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Abstract: The axion is a dark matter candidate arising from the spontaneous breaking of the Peccei–
Quinn symmetry, introduced to solve the strong CP problem. It has been shown that radio/microwave
radiation sent out to space is backscattered in the presence of axion dark matter due to stimulated
axion decay. This backscattering is a feeble and narrow echo signal centered at an angular frequency
very close to one-half of the axion mass. In this article, we summarize all the relevant results found
so far, including analytical formulas for the echo signal, as well as sensitivity prospects for possible
near-future experiments.

Keywords: axions; dark matter; axion detection

1. Introduction

The nature of dark matter is one of the most intriguing puzzles of modern science.
The lack of signals from thermally produced WIMP dark matter suggests the exploration
of new routes. One possibility is hypothetical particles produced in the early universe by
nonthermal means. Such is the case for sterile neutrinos [1], dark photons [2], and QCD
axions [3–5] (or axion-like particles (ALPs) [6]), which have became very popular in the
last few years.

The QCD axion is a hypothetical particle that was originally postulated as a solution
to the strong CP problem of the Standard Model of particle physics, i.e., the puzzle of why
the strong interactions conserve the P and CP symmetries [3]. The QCD axion and ALPs
are leading dark matter candidates in the sub-eV mass range [7–10]. Their nonthermal
production mechanisms include the realignment and decay of topological defects.

Several running experiments are carrying out the search for axions, and there are
also many new interesting proposed ideas. See [11,12] for recent reviews. Most of these
detection schemes are based on the axion to two-photon coupling [13].

Thanks to this coupling, a massive axion is allowed to decay spontaneously into
two photons, and more interestingly, the decay rate is enhanced considerably in a photon
background with photon energy close to half the axion mass. This stimulated axion decay
has been discussed extensively in the recent literature [14–20]. In the axion rest frame, the
photons ejected from the axion decay are forced to propagate along the trajectory of the
incident photon. While one of the decaying photons is released together with the incident
one, the other must be released exactly in the opposite direction due to the conservation of
momentum. Reference [21] discussed the possibility of sending out to space a powerful
beam of microwave (or radio) electromagnetic radiation as an axion decay stimulator
and then “listening” for the incoming radiation, the echo. The power signal of the echo
was estimated, giving promising results for radio astronomy searches. The atmosphere’s
transparency mainly constrains the frequency range for which the echo method is realistic.

Symmetry 2021, 13, 2150. https://doi.org/10.3390/sym13112150 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-2254-7408
https://orcid.org/0000-0001-7419-0976
https://doi.org/10.3390/sym13112150
https://doi.org/10.3390/sym13112150
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13112150
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13112150?type=check_update&version=2


Symmetry 2021, 13, 2150 2 of 13

At sea level, this corresponds approximately to the range 30 MHz–30 GHz, equivalent to
axion masses between 2.5× 10−7 eV and 2.5× 10−4 eV. Of course, this is just to have an
idea. At a certain altitude, the method could be extended even to infrared or visible light,
depending on the telescope’s frequency operation, location, weather, noise temperature,
etc. A more detailed and exhaustive analysis of the echo signal can be found in [22].

The echo intensity has three relevant properties: (1) it depends strongly on the local
axion dark matter momentum distribution; (2) it does not depend on the shape of the
outgoing beam; (3) its frequency is shifted with respect to the outgoing beam’s frequency
by the axion’s average momentum in the beam direction.

In this article, we provide a summary of the results found in [21,22]. In Section 2, we
calculate, in a simple manner, the total power of the echo wave, while in Section 3, we
specify how this power is spatially distributed. In Section 4, we discuss the sensitivity
prospects of the method based on realistic radio astronomy equipment, and finally, in
Section 5, we conclude.

2. Power in the Echo Wave

The first step of our discussion is to compute the power stored in the echo wave. Let
~A(0)(~x, t) be the outgoing beam vector potential and a(~x, t) the ambient dark matter axion
field. The interaction of the outgoing beam with the axion field results in a perturbative
correction ~A(1)(~x, t) to the zero-order ~A(0)(~x, t). In the Coulomb gauge, this correction
satisfies the inhomogeneous wave equation:(

∂2
t −∇2

)
~A(1) = −g∂ta~∇× ~A(0). (1)

We also neglected terms containing gradients of a. This is justified by the assumption
of a nonrelativistic axion background. From now on, we will always ignore this kind
of contribution.

For the time being, let us just consider one axion’s momentum mode with energy
density ρ(~p ). The axion field can be written as:

ap(t,~x) =
√

2 ρ(~p )
Ep

sin(Ept− ~p ·~x), (2)

where Ep =
√

m2 + p2. As Ep = m +O(p2), we use Ep ≈ m throughout this article.
Let us expand the source field ~A(0), as well as the correction ~A(1) in Fourier modes as:

~A(0)(t,~x) =
∫ d3k

(2π)3 êA0(~k ) e−i(ω(k)t−~k·~x) (3)

~A(1)(t,~x) =
∫ d3k

(2π)3 k̂× ê A(1)(t,~k ) ei~k·~x. (4)

Here, we assumed an incident field polarized in the direction ê. A(1) is polarized
necessarily in the direction k̂× ê, except for small corrections of the order of p. We also
defined ω(k) ≡ |~k|. Keeping only terms relevant to the stimulated axion decay, i.e., the
photon momentum modes~k and~q = ~p−~k, Equation (1) becomes:

(
∂2

t + ω(q)2
)

A(1)(t,~q ) = −ig

√
ρ(~p )

2
ω(k)A0(~k)∗e−i(m−ω(k))t. (5)

By looking at the source term of the above equation, we see that when m > ω(k),
the solution describes a wave that travels backwards with respect to the incident one.
We call it the echo wave. The echo wave is excited when ω(q) is equal or very close to
m−ω(k), i.e., when ω(k) ≈ m/2. Now, we look for a resonant solution using the ansatz
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A(1)(t,~q ) = A(t,~q )e−iω(q) t where A(t,~q ) varies slowly in time with respect to A(1)(t,~q ).
Neglecting the second derivatives of A(t,~q ) in Equation (5), we obtain the solution:

A(t,~q ) = g
2

√
ρ(~p )

2
A0(~k )∗ ei ε(~k,~p ) t

(
sin(ε(~k,~p ) t/2)

ε(~k,~p )/2

)
, (6)

where ε(~k,~p ) = ω(k) + ω(|~p −~k|) − m. In the limit εt � 1, we can substitute
sin(εt/2)/ε → πδ(ε) in Equation (6). Integrating over all axion’s momentum modes
and assuming that the incident beam propagates mostly in a preferred direction (the
direction of~k is fixed), the echo power is found to be:

P =
π

4
g2 toff

∫
dp‖

∂ρ

∂p‖

∫
dω

∂P0

∂ω
δ(ε(ω, p‖)), (7)

where ~p‖ is the axion’s momentum projected in the direction of~k. To obtain this result, we
assumed that the energy is provided by a source emitting a constant power P0 from t = 0
until t = toff.

Let us perform the integral (7) in two scenarios: when the bandwidth of the beam δω
is much bigger than the momentum bandwidth of the axion δp and in the opposite case.
For δω � δp, the axion distribution can be considered as if it were condensed at a single
value p̄‖. We then approximate ∂ρ/∂p‖ = ρ δ(p‖ − p̄‖). We straightforwardly find:

P =
π

8
g2ρ

∂P0

∂ω∗
toff, (8)

where:

ω∗ =
m + p̄‖

2
. (9)

For δω � δp, we have ∂P0/∂ω = P0 δ(ω− ω̄). We find:

P =
π

4
g2 P0

∂ρ

∂p‖∗
toff, (10)

where:
p‖∗ = 2ω̄−m. (11)

For the DFSZ model of the QCD axion, an input power of 1 kW over a bandwidth

of 1 kHz working for one hour provides a total echo power of P ∼ 10−19 W
(

m
10−4 eV

)2
,

which is in principle not too difficult to detect with current radio astronomy technology.
Unfortunately, as discussed in [21], due to the nontrivial axion’s velocity distribution, this
power spreads over a surface that eventually exceeds the detector’s size. This effect is
easy to visualize if we consider what happens for a single axion decay. If the decaying
axion moves with a velocity not perfectly aligned with the incident photon (outgoing
beam), the echo photon is released in a direction also different from the incident photon’s
trajectory. In fact, if the echo photon has energy Ω, the conservation of momentum
implies Ω sin(χ) = mv⊥, where χ is the angle formed by the trajectories of both photons
and v⊥ is the component of the axion’s velocity perpendicular to the incident photon
momentum. From energy conservation, Ω is equal to m/2 plus small corrections; therefore,
sin(χ) ' 2v⊥. As the axion’s velocities are of the order of 10−3 or smaller, we can write
χ ' 2v⊥. It follows that, for instance assuming the isothermal sphere model [23] for
the galactic halo, which has a velocity dispersion of 270 km/s, the echo spreads over
approximately 106 km after 1 h. Even in the caustic ring model of the galactic halo [24],
where the minimal axion transverse velocity we can achieve is about 5 km/s, the spread
is at least 104 km after the same amount of time. The echo power signal is thus strongly
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dependent on the model for the axion phase-space distribution, as well as the size of
the detection apparatus. The following section is devoted to analyzing these effects by
computing the echo intensity as a function of the spacetime coordinates.

3. Echo Intensity

The total power in the echo wave, computed in the previous section, does not carry
any information about how it is spatially distributed. As explained above, this spatial
dependence is closely related to the axion’s velocity distribution, and it especially de-
pends strongly on the transverse components of the axion’s velocity. This section is
dedicated to characterizing these effects by computing the echo intensity as a function of
the spacetime coordinates.

3.1. Echo of a Dish Antenna Beam

To develop a sense of how the transverse axion’s velocities affect the signal, we
perform a simple and useful computation of the echo intensity for some particular models
of the axion’s velocity distribution. Moreover, as an incident wave, we take the beam
emitted by a parabolic dish antenna. Although the parabolic antenna case is the most
realistic setup we can address in this work, our findings are limited by scenarios where
analytical approximations are possible. These approximations will be explained throughout
the text.

Given the axion field a(t,~x) and outgoing beam magnetic field ~B(0)(t,~x), the echo
vector potential field ~A(1)(t,~x) is determined by:

~A(1)(t,~x) = −g
∫

d3x′
∫

dt′
δ(t− t′ − |~x−~x ′|)

4π|~x−~x ′| ∂t′ a(t
′,~x ′)~B(0)(t′,~x ′). (12)

We write the axion dark matter field, in a large volume V, as an expansion in momen-
tum modes as:

a(t,~x) =
a0

2
e−imt

√
V

(2π)3

∫
d3 p fa(~p ) ei(~p·~x+φ~p) + c.c. (13)

where ~p is the axion’s momentum in the experiment’s rest frame and φ~p random phases.
These phases are not known and are usually modeled as uniformly distributed random
numbers [25–27]. In this article, we limit ourselves to considering the ensemble average:

〈
e−i(φ~p−φ~p ′ )

〉
ens

=
(2π)3

V
δ3(~p− ~p ′). (14)

We leave a discussion of the statistics of the signal to future work. We normalize
fa(~p ) as: ∫

d3 p | fa(~p )|2 = 1. (15)

We considered a parabolic antenna of radius R fed by a plane wave with electric field
amplitude E0(ω), ω being the wave’s frequency. The electric field emitted by the antenna
is known analytically in the far-field zone, i.e., for distances of order ωR2 or larger from
the emission spot. Assuming that the center of the antenna is located at ~x = 0 and that
the central component of the beam propagates along ẑ, the antenna’s electric field can be
written in spherical coordinates as:

~E(0)(t,~x, ω) = x̂ i
E0(ω)

2
ωR2 J1(ωR sin(θ))

ωR sin(θ)
e−iω(t−r)

r
, (16)

where J1(x) is the Bessel function of the first kind of order one. For Equation (16) to be
a good approximation, we need most of the echo to be produced in the far-field zone.
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Therefore, for an outgoing beam turned on at t = 0, our approximation is valid for
t� ωR2.

We perform the integral (12) in the limit ωR� 1, which is valid for any experimental
setup we consider in this article. If the outgoing beam is emitted continuously from t = 0,
the maximum echo spectral intensity at the emission spot is:

∂I(t)
∂Ω∗

=
1
8

√
π

2
g2ρ

δpz
min

(
t, R
〈

v−1
⊥

〉) dI0

dω∗
, (17)

where ~v⊥ = ~p⊥/m is the axion’s transverse velocity and Ω∗ = (m− 〈pz〉)/2. The symbol
〈〉means averaging over the axion’s velocity distribution | fa(~v)|2.

We can see from the above result that the echo signal depends strongly on the local
axion’s velocity distribution. Indeed, it scales as the inverse of the momentum dispersion
in the forward direction and the inverse of the average transverse velocity component.
This paper considered two models for the velocity distribution in the Milky Way, the
isothermal sphere and the caustic ring model. In the isothermal model, | fa(~v )|2 has a
Maxwell–Boltzmann behavior with dispersion δv = 270 km/s and the average velocity
given by the velocity of the Sun in the galactic rest frame, i.e., |〈~v 〉| ' 230 km/s. In the
caustic ring model, the local dark matter is dominated by a single (or a few) cold flow
with velocity dispersion δv < 70 m/s and with an average velocity of |〈~v 〉| ' 290 km/s

relative to us. For the isothermal model, we have that
〈

v−1
⊥

〉−1
=
√

2π/3δv if the outgoing
beam points mainly towards the direction of the axion wind. For the caustic ring model,〈

v−1
⊥

〉
does not depend on its very small dispersion, but it only depends on the direction

of the big flow. The direction of the big flow is determined by the position of the IRAS [28],
Planck [29] and GAIA [30] triangles with an uncertainty of 0.01 rad. This implies that〈

v−1
⊥

〉−1
cannot be reduced to values smaller than 5 km/s.

In this analysis, we saw how the axion’s velocity distribution influences the echo signal.
Equation (17) shows the effects explicitly. For t < R

〈
v−1
⊥

〉
, the echo has not yet spread

beyond the emission region, leading to the linear growth of the intensity, in agreement with
the results of Section 2. After t = R

〈
v−1
⊥

〉
, the intensity saturates suddenly to a constant

value, due to the transverse velocity effects. This abrupt change in the intensity behavior is
a consequence of the approximations employed, the assumption that most of the echo is
coming from the far-field zone. If we had also taken into account the near behavior of the
outgoing beam, the transition to the saturated regime would have been smooth. Another
limitation of our result is that Equation (17) gives us an approximated value for locations
nearby the emission spot. A complete characterization of the outgoing beam would allow
us to know the local values of the intensity in more detail. Unfortunately, there is no simple
analytical expression for the antenna’s emitted field in the near zone. Nevertheless, this
issue is addressed in Section 3.2 by constructing a simple and well-behaved model of the
outgoing beam in the near zone.

3.2. Paraxial Gaussian Beam

To gain further insights into the intensity as a function of the position and into the
transition to the saturated regime, we take a simplified model for the outgoing beam.
This beam features a simple shape in the near-field zone and matches the antenna beam’s
far-field zone behavior correctly. Given this beam, we use the paraxial approximation
to obtain the local values of the echo intensity as well as its time evolution. We write
the beam magnetic field as a transverse wave propagating in the z direction with small
transverse corrections:

~B(0)(t,~x, ω) = ε̂
B0(ω)

2
η(~x, ω) e−iω(t−z). (18)
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For the spatial shape of the beam η(~x, ω), we take the paraxial Gaussian beam used in
laser physics:

η(ω,~x ) =
R

w(z)
e
− r2

2w(z)2 eiω r2
2R(z) , (19)

where (r, φ, z) are cylindrical coordinates. Here, w(z) is the effective radius of the beam
andR(z) is the radius of curvature of the wavefronts. Their mathematical expressions are:

w(z) = R

√
1 +

z2

z2
R

, R(z) =
z2 + z2

R
z

,

where R = w(0) and zR = ωR2.
The beam is turned on at t = 0. At a time t > 0, it extends from z = 0 to z = t. After

the beam is turned off at t = toff, it extends from z = t− toff to z = t.
We describe the local dark matter axion field as a superposition of plane waves, in

the same way as in Section 3.1 (see Equations (13)–(15)). In addition, we also assumed that
fa(~p ) can be factorized in its forward and transverse parts. In the limit δpz t � 1, after
averaging over random phases, the spectral echo intensity at resonance can be written as:

∂I(t,~x⊥)
∂Ω∗

=
1
8

√
π

2
g2ρ

δpz
T (t,~x⊥)

dI0

dω∗
, (20)

where the quantity T (t,~x⊥) has units of time and contains all the three-dimensional effects.
In a one-dimensional treatment, we have simply T (t,~x⊥) = min(t, toff) (see [22]), while
in three dimensions, the behavior is more complicated. The lateral spread leads to the
saturation of the intensity on a characteristic time scale, which is given below. On the other
hand, we find null effects coming from the outgoing beam divergence.

We first considered the case of a negligible axion velocity dispersion. In this case, all
axions move with approximately the same velocity. We denote the axion’s velocity in the
plane perpendicular to the beam direction of propagation as ~vp. We analyzed the small
velocity dispersion case in two scenarios: (a) toff < R/vp and (b) toff > R/vp.

In Scenario (a), for t < toff, T (t,~x⊥) grows linearly in time, featuring a transverse
Gaussian profile with effective radius R. For t > toff, i.e., after the outgoing beam is turned
off, the Gaussian keeps the maximum value reached at t = toff and moves rigidly with
velocity ~vp . In Scenario (b), for t < R/vp, the intensity grows linearly in time with a
Gaussian profile, just as in Scenario (a) before toff. Later, for R/vp < t < toff, the echo
spreads along the direction of ~vp at a speed vp, forming a “sausage”-shaped profile (see
Figure 1). The energy that in Scenario (a) accumulates at the emission spot now spreads
laterally, making the echo intensity saturate at any coordinate ~x⊥ when t > r cos(φ)

vp
, φ being

the angle between ~x⊥ and ~vp. The maximum saturated value is reached at locations where
φ = 0 and R < r cos(φ) < vp t. The corresponding value for T within this region is:

ta ≈
R
vp

. (21)

Finally, for t > toff, the “sausage” moves rigidly at speed ~vp, keeping a fixed length
vp toff and a width 2R.
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Figure 1. Echo intensity form factor F(t,~x⊥) at resonance ω = ω∗ in the case of saturation due to the
transverse average axion’s velocity. The beam is turned on at t = 0 and turned off at mtoff = 1.4× 109.
The radius of the emitter is set to mR = 4000. The axion’s velocity components are those of the
caustic ring model, with minimum transverse velocity vx = 5 km/s and vz = 290 km/s. The velocity
dispersion is 70 km/s in the z direction. The saturation time is mtsat ≈ mta = 4.3× 108.

Next, we considered the case in which the axion transverse velocity dispersion δv⊥
dominates over the transverse average velocity. Again, we divided our discussion into
scenarios: (a) toff < R/δv⊥ and (b) toff > R/δv⊥. In Scenario (a), the intensity grows at
first linearly in time, keeping a Gaussian shape, as in the small velocity dispersion case.
After toff, the maximum intensity stays constant at the value obtained at t = toff, and the
Gaussian shape stays unchanged. Finally, for times larger than R/δv⊥, the value of the
intensity decreases as (δv⊥t)−2 and the radial extension becomes δv⊥t, i.e., the energy
spreads radially at velocity δv⊥. In Scenario (b), we have again the Gaussian profile with
a linearly growing maximum value for t < R/δv⊥. For R/δv⊥ < t < toff, the energy
spreads radially, making the intensity saturate for all the positions satisfying r < δv⊥t
(see Figure 2). The maximum value of T in this saturated regime is found at r = 0 and is:

tb ≈
R

δv⊥
. (22)

After toff, the intensity falls off as (δv⊥t)−2.
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The characteristic times ta and tb are not only the saturated values of T in the respec-
tive scenarios, but also the timescales over which the saturation is achieved. We can then
define the saturation time:

tsat =

(
1
t2
a
+

1
t2
b

)−1/2

. (23)

Figure 2. Echo intensity form factor F(t,~x⊥) at resonance ω = ω∗ in the case of saturation due to
velocity dispersion effects. The beam is turned on at t = 0 and turned off at mtoff = 7× 105. The
radius of the emitter is set to mR = 100. The axion’s velocity components are those of the isothermal
model, with vx = 10 km/s and vz = 230 km/s, while the velocity dispersion is 270/

√
3 km/s in each

direction. The saturation time is mtsat ≈ mtb = 2.1× 105.

To confirm the results of the discussion above, we solve Equation (1) numerically in
the paraxial limit, with the model beam Equations (18) and (19). We plot the intensity in
the z = 0 plane for the caustic ring model and the isothermal sphere, corresponding to the
small dispersion and large dispersion cases discussed above, respectively.
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We write the echo intensity as:

dI(t,~x⊥)
dΩ

=
1
8

√
π

2
g2ρ

δpz
tsatF(t,~x⊥)

dI0

dω
. (24)

By comparing with Equation (20), we see that, in the limit δpzt� 1, the echo intensity
factor is F(t,~x⊥) = T (t,~x⊥)/tsat. This means that, when the echo saturation is predom-
inantly due to one of the transverse average axion’s velocity or velocity dispersion, the
maximum value of F tends to one for times larger than tsat, provided toff > tsat.

Figure 1 shows the echo intensity factor at resonance, i.e., for ω̄ = (m + 〈pz〉)/2, for
parameters compatible with the caustic ring model. We can clearly see the echo’s “hot
spot” spreading in the direction of the axion average velocity until the beam is turned off
at mtoff = 1.4× 109. Thereafter, the hot spot stops spreading and starts traveling rigidly.

Figure 2 shows the echo intensity factor at resonance in a case of saturation due to
velocity dispersion effects for parameters compatible with the isothermal sphere model.
The hot spot spreads out in all directions, while at the same time, the maximum intensity
grows until the beam is turned off. After that, the maximum intensity quickly drops to zero.
Finally, we would like to comment on the echo profile in the frequency space. Figure 3
shows F(t,~0 ) as a function of the beam frequency ω at different times. The intensity factor
was multiplied by the spectral intensity inherited from the beam dĨ0/dω|ω=Ω, whose
maximum value was normalized to one. The beam spectral intensity, normalized to its
maximum value, is shown in black. The echo peaks at a frequency Ω̄ = (m−〈pz〉)/2, while
the beam is centered at ω̄ = (m + 〈pz〉)/2. The echo bandwidth is given by δωδpz/(2∆).
It is then possible for the echo frequency band to be completely separated from the beam
frequency band if:

|Ω̄− ω̄| > δω +
δωδpz

2∆
. (25)

Such a configuration may be advantageous to separate the signal from the noise
if a part of the latter comes from the outgoing beam itself or from backscattering in
the atmosphere.

Figure 3. Frequency profile of the form factor times the spectral intensity F(t,~0 )dĨ0/dω|ω=Ω (col-
ored lines) and rescaled beam frequency profile dĨ0/dω (black line) at resonance ω = ω∗ in the
isothermal halo model. All the parameters are the same as those of Figure 2, with the addition of
δω = 2× 10−5 m.
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4. Echo Collected Power and Sensitivity

The power collected over a surface S laying in the z = 0 plane can be computed as:

Pc =
1

16

√
π

2
g2ρ

∆
P0

1
S0

∫
S

d2x⊥ T (t,~x⊥), (26)

where S0 is the effective cross-sectional area of the beam at z = 0, P0 = I0S0 is the power of
the beam, and:

∆ =

√
δω2 +

δp2
z

4
. (27)

We estimated the sensitivity of the echo method assuming that the echo power is
collected by a dish antenna with radius Rc, located in the plane z = 0 and concentric with
respect to the emitter. In this configuration, and for Rc > R, we have 1

S0

∫
S d2x⊥ T (t,~x⊥) ≈

min(t, t⊥), where t⊥ is defined as:

t⊥ = Rc

〈
v−1
⊥

〉
. (28)

The signal-to-noise ratio is given by Dick’s radiometer equation:

s/n =
Pc

Tn

√
tm

B
, (29)

where Pc is the collected power, Tn the noise temperature, B the bandwidth of the signal
given roughly by B ≈ min(δω, δpz/2)/(2π), and tm the measurement time.

We determined tm as the time at which the power collected by the receiver drops off.
The echo spreads all over the receiver in a time t⊥. If at time t⊥, the beam is still on, the
collected power will drop at t = toff. On the other hand, if the beam is turned off before
t⊥, the power collected will drop off then at t = t⊥. In summary, the measurement time is
given roughly by the maximum between toff and t⊥.

The solid blue lines of Figure 4 mark the parameter space where the echo method is
sensitive, assuming a fixed amount of energy E = 10 MW y is spent to cover an octave
in axion mass. We assumed this energy is delivered with the largest power compatible
with the constraint toff ≥ (2δω)−1/2. This choice maximizes the sensitivity for a given
bandwidth. However, in some parts of the parameter space, too large a power would be
required. We also assumed s/n = 5, Tn = 20 K, R = 50 m, Rc = 100 m and δω = δpz/2.
For both the isothermal model (right panel) and the caustic ring model (left panel), we
assumed minimal average axion transverse velocity: vp = 0 and vp = 5 km/s, respectively.
For the isothermal sphere model, we used a velocity dispersion 220 km/s. Figure 4 shows
a range of axion masses compatible with the working frequency of radio telescopes.

The dashed blue lines of Figure 4 correspond to the sensitivities using a power source
of P0 = 10 MW working for 1 y. The other parameters are the same as for the solid blue
lines. Despite the fact that the amount of energy spent is the same as for the solid lines, the
sensitivity is worse. It is likely possible, though, to approach the solid lines’ sensitivity by
setting up the experiment in a clever way.
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Figure 4. Expected sensitivity of the echo method in the space of parameters (m, g) for the caustic
ring (left) and isothermal model (right) of the galactic halo. These plots assume that the method
consumes an energy of 10 MW y per a factor of two in the axion mass range. The difference between
the solid and dashed lines is explained in the main text. The green regions are current bounds from
axion dark matter haloscopes [31–44], and the grey region corresponds to bounds from the CAST
experiment [45].

5. Conclusions

In this manuscript, we presented a description of the echo method for axion dark
matter detection proposed in [21]. The echo intensity grows in time until it saturates after
a characteristic time scale that depends on the transverse axion’s velocity distribution.
We classified this velocity distribution effect into two cases: small and large dispersion,
depending on whether the transverse velocity dispersion is smaller or larger than the
transverse average velocity. We also showed that it is possible to achieve a separation in
frequency between the beam and echo bandwidths, thanks to the average velocity of the
axion flow along the beam’s direction relative to the lab frame. This may help reduce the
noise from atmospheric backscattering and beam leakages.

We provided sensitivity estimates assuming a 100 m receiving dish and a power of
10 MW. These experimental parameters are attainable with currently available technology.
For instance, the receiver could be a radio telescope such as the Green Bank and Effelsberg of
FAST, while the power source could be a high-power klystron, as used for radar transmitters
or particle accelerators.

Our sensitivity estimates agree with those of [21] when considering velocity distribu-
tion effects and also with the fact that the outgoing beam divergence does not play any
role in the signal. The echo method appears an attractive approach to axion dark matter
detection because it needs relatively old technology and because it is applicable over a
wide range of axion masses.
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