n√
N0

)]
. (18)

Then, ρ(<sins ∈ Oins) = Z1, and the probability of the error decoding xins is ob-
tained by

ρ(xins|sins) = 1− Z2
1 (19)

Next, let us find the probability of the error decoding for the corner symbols ρ(xcor|scor)
in the same way as for the inside symbols. The decoding area of the corner constellation point
is limited only by one side in the real and imaginary regions equally (the corner symbol in
Figure 1). To be precise, it is the same as for the inside symbol ρ(xcor|scor) = ρ(<scor ∈ Ocor)

2.
The symbols in the right and left corners are symmetric around zero; therefore, we obtain
the equation for the symbols in the right corner and apply it to all the corner symbols.
Thus, <xcor+yn ∈ Ocor is performed when <xcor+yn ∈ (Lle f t

n ;+∞), where Lle f t
n is defined

by (15). We obtain ρ
(
<xcor+yn < Lle f t

n

)
by (17), and ρ

(
<xcor+yn < +∞

)
= 1

2 always. Then,
ρ(<scor ∈ Ocor) is given by

ρ(<scor ∈ Ocor) =
1

2
√

Q2

√
Q2

∑
n=1

[
1 + er f

(
Lle f t

n√
N0

)]
.

Simplifying the last equation, we denote

Z2 =
1

2
√

Q2

√
Q2

∑
n=1

[
1 + er f

(
Lle f t

n√
N0

)]
, (20)

and transform ρ(<scor ∈ Ocor) = Z2. Consequently, ρ(xcor|scor) = Z2
2 and the probability of

the error decoding for xcor can be obtained by

ρ(xcor|scor) = 1− Z2
2 . (21)

Finally, let us obtain ρ(xout|sout). For the first half of the outside constellation points,
the decoding area is limited by one side in the real region and by two sides in the imaginary
region and vice versa for the remaining points (the outside symbol in Figure 1). Based on
the discussion above, the error decoding probability for the outside symbols is obtained by

ρ(xout|sout) = 1− Z1Z2. (22)



Symmetry 2021, 13, 2153 7 of 13

After obtaining the error decoding probabilities for each type of a symbol position,
we can derive the common expression for ρ(x) by substituting (11), (19), (21), and (22) into
(12) as follows

ρ(x) =
Q1 − 4(

√
Q1 − 1)

Q1
×
(

1− Z2
1

)
+

4(
√

Q1 − 2)
Q1

× (1− Z1Z2) +
4

Q1

(
1− Z2

2

)
,

which can be simplified to

ρ(x) = 1−
(
Q1 − 4

√
Q1 + 4)Z2

1 + (4
√

Q1 − 8)Z1Z2 + 4Z2
2

Q1
, (23)

where Z1, Z2 are obtained by (17), (19).
Similar to (10), the expression for the approximate BER in the first PD-NOMA layer is

derived by averaging ρ(x) on the bits/symbol ratio as follows

ρb(x) ≈ ρ(x)
log2(Q1)

. (24)

4.2. Second Layer Decoding

In this subsection, we derive SER and BER for the second non-orthogonal layer.
According to the SIC, the decoding of the second layer is performed after decoding, regen-
eration, and cancellation of the first layer. If it is cancelled perfectly (without error), the
updated received symbol is the superposition of the power weighted Q2-QAM and noise
realization. In this case, the probability of the error decoding is simply obtained in a similar
way to (8), considering the symbol energy p2, and given by

ρ(y|correct x) = 2
(

1− 1√
Q2

)
er f c

(√
p2

M2N0

)
−
(

1− 2√
Q2

+
1

Q2

)
er f c2

(√
p2

M2N0

)
.

However, the error cancelling of x causes additional corruption of the second layer
and increases the probability of its error decoding. In general, the probability of error
decoding in the second non-orthogonal layer is obtained by

ρ(y) = 1− ρ
(
<s ∈ Oy

)
ρ
(
=s ∈ Oy),

where ρ
(
<s ∈ Oy

)
and ρ

(
=s ∈ Oy

)
are the probabilities that the real and imaginary com-

ponents of the received symbol s fall into the decoding area of y. Note that ρ
(
<s ∈ Oy

)
and ρ

(
=s ∈ Oy

)
are identical and can be obtained by the same expression. Thus, we can

modify the equation for ρ(y) as

ρ(y) = 1− ρ
(
<s ∈ Oy

)2. (25)

Now, it is enough to derive the expression for the probability of the correct detection
in the real region, and further, we focus only on it. The overall decoding area Oy for each y
is divided into several local areas. Let us look at the PD-NOMA constellation that is shown
in Figure 1. The symbol y is decoded correctly when s falls in one of the sixteen (Q1 = 16)
areas near

√
p1x +

√
p2y , ∀x ∈ A1. In general, the number of the detecting sections in the

real region is
√

Q1, and we obtain ρ
(
<s ∈ Oy

)
as follows

ρ(<s ∈ Oy) =

√
Q1

∑
i=1

ρ(xi + y)ρ
(
<xi+y ∈ Oy

)
,

where ρ(xi + y) is the occurrence probability of the combination xi + y in the received
symbol, and ρ

(
<xi+y ∈ Oy

)
is the probability that the real component of the received

symbol falls into its own detecting area. The main problem is that ρ
(
<xi+y ∈ Oy

)
are not
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identical for different y because the detection sections are different. For example, Figure 2
shows the upper part of the PD-NOMA constellation from Figure 1. It is observed that y
symbols on the left side of xi (blue dots) have detection segment boundaries, which are
different from the symbols on the right side (green dots) as well as from the inside symbols
(red dots). Thus, we divide xi + y by geometric position into three types (xi + yle f t, xi + yins,

xi + yright) with their detection areas (Ole f t
y , Oins

y , Oright
y ) and transform the equation for

ρ
(
<s ∈ Oy

)
into

ρ(<s ∈ Oy) =

√
Q1

∑
i=1

ρ
(

xi + yle f t

)
ρ
(
<xi+y le f t ∈ Ole f t

y

)
+

√
Q1

∑
i=1

ρ(xi + yins)ρ
(
<xi+y ins ∈ Oins

y

)
+

√
Q1

∑
i=1

ρ
(

xi + yright

)
ρ
(
<xi+yright ∈ Oright

y

)

The occurrence probabilities for each type are ρ
(

xi + yle f t

)
= 1/

√
Q2, ρ

(
xi + yright

)
=

1/
√

Q2, ρ(xi + yins) = 1− 2/
√

Q2, and by substituting them to the top equation, we obtain

ρ(<s ∈ Oy) =
1√
Q2

√
Q1

∑
i=1

ρ
(
<xi+y le f t ∈ Ole f t

y

)
+
(

1− 2√
Q2

)√Q1
∑

i=1
ρ
(
<xi+y ins ∈ Oins

y

)
+ 1√

Q2

√
Q1

∑
i=1

ρ
(
<xi+yright ∈ Oright

y

)
(26)

Now, we need obtain the probabilities for the symbol of each type falling into its
own detection area. Firstly, let us focus on xi + yle f t and derive the expression for

ρ(<xi+y le f t ∈ Ole f t
y ). We start with discussing the example given in Figure 2. The symbol

x1 + yle f t is decoded correctly when <x1+yle f t ∈ Ole f t
y,local(m)∀m ∈ {1, 2, 3, 4}, marked by the

blue color. It is important that in the real domain, Ole f t
y,local(1) is limited only on the right

side by the neighboring inside symbol, and Ole f t
y,local(2), Ole f t

y,local(3), Ole f t
y,local(4) are limited

on both sides. Hence, the complete detection area Ole f t
y is a compound of all local areas

Ole f t
y =

4
∪

m=1
Ole f t

y,local(m). This conclusion is fair for xi + yle f t∀i ∈ 1 . . .
√

Q1.

Figure 2. The upper section of the PD-NOMA constellation shown in Figure 1.

In a general case, for Q1-QAM, we have Ole f t
y =

4
∪

m=1
Ole f t

y,local(m) and obtain ρ(<xi+yle f t ∈

Ole f t
y ) by using Gauss error function according to

ρ(<xi+yle f t ∈ Ole f t
y ) = 1− 1

2

√
Q1−1
∑

m=1

[
er f
(
(
√

Q1−i−m+ 1
2 )D1+(0.5

√
Q2− 1

2 )D2√
N0

)
−er f

(
(
√

Q1−i−m+1)D1+
1
2 D2√

N0

)]
− 1

2 er f
(

(1−i)D1+
1
2 D2√

N0

)
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To simplify the further expressions, we denote a set of the following variables

V±i,m = er f
[
(
√

Q1−i−m+1)D1±0.5D2√
N0

]
C±i,m = er f

[
(
√

Q1−i−m+0.5)D1±(0.5
√

Q2−0.5)D2√
N0

]
B±i = er f

[
(1−i)D1±0.5D2√

N0

] (27)

and by using (27), transform the equation for ρ(<xi+yle f t ∈ Ole f t
y ) according to

ρ(<xi+yle f t ∈ Ole f t
y ) = 1− 1

2

[√
Q1−1

∑
m=1

(
C+

i,m −V+
i,m

)
− B+

i

]
, (28)

The same procedure can be applied to obtaining ρ(<xi+yle f t ∈ Oright
y ), considering that

Oright
y has the same bounds as Ole f t

y , which are symmetric with respect to the zero. Thus,
we derive the equation by using the variables in (27) according to

ρ(<xi+yright ∈ Oright
y ) =

1
2

[√
Q1−1

∑
m=1

(
C−i,m −V−i,m

)
− B−i

]
, (29)

Finally, ρ(<xi+yins ∈ Oins
y ) is obtained the most easily because each i-th combination

has the uniform bounds of Oins
y , which are limited on both sides. By utilizing this statement,

we have

ρ(<xi+yins ∈ Oins
y ) =

√
Q1

∑
m=1

[
er f
(
(2 −m)D1 + 0.5D2√

N0

)
− er f

(
(2 −m)D1 − 0.5D2√

N0

)]
, (30)

We denote a new variable G±n , given by

G±m = er f
[
(2 −m)D1 ± 0.5D2√

N0

]
, (31)

and (30) can be expressed as

ρ(<xi+yins ∈ Oins
y ) =

1
2

√
Q1

∑
m=1

(G+
m − G−m ). (32)

Next, ρ
(
<s ∈ Oy

)
is obtained by substituting (28), (29), and (30) into (26) as follows

ρ(<s ∈ Oy) =
1√
Q2

+
(

1
2 −

1√
Q2

)
×
√

Q1
∑

m=1
(G+

m − G−m )− 1
2
√

Q1Q2
×
√

Q1
∑

i=1

[√
Q1−1
∑

m=1

(
V−i,m −V+

i,m + C+
i,m − C−i,m

)
− B+

i + B−i

]
. (33)

Based on the identical probability for the real and imaginary components, we directly
obtain the symbol error rate in the second non-orthogonal layer by placing (33) to (25) and
simplifying the equation according to

ρ(y) = 1−
{

1√
Q2

+
(

1
2 −

1√
Q2

)
×
√

Q1
∑

m=1
(G+

m − G−m )− 1
2
√

Q1Q2
×
√

Q1
∑

i=1

[√
Q1−1
∑

m=1

(
V−i,m −V+

i,m + C+
i,m − C−i,m

)
− B+

i + B−i

]}2

. (34)

Finally, BER in the second non-orthogonal layer is obtained similarly to (24) by the
approximation of ρ(y) on log2(Q2) in the following way

ρb(y) ≈
ρ(y)

log2(Q2)
. (35)
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5. BER and SER Simulation

We use the Monte Carlo simulation carried out in MATLAB to validate the theoretical
results from the previous section. This is often used to model the probability of different
outcomes in a process that cannot easily be predicted due to the intervention of random
variables. In communication, the MC simulation is used to estimate the probability of signal
decoding under the noise by performing a large number of simulations and averaging
the results.

The SER and BER are obtained from the simulation model and compared with the
analytical values calculated by (23, 34) and (24, 35). In Figure 3, the simulation scheme
of the two-user downlink PD-NOMA via the AWGN channel is presented. We use a
signal construction based on square QAM with Gray coding without any error correction
techniques. In the simulation scheme, bx,by are the vectors that contain transmission bits,
and x, y are the modulation symbols of UE1 and UE2. In the following simulations, we
assume that the complex noise realizations of both users are w1, w2 ∼ CN(0, N0) and they
are controlled by Es/N0 in the range from −10 to 40 dB with a 1 dB step.

Figure 3. Simulation scheme.

In general, the number of possible PD-NOMA multiplexing configurations is not
limited, so any of them can be chosen for simulation. As an example, we have selected the
four most illustrative scenarios of a PD-NOMA layer configuration with typical wireless
network modulation orders and power weights considering the most possible exploitation
scenarios. They are shown in Table 1 and include various combinations of power weights
and QAM orders.

Table 1. PD-NOMA configurations.

No.
First Layer (UE1) Second Layer (UE2)

p1 Q1 p2 Q2

1 0.85 4 0.15 4
2 0.9 4 0.1 16
3 0.95 16 0.05 16
4 0.95 16 0.05 64

Figure 4 shows the comparison of the theoretical and simulated SER with Es/N0 for
each scenario. The analytical SERs are submitted by solid lines, and the simulated SERs
are plotted by markers. It is observed that the analytical SERs of both users match the
simulated SERs perfectly for all the multiplexing configurations in the full range of Es/N0.
Due to the comparison result, we validated the (23) and (34) expressions, which were
obtained in the previous section. We can also conclude that the presented expressions
can be perfectly used for the SER calculation in both user QAM signals multiplexed by
PD-NOMA.

The comparison of the theoretical and simulated BERs against Es/N0 is presented in
Figure 5. We observe that the analytical BER expressions of both users in the PD-NOMA
system match the simulation results in the low BER region, which perfectly validates (24)
and (35). In the high BER region, we remark that the accuracy of the analytical result is
decreased due to the approximation inexactness. The validation result demonstrates that
the presented expressions cannot be applied to obtain accurate BER values in the high BER
region due to the used approximation. This issue requires further investigation and will be
solved in the following works.
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Figure 4. The theoretical and simulated SER against Es/N0 in PD-NOMA channels.

Figure 5. Theoretical and simulated BER against Es/N0 in PD-NOMA channels.

6. Conclusions

In this paper, BER and SER analytical expressions for two-user square QAM signals
multiplexed by PD-NOMA and transmitted through the AWGN channel were proposed.
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The calculation requires the known PD-NOMA configuration, including QAM order and
power weights of each user signal.

The validation of the expressions using simulation is provided in Section 5. The SER
and BER values obtained from the simulation are compared with the calculated analytical
values. In order to make a reliable comparison, we have used four various PD-NOMA
configurations. The following conclusions can be made on the basis of the obtained results,
and their analysis:

(1) The comparison result has shown that the SER analytical result perfectly coincides
with the simulation result, which confirms the credibility of the obtained expressions.
Therefore, the SER values for the PD-NOMA system described above can be exactly
calculated by proposed expressions without difficulty simulation.

(2) In turn, the BER analytical result matches with the simulation result only in the low
BER region (<10−2). Thus, the analytical BER expressions can be used for a rough estimate
in the high BER region and for accurate calculation in the low BER region. The issue of
error estimation in the high BER region will be solved in the following works.

The goal of subsequent work is the further research of an error rate performance
of PD-NOMA group channel in different multiplexing configurations by using received
analytical expressions. In the future, we will design a table with adaptive joint modulation
and coding schemes (MCS) for adaptive configuration selection based on the MCSs from
the 5G NR standard. This table will be used in optimal group signal formation, scheduling,
estimation of an achievable practice performance of PD-NOMA, etc.
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