
symmetryS S

Article

Informational Measure of Symmetry vs. Voronoi Entropy and
Continuous Measure of Entropy of the Penrose Tiling. Part II of
the “Voronoi Entropy vs. Continuous Measure of Symmetry of
the Penrose Tiling”

Edward Bormashenko 1,* , Irina Legchenkova 1 , Mark Frenkel 1, Nir Shvalb 2 and Shraga Shoval 3

����������
�������

Citation: Bormashenko, E.;

Legchenkova, I.; Frenkel, M.;

Shvalb, N.; Shoval, S. Informational

Measure of Symmetry vs. Voronoi

Entropy and Continuous Measure of

Entropy of the Penrose Tiling. Part II

of the “Voronoi Entropy vs.

Continuous Measure of Symmetry of

the Penrose Tiling”. Symmetry 2021,

13, 2146. https://doi.org/

10.3390/sym13112146

Academic Editors: Dalibor Štys and

Sergei D. Odintsov

Received: 2 September 2021

Accepted: 6 November 2021

Published: 10 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Chemical Engineering Department, Engineering Faculty, Ariel University, P.O. Box 3, Ariel 407000, Israel;
irynale@ariel.ac.il (I.L.); markfr@ariel.ac.il (M.F.)

2 Department of Mechanical Engineering & Mechatronics, Faculty of Engineering, Ariel University, P.O. Box 3,
Ariel 407000, Israel; nirsh@ariel.ac.il

3 Department of Industrial Engineering and Management, Faculty of Engineering, Ariel University, P.O. Box 3,
Ariel 407000, Israel; shraga@ariel.ac.il

* Correspondence: edward@ariel.ac.il

Abstract: The notion of the informational measure of symmetry is introduced according to:
Hsym(G) = −∑k

i=1 P(Gi)lnP(Gi), where P(Gi) is the probability of appearance of the symme-
try operation Gi within the given 2D pattern. Hsym(G) is interpreted as an averaged uncertainty
in the presence of symmetry elements from the group G in the given pattern. The informational
measure of symmetry of the “ideal” pattern built of identical equilateral triangles is established
as Hsym(D3) = 1.792. The informational measure of symmetry of the random, completely disordered
pattern is zero, Hsym = 0. The informational measure of symmetry is calculated for the patterns
generated by the P3 Penrose tessellation. The informational measure of symmetry does not correlate
with either the Voronoi entropy of the studied patterns nor with the continuous measure of symmetry
of the patterns. Quantification of the “ordering” in 2D patterns performed solely with the Voronoi
entropy is misleading and erroneous.

Keywords: symmetry; informational measure; Penrose tiling; Voronoi entropy; continuous symmetry
measure; ordering

1. Introduction

The paper introduces the connection between two fundamental physical notions,
namely the notion of symmetry and the Shannon measure of information [1,2], abbreviated
in the text as SMI. For any random discrete variable X, characterized by a probability
distribution: P(X1), P(X2) . . . P(XN) the SMI, denoted H(X), has been defined as:

H(X) = −∑N
i=1 Pi(Xi)log2(Xi) (1)

The value H(X) has the same mathematical form as the entropy in statistical mechan-
ics [3,4]. Thus, Claude Shannon called this value, “entropy”, which gave rise to numerous
and widespread misinterpretations, discussed in detail in refserences [5–9], in which the
distinction between SMI and a “true” thermodynamic entropy (in other words the “Boltz-
mann entropy”) was discussed in detail. We apply SMI, defined by Equation (1) to the
analysis of the 2D patterns, possessing given elements of symmetry. Thus, the information
measure of symmetry (IMS) is introduced. A connection between two fundamental con-
cepts of information and symmetry breaking was addressed in reference [10]. Information
content of spontaneous symmetry breaking was studied in reference [11].

Our paper continues the series of papers in which the fundamental problem of the
connection between ordering and symmetry in physical systems and spatial patterns
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is addressed [12,13]. The fundamental question is formulated as follows: what is the
quantitative measure of ordering? In physics, ordering is quantified by the entropy of the
physical system [3,4,12,13]. We already suggested that ordering in physical systems may
be sometimes identified with symmetrizing of the system: in other words, introducing
the elements of symmetry into an initially disordered physical system will necessarily
order the system and consequently decrease its entropy [12,13]. A the same time, various
measures have been suggested for quantification of symmetry of physical systems, one of
which is the continuous measure of symmetry (abbreviated CSM and denoted S̃(G) for
the G-symmetry shape), defined as the sum of the minimum squared distances required to
move the points of the original shape in order to obtain a symmetrical shape [14–22]. In our
recent paper we applied CSM for the analysis of the Penrose tessellations, explaining the
rotational symmetry of quasicrystals [23]. In the present paper we introduce the alternative
measure of the symmetry of 2D patterns, namely the informational measure of symmetry
(ISM) and apply the suggested measure for the analysis of the patterns generated by the
P3 Penrose tiling. We compare the informational measure of symmetry with the Voronoi
entropy (denoted Svor) [23–35] and the continuous measure of symmetry [14–22] calculated
for the patterns generated by the Penrose tessellation P3, presented in Figure 1.
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pattern. Consider first, as an example, an “ideal pattern” built of identical equilateral 
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Figure 1. (a) The Penrose tiling P3 is depicted; (b) the structural unit of the Penrose tiling P3 is shown. The translation
symmetry is absent in the pattern, however, the pattern demonstrates the five-fold rotational symmetry The Penrose tiling
P3 demonstrates Hsym(G) = 1.386 for both of the patterns.

The Voronoi entropy of a given set of points located in a plane is given by:

Svor = −∑i PilnPi, (2)

where Pi is the probability of finding n-sided Voronoi polygon within a given Voronoi tes-
sellation and i is the total number of polygon types with different numbers of edges [24–26].
The summation in Equation (2) is performed from i = 3 (the smallest possible polygon—a
triangle) to the largest coordination number of the polygon, e.g., for an octagon, the largest
value of i is 8. A Voronoi diagram, in turn, is a partition of a plane into regions close to each
of points, also known as seeds or generators. For each seed there is a corresponding area,
referred to as a Voronoi cell, consisting of all points of the plane closer to that seed than to
any other [24–26]. It is usually adopted that the Voronoi entropy grows with increasing
disorder up to the natural logarithms of the total number of polygons comprising the given
pattern [36]. Thus, the Voronoi entropy is usually, as will be shown, mistakenly considered
as a measure of “order” for a given set of points [23–36].

A Penrose tiling, presented in Figure 1, is an aperiodic tiling that has a five-fold
rotational and reflectional symmetry [37,38]. Penrose tiling supplies the explanation for
the physical structure of quasicrystals, demonstrating the five-fold symmetry [37,38]. The
translational symmetry is absent in the Penrose tiling. We analyzed symmetry of the
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Penrose tiling in parallel with the informational measure of symmetry (introduced below),
the Voronoi Entropy [23–33] and the continuous measure of symmetry [14–23].

2. Materials and Methods

The MATLAB software was used for calculation of the continuous measure of sym-
metry of the studied patterns. To create the Voronoi diagrams, we used moduli of the
program developed at the Department of Physics and Astronomy at the University of
California (Department of Physics and Astronomy University of California, Irvine, CA,
USA) (https://www.physics.uci.edu/~foams/do_all.html) (accessed on 31 August 2021).

3. Results and Discussion
3.1. Definition of the Informational Measure of Symmetry

We have demonstrated in our recent research that the Voronoi entropy and the continu-
ous measure of symmetry do not exhaust the quantification of ordering in 2D patterns [23].
We propose now the alternative approach to the problem and introduce the “informational
measure of symmetry”. Consider the 2D pattern, containing N polygons demonstrating
certain elements of symmetry (rotational symmetry; centers of symmetry, axes of symmetry,
etc.), denoted Gi, i = 1, 2 . . . k, where k is a number of nonidentical symmetry operations.
Thus, the informational measure of symmetry will be defined similarly to Equation (1), as:

Hsym(G) = −∑k
i=1 P(Gi)lnP(Gi), (3)

where P(Gi) is the probability of appearance of the symmetry operation Gi within the
polygons constituting the pattern, defined as:

P(Gi) =
m(Gi)

NG
≤ 1, (4)

where NG = ∑k
i=1 m(Gi) is the total number of symmetry elements (operations) appearing

in the polygons recognized in a given pattern and m(Gi) is a number of the same symmetry
elements (operations) Gi calculated for a given pattern. The normalization condition given
by Equation (5) takes place:

∑k
i=1 P(Gi) = 1 (5)

It is noteworthy that the entire 2D pattern may be symmetrical or nonsymmetrical;
the definition of the informational measure of symmetry is not sensitive to the symmetry of
the entire pattern and it is not influenced by the long-range order inherent for the pattern.
Consider first, as an example, an “ideal pattern” built of identical equilateral triangles,
depicted in Figure 2a.

The symmetry group of the equilateral triangle is the dihedral symmetry group D3.
The symmetry group Dn generally comprises n symmetry axes and n rotations, given by
the angles ϕn = k 2π

n ; k = 0, 1, 2 . . . n − 1. Thus, in the case of equilateral triangles, shown in
Figure 2a we have Ng = 2np = 6p elements of symmetry, where p is the total number of
triangles in the pattern. The number of each of the elements of symmetry in the addressed
pattern equals m(Gi) = 1 × p. Thus, probabilities P(Gi) are immediately calculated as
(Gi) =

1 × p
(3 + 3) × p = 1

6 . Hence, for this pattern the informational measure of symmetry is
calculated with Equation (6):

Hsym(D3) = −∑6
i=1 P(Gi)lnP(Gi) = 6 × 1

6
ln

1
6
= 1.792 (6)

https://www.physics.uci.edu/~foams/do_all.html
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main types of Voronoi diagrams arising from the Penrose tiling P3, namely: 

a-type Voronoi diagrams (abbreviated a-diagrams), where the centers of the Penrose 
rhombs are taken as the seeds, shown in Figure 3a; 

b-type Voronoi diagrams (abbreviated b-diagrams) where the vertices of the rhombs 
constituting the Penrose tiling are taken as the seeds, depicted in Figure 3b; 

c-type Voronoi diagrams (abbreviated c-diagrams) where the centers of the edges of 
Penrose rhombs are taken as the seeds, shown in Figure 3c. 

In addition, the combinations of the a, b and c diagrams were addressed, denoted 𝑎𝑏, 𝑎𝑐, 𝑏𝑐 and 𝑎𝑏𝑐 correspondingly. These Voronoi diagrams are shown in Figure 3d–g. For 
example, 𝑎𝑏 -diagram (depicted in Figure 3d) is the Voronoi diagram arising from 
merging of the seed points appearing in a- and b-diagrams. Note, that a, b, c, ab, ac, bc and 

Figure 2. (a) Pattern (Voronoi tessellation) built of identical equilateral triangles, demonstrating: Hsym(G) = 1.792;
Svor = 0; Ŝ(G) = 0% is shown; (b) Pattern (Voronoi tessellation) built of different unsymmetrical polygons, demonstrating:
Hsym(G) = 0; Svor = 1.6103; Ŝ(G) = 46.91% is depicted.

Obviously, for the same pattern, Svor(G) = 0; Ŝ(G) = 0 take place. Now consider the
opposite case of the completely disordered pattern, depicted in Figure 2b. In this case, we
recognize for all of the polygons constituting the pattern the single element of symmetry,
namely the rotation ϕ1 = k 2π

1 = 2π; thus, NG = p; thus, P(G1) = 1 and consequently
Hsym = −∑1

i=1 P(Gi)lnP(Gi) = ∑6
i=1 1ln(1) = 0.

The Voronoi entropy and the continuous measure of symmetry for the same ran-
dom, disordered pattern, as shown in Figure 2b, equals: Svor = 1.6103; Ŝ(G) = 46.91%,
which is close to the Voronoi entropy Svor = 1.71 calculated for disordered patterns in
references [39–41].

3.2. Informational Measure of Symmetry of the Patterns Generated by the Penrose Tiling

A given Penrose tiling generates a number of Voronoi diagrams, shown in Figure 3a–g
(depicted in the left column of Figure 3). We already introduced in reference [23] three
main types of Voronoi diagrams arising from the Penrose tiling P3, namely:
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(f) bc-type; (g) abc-type (a, b, and c-types combined). Color mapping: magenta polygons are triangles, green are tetragons,
yellow are pentagons, grey are hexagons, blue are heptagons.

a-type Voronoi diagrams (abbreviated a-diagrams), where the centers of the Penrose
rhombs are taken as the seeds, shown in Figure 3a;

b-type Voronoi diagrams (abbreviated b-diagrams) where the vertices of the rhombs
constituting the Penrose tiling are taken as the seeds, depicted in Figure 3b;

c-type Voronoi diagrams (abbreviated c-diagrams) where the centers of the edges of
Penrose rhombs are taken as the seeds, shown in Figure 3c.

In addition, the combinations of the a, b and c diagrams were addressed, denoted ab,
ac, bc and abc correspondingly. These Voronoi diagrams are shown in Figure 3d–g. For
example, ab-diagram (depicted in Figure 3d) is the Voronoi diagram arising from merging
of the seed points appearing in a- and b-diagrams. Note, that a, b, c, ab, ac, bc and abc-type
Voronoi diagrams possess the same groups of symmetry, reflecting the groups of symmetry
of the seed points. In particular, all of the diagrams are characterized by the five-fold
rotational symmetry as well as the mirror plane symmetry, which can be recognized from
Figure 3. The elements of symmetry appearing in the patterns are cataloged in Table 1. It
should be emphasized that in spite of the fact that the entire patterns are characterized by
the five-fold rotational symmetry, patterns a, c, and ac are built from the polygons, which
do not demonstrate this kind of the rotational symmetry.

Table 1. Symmetry elements presented in different types of Voronoi Diagrams generated by P3
Penrose tiling.

Diagram
Type

Mirror Planes Number (mp) Number of Rotation Axes (mr)
p1 p5.2 p5.3 p5.4 p5.5 p2.2 (2π) ( 2π

5 ) ( 4π
5 ) ( 6π

5 ) ( 8π
5 ) (π)

a 60 - - - - - 140 - - - - -
b 141 6 6 6 - 141 6 6 6 6 -
c 100 - - - - - 290 - - - - -

ab 306 6 6 6 6 160 311 6 6 6 6 160
ac 65 - - - - 35 165 - - - - 35
bc 91 1 1 1 1 - 161 1 1 1 1 -
abc 151 1 1 1 1 60 221 1 1 1 1 60

mr is the total number of rotation axes corresponding to the rotation angle ϕn = 2π
n . mp is the total number of

corresponding mirror planes. p1 denotes the single mirror plane. pn.k denotes k-type-mirror planes appearing
in the polygon possessing n-fold symmetry. p5.2 denotes the second-type mirror planes appearing in the 5-fold
symmetric polygon.

Now we address the quantification of symmetry of the patterns depicted in Figure 3.
Which of the patterns are more and which are less symmetric? We will demonstrate that
the answer to this question is far from trivial, and it is ambiguous. The values of the
continuous symmetry measure (S̃(G) and Ŝ(G)) and the Voronoi Entropy (Svor) of the
patterns were reported in reference [23]. The results of the calculation of the informational
measure of symmetry Hsym(G) for seven investigated Penrose tilings are summarized in
Figure 3 and Table 2.
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Table 2. Informational measure of symmetry (IMS), Voronoi Entropy (VE) and Continuous Measure of
Symmetry (CSM) Calculated for the Voronoi Diagrams generated by the Penrose tiling (see Figure 3).

Diagram
Type

Polygon
Types

Number

IMS,
Hsym

Voronoi
Entropy,

Svor

CSM
S̃(G)

CSM
Ŝ(G)% Ψ

a 4 0.611 1.1364 0.1138 33.74 5.37
b 3 1.310 1.0847 0.0367 19.15 35.70
c 1 0.569 0 0.1099 33.15 5.18

ab 5 1.566 1.122 0.0619 24.87 25.30
ac 4 1.161 1.1026 0.0931 30.52 12.47
bc 4 0.835 1.0371 0.0912 30.2 9.16
abc 3 1.331 0.5026 0.0515 22.7 25.84

What is the meaning of the introduced informational measure of symmetry Hsym(G)?
In our interpretation we follow the approach developed in references [5,38]. Following
reference [5], three pathways of interpretation of Hsym(G) are possible, namely:

(i) Hsym(G) is interpreted as an averaged uncertainty in the presence of symmetry ele-
ments from the group G in the given pattern.

(ii) Hsym(G) may also be understood as a measure of the average unlikelihood, or un-
expectedness of presence of symmetry elements constituting group G in the given
2D pattern.

(iii) The most complicated is the information interpretation of the Hsym(G). It turns out
that the quantity Hsym(G) provides us with a measure of this information in terms
of the minimum number of questions one needs to ask in order to find the presence
of elements of symmetry Gi in a given pattern, when P(Gi), i.e., the probabilities of
appearance of the symmetry operation Gi within the pattern are prescribed. It turns
out that the quantity Hsym(G) provides a minimum measure of information needed
to describe a given pattern as a composition of Gi elements of symmetry [5].

Whatever the interpretation of the informational measure of symmetry Hsym(G) is, it
provides averaged information about the entire pattern, and it is not related to the specific
symmetry operations Gi, as stressed in reference [5]. Let us start our analysis from the
pattern “a”. As is recognized from Table 2, pattern “a” is characterized by the relatively
low value of Hsym(G), at 0.611, and the highest of the studied patterns values of Svor at
1.1364 and S̃(G) at 0.1138 (Ŝ(G) = 33.74%). How should these data be interpreted? The
low value of the informational measure of symmetry Hsym(G) = 0.611 emerges from the
fact that the polygons constituting pattern “a” possess only two elements of symmetry,
namely 2π-rotations (which is an identity element of the symmetry group) and the mirror
planes (see Table 1). Thus, the averaged uncertainty in the presence of symmetry elements,
quantified by Hsym(G), is low. On the other hand, pattern “a” is built from four types
of different polygons, depicted in Figure 3a; this, contrastingly, results in the relatively
high value of the Voronoi entropy. The effort necessary for symmetrization of the pattern
“a” is also high; this explains the high value of Ŝ(G). Thus, we came to the following
main conclusions:

(i) The quantification of symmetry of the pattern has a “fine structure” and could not be
expressed with a single numerical value.

(ii) The information measure of symmetry, the Voronoi entropy and the continuous
measure of symmetry are not necessarily correlated.

Now we address pattern “b”. This is characterized by the high value of the infor-
mational measure of symmetry Hsym(G), the high value of the Voronoi entropy Svor and
the lowest possible value of the continuous measure of symmetry Ŝ(G) (see Table 2). The
high value of Hsym arises from the broad diversity of the symmetry elements appearing
in this pattern (see Table 1); the relatively high value of the Voronoi entropy calculated
for pattern “b” emerges from the three kinds of polygons constituting this pattern and the
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low continuous measure of symmetry evidences “the low effort” necessary for converting
polygons into the perfectly symmetric shapes.

The high values of Hsym(G) and Svor derived for the pattern “ab” are explained in the
same way; however, the effort necessary for symmetrization of this pattern and quantified
by S̃(G) is two-times higher that that established for pattern “b”.

Now we address the most paradoxical pattern “c”, which is characterized by the
lowest possible Voronoi entropy Svor = 0 and the lowest of the studied pattern values of
the informational measure of symmetry Hsym = 0.569. Pattern “c” is built from quadrangles
only; thus, the Voronoi entropy of this pattern is zero. Only two elements of symmetry
appear in this pattern, namely: the mirror plane and the 2π-rotational symmetry (see
Table 1), hence, the averaged uncertainty in the presence of symmetry elements is low.
This implies the low value of the informational measure of symmetry Hsym. On the other
hand, the continuous measure of symmetry, inherent for pattern “c”, quantifying the effort
necessary for converting this pattern in a completely symmetrical manner is relatively high,
namely at values S̃(G) = 0.1099 (Ŝ(G) = 33.15%).

Thus, it turns out, that the least effort necessary for the transformation of the polygons
in the pattern into perfectly symmetrical ones is inherent for pattern “b”, the lowest value
of Voronoi entropy is established for the pattern “c”, and the same pattern demonstrates
the smallest value of the informational measure of symmetry. It was instructive to define
the ratio Ψ supplied by Equation (7):

Ψ =
Hsym(G)

S̃(G)
, (7)

which is supplied in Table 2, where it is seen that for the studied Penrose-tiling-inspired
patterns this ratio is confined within a broad range, namely: 5.18 < Ψ < 35.7. This
means that the values of the informational and continuous measures of symmetry are not
correlated. At the same time, the value of the Voronoi entropy Svor also does not correlate
with the informational measure of symmetry Hsym(G) and the continuous measure of
symmetry S̃(G) (see Table 2).

It should be emphasized that the entropy-like, mathematically shaped informational
measure of symmetry Hsym(G), defined by Equations (3) and (4), is the intensive value,
describing the patterns generated by the Penrose tiling, in other words, it does not depend
on the area of the pattern (when the edge effects are neglected); thus, it is very different
from the extensive thermodynamic entropy, as is discussed in detail in references [5–9]. On
the other hand, it is well-expected that IMS will undergo a jump under phase-transitions in
quasicrystals; we plan to study this phase-transition-inspired change in IMS in the future.
The extension of the IMS to the 3D lattices is straightforward.

Our paper clearly demonstrates that quantification of the “ordering” in 2D patterns
performed solely with the Voronoi entropy is a widespread mistake. Consider the patterns
presented in Figure 4. The pattern depicted in Figure 4a is built of k irregularly shaped
quadrangles; whereas the pattern depicted in Figure 4b is built of k squares. Obviously
the Voronoi entropy of both of these patterns equals zero; however, the pattern shown in
Figure 4a is perceived as random (disordered), whereas the pattern built of squares and
shown in Figure 4b is reasonably considered as an ordered one. The Voronoi entropy taken
as a single measure of ordering fails to quantify order in this case. Now let us calculate
IMS for these patterns. For the pattern built of irregular (nonsymmetric) quadrangles,
shown in Figure 4a, we distinguish for all of the quadrangles constituting the pattern
the single element of symmetry, namely the one-fold rotational symmetry reduced to the
rotation by the angle ϕ1 = k 2π

1 = 2π, denoted by G1. Thus, NG = k and P(G1) = 1 and
consequently we calculate for this pattern Hsym(G1) = −P(G1)lnP(G1) = −1 × ln1 = 0.
Now we address the pattern built of identical squares, shown in Figure 4b. The symmetry
group of a square is the dihedral group denoted usually as D4. It contains four rotations
and four mirror axes; if we deal with the pattern comprising k squares we have Ng = 8p
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elements of symmetry. Thus, we easily calculate P(Gi) =
8
8k = 1

8 and, consequently, IMS
calculated with Equation (3) equals Hsym(D4) = 2.08.
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This example explains why the Voronoi entropy does not correlate with the infor-
mational and continuous measures of symmetry. This is due to the fact that the Voronoi
entropy is not directly related to the symmetry group inherent for the given pattern. So,
what is the exact meaning of the Voronoi entropy? The Voronoi entropy should be accu-
rately interpreted as an averaged uncertainty in the presence of n-polygons in the given
2D pattern.

4. Conclusions

We conclude that quantifying of ordering and quantifying of symmetry in the patterns
is a multilayer, perplexed and challenging task. We introduced the informational measure
of symmetry Hsym (G), defined as: Hsym(G) = −∑n

i=1 P(Gi)lnP(Gi), where P(Gi) is the
probability of appearance of the symmetry operation Gi within the elements of the given
pattern, which is mathematically shaped as the Shannon measure of information [1,2,5–9].
Hsym(G) is interpreted as an averaged uncertainty in the presence of symmetry elements
from the group G in the given pattern. Hsym(G) may also be understood as a measure of the
average unexpectedness of the presence of symmetry elements constituting group G in the
given 2D pattern. Whatever is the interpretation of the informational measure of symmetry
Hsym(G), it supplies us with averaged information about the entire pattern, and it is not
related to the specific symmetry operation Gi. As an example, the informational measure
of symmetry of the “ideal” pattern built of identical equilateral triangles is established
as Hsym(D3) = 1.792. The informational measure of symmetry of the random, completely
disordered pattern is zero. We studied the patterns arising from the Penrose P3 tiling
and calculated the Voronoi entropy Svor, the continuous measure of symmetry S̃(G) and
the informational measure of symmetry inherent for these patterns. It is usually adopted
that the Voronoi entropy quantifies ordering in 2D sets of points. It was also suggested
that psychological perception of “order” is related to the Voronoi-like procedure; namely,
neurophysiological and psychophysical data support the idea that that the human visual
system generates a Voronoi-like representation at an early stage in visual processing, and
human observers are aware of the relational structures revealed by the dual graph of
Voronoi tessellation [42]. Our study of order inherent for the Penrose tiling shows that
the notion of “order” splits, and could not be quantified with a single numerical value.
We demonstrated that Hsym(G), S̃(G) and Svor are not correlated. In fact, the Voronoi
entropy is not directly related to the symmetry group of the pattern. Our paper reveals
the fine structure of quantification of symmetry of patterns: the informational measure of
symmetry does not necessarily correlate with either the effort necessary for symmetrization
of the pattern nor with its Voronoi entropy. Thus, quantification of symmetry of the
pattern could not be exhausted with a single quantity. It should be emphasized that
the introduced informational measure of symmetry is the intensive value, describing the
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patterns generated by the Penrose tiling, in other words, it does not depend on the area
of the pattern (when the edge effects are neglected); thus, it is very different from the
“true” extensive thermodynamic Boltzmann entropy [5–9]. It is plausible to suggest that
the introduced “informational measure of symmetry” will enable an additional glance at
the problem of phase transitions in condensed matter, accompanied by the change in the
ordering/symmetry occurring under the transition. In our future investigations we plan to
extend the use of the introduced informational measure of symmetry for the study of the
patterns built of curvilinear shapes.

Author Contributions: Conceptualization, E.B., I.L. and M.F.; methodology, E.B., M.F., I.L., N.S. and
S.S.; software, I.L., M.F. and N.S.; validation, E.B., M.F., I.L., N.S. and S.S.; formal analysis, E.B.,
M.F., I.L., N.S. and S.S.; investigation, I.L. and M.F.; N.S. and S.S.; data curation, E.B., M.F., I.L.,
N.S. and S.S.; writing—original draft preparation, E.B. and M.F.; supervision, E.B. and S.S.; project
administration, S.S. All authors have read and agreed to the published version of the manuscript.

Funding: Edward Bormashenko and Mark Frenkel are thankful for funding to the Russian Science
Foundation, Grant number 19-19-00076.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available on request
from the corresponding author.

Acknowledgments: The authors are thankful to Yelena Bormashenko for her kind help in preparing
this paper. The authors are thankful to anonymous reviewer for extremely fruitful remarks.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
2. Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Chicago, IL, USA, 1949.
3. Landau, L.D.; Lifshitz, E.M. Statistical Physics, 3rd ed.; Course of Theoretical Physics; Elsevier: Oxford, UK, 2011; Volume 5.
4. Kittel, C. Thermal Physics; J. Wiley & Sons: New York, NY, USA, 1969.
5. Ben-Naim, A. Entropy, Shannon’s Measure of Information and Boltzmann’s H-Theorem. Entropy 2017, 19, 48. [CrossRef]
6. Ben-Naim, A. Information Theory; World Scientific: Singapore, 2017.
7. Ben-Naim, A. A Farewell to Entropy: Statistical Thermodynamics Based on Information; World Scientific: Singapore, 2008.
8. Ben-Naim, A.; Casadei, D. Modern Thermodynamics; World Scientific: Singapore, 2016.
9. Ben-Naim, A. Entropy and the Second Law. Interpretation and Misss-Interpretationsss; World Scientific: Singapore, 2012.
10. Vstovsky, G.V. Transform information: A symmetry breaking measure. Found. Phys. 1997, 27, 1413–1444. [CrossRef]
11. Gleiser, M.; Stamatopoulos, N. Information content of spontaneous symmetry breaking. Phys. Rev. D 2012, 86, 045004. [CrossRef]
12. Bormashenko, E. Entropy, Information, and Symmetry: Ordered is Symmetrical. Entropy 2020, 22, 11. [CrossRef] [PubMed]
13. Bormashenko, E. Entropy, Information, and Symmetry: Ordered Is Symmetrical, II: System of Spins in the Magnetic Field. Entropy

2020, 22, 235. [CrossRef]
14. Zabrodsky, H.; Peleg, S.; Avnir, D. Continuous symmetry measures. J. Am. Chem. Soc. 1992, 114, 7843–7851. [CrossRef]
15. Zabrodsky, H.; Peleg, S.; Avnir, D. Continuous symmetry measures. 2. Symmetry groups and the tetrahedron. J. Am. Chem. Soc.

1993, 115, 8278–8289. [CrossRef]
16. Alemany, P.; Casanova, D.; Alvarez, S.; Dryzun, C.; Avnir, D. Continuous Symmetry Measures: A New Tool in Quantum Chemistry,

Reviews in Computational Chemistry; Parrill, A.L., Lipkowitz, K.B., Eds.; Wliey, Interscience: Hoboken, NJ, USA, 2017; Volume 30,
pp. 289–353.

17. Zabrodsky, H.; Avnir, D. Continuous Symmetry Measures. 4. Chirality. J. Am. Chem. Soc. 1995, 117, 462–473. [CrossRef]
18. Pinsky, M.; Avnir, D. Continuous Symmetry Measures. 5. The Classical Polyhedra. Inorg. Chem. 1998, 37, 5575–5582. [CrossRef]
19. Zabrodsky, H.; Peleg, S.; Avnir, D. Symmetry as a continuous feature. IEEE Trans. Pattern Anal. Mach. Intel. 1995, 17, 1154–1166.

[CrossRef]
20. Pinsky, M.; Dryzun, C.; Casanova, D.; Alemany, P.; Avnir, D. Analytical methods for calculating Continuous Symmetry Measures

and the Chirality Measure. Comput. Chem. 2008, 29, 2712–2721. [CrossRef] [PubMed]
21. Bonjack, M.; Avnir, D. The near-symmetry of protein oligomers: NMR-derived structures. Sci. Rep. 2020, 10, 8367. [CrossRef]
22. Sinai, H.E.; Avnir, D. Adsorption-induced Symmetry Distortions in W@Au12 Nanoclusters, Leading to Enhanced Hyperpo-

larizabilities. Israel J. Chem. 2016, 56, 1076–1081. [CrossRef]

http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://doi.org/10.3390/e19020048
http://doi.org/10.1007/BF02551520
http://doi.org/10.1103/PhysRevD.86.045004
http://doi.org/10.3390/e22010011
http://www.ncbi.nlm.nih.gov/pubmed/33285786
http://doi.org/10.3390/e22020235
http://doi.org/10.1021/ja00046a033
http://doi.org/10.1021/ja00071a042
http://doi.org/10.1021/ja00106a053
http://doi.org/10.1021/ic9804925
http://doi.org/10.1109/34.476508
http://doi.org/10.1002/jcc.20990
http://www.ncbi.nlm.nih.gov/pubmed/18484634
http://doi.org/10.1038/s41598-020-65097-8
http://doi.org/10.1002/ijch.201600082


Symmetry 2021, 13, 2146 11 of 11

23. Bormashenko, E.; Legchenkova, I.; Frenkel, M.; Shvalb, S. Voronoi Entropy vs Continuous Measure of Symmetry of the Penrose
Tiling: Part I. Analysis of the Voronoi Diagrams. Symmetry 2021, 13, 1659. [CrossRef]

24. Voronoi, G. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches
sur les paralléloèdres primitifs. Reine Angew. Math. 1908, 134, 198–287. [CrossRef]

25. Barthélemy, M. Spatial networks. Phys. Rep. 2011, 499, 1–101. [CrossRef]
26. Weaire, D.; Rivier, N. Soap, cells and statistics—Random patterns in two dimensions. Contemp. Phys. 1984, 25, 59–99. [CrossRef]
27. Wang, S.; Tian, Z.; Dong, K.; Xie, Q. Inconsistency of neighborhood based on Voronoi tessellation and Euclidean distance. J. Alloys

Compd. 2021, 854, 156983. [CrossRef]
28. Fedorets, A.A.; Dombrovskyb, L.A. Self-assembled levitating clusters of water droplets: Pattern-formation and stability. Sci. Rep.

2017, 7, 1888. [CrossRef]
29. Liu, Y.T.; Tao, C.L.; Zhang, X.; Xia, W.; Shi, D.Q.; Qi, L.; Xu, C.; Sun, R.; Li, X.; Bi, G.Q.; et al. Mesophasic organization of GABAA

receptors in hippocampal inhibitory synapses. Nat. Neurosci. 2020, 23, 1589–1596. [PubMed]
30. Fedorets, A.A.; Frenkel, M.; Bormashenko, E.; Nosonovsky, M. Small Levitating Ordered Droplet Clusters: Stability, Symmetry,

and Voronoi Entropy. J. Phys. Chem. Lett. 2017, 8, 5599–5602. [CrossRef]
31. Xu, K. Geometric formulas of Lewis’s law and Aboav-Weaire’s law in two dimensions based on ellipse packing. Philos. Mag. Lett.

2019, 99, 317–325. [CrossRef]
32. Frenkel, M.; Arya, P.; Bormachenko, E.; Santer, S. Quantification of ordering in active light driven colloids. J. Colloid Interface Sci.

2021, 586, 866–875. [CrossRef]
33. Bormashenko, E.; Frenkel, M.; Vilk, A.; Legchenkova, I.; Fedorets, A.A.; Aktaev, N.E.; Dombrovsky, L.A.; Nosonovsky, M.

Characterization of self-assembled 2D patterns with Voronoi Entropy. Entropy 2018, 20, 956. [CrossRef] [PubMed]
34. Frenkel, M.; Fedorets, A.A.; Dombrovsky, L.A.; Nosonovsky, M.; Legchenkova, I.; Bormashenko, E. Continuous Symmetry

Measure vs Voronoi Entropy of Droplet Clusters. J. Phys. Chem. C 2021, 125, 2431–2436. [CrossRef]
35. Bormashenko, E.; Legchenkova, I.; Frenkel, M. Symmetry and Shannon Measure of Ordering. Entropy 2019, 21, 452. [CrossRef]
36. Mebatsion, H.K.; Verboven, P.; Verlinden, B.E.; Hoa, Q.T.; Nguyen, T.A.; Nicolaï, B.M. Microscale modelling of fruit tissue using

Voronoi tessellations. Comput. Electron. Agric. 2006, 52, 36–48. [CrossRef]
37. Steinhardt, P.; Jeong, H.C. A simpler approach to Penrose tiling with implications for quasicrystal formation. Nature 1996, 382,

431–433. [CrossRef]
38. Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J.W. Metallic phase with long-range orientational order and no translational symmetry.

Phys. Rev. Lett. 1984, 53, 1951–1953. [CrossRef]
39. Yaglom, A.M.; Yaglom, I.M. Probability and Information; Jain, V.K., Reidel, D., Eds.; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 1983.
40. Limaye, A.V.; Narhe, R.D.; Dhote, A.M.; Ogale, S.B. Evidence for convective effects in breath figure formation on volatile fluid

surfaces. Phys. Rev. Lett. 1996, 76, 3762–3765. [CrossRef] [PubMed]
41. Martin, C.P.; Blunt, M.O.; Pauliac-Vaujour, E.; Stannard, A.; Moriarty, P.; Vancea, I.; Thiele, U. Controlling pattern formation in

nanoparticle assemblies via directed solvent dewetting. Phys. Rev. Lett. 2007, 99, 116103. [CrossRef] [PubMed]
42. Dry, M.J. Using relational structure to detect symmetry: A Voronoi tessellation based model of symmetry perception. Acta Psychol.

2008, 128, 75–90. [CrossRef] [PubMed]

http://doi.org/10.3390/sym13091659
http://doi.org/10.1515/crll.1908.134.198
http://doi.org/10.1016/j.physrep.2010.11.002
http://doi.org/10.1080/00107518408210979
http://doi.org/10.1016/j.jallcom.2020.156983
http://doi.org/10.1038/s41598-017-02166-5
http://www.ncbi.nlm.nih.gov/pubmed/33139942
http://doi.org/10.1021/acs.jpclett.7b02657
http://doi.org/10.1080/09500839.2019.1677957
http://doi.org/10.1016/j.jcis.2020.10.053
http://doi.org/10.3390/e20120956
http://www.ncbi.nlm.nih.gov/pubmed/33266680
http://doi.org/10.1021/acs.jpcc.0c10384
http://doi.org/10.3390/e21050452
http://doi.org/10.1016/j.compag.2006.01.002
http://doi.org/10.1038/382431a0
http://doi.org/10.1103/PhysRevLett.53.1951
http://doi.org/10.1103/PhysRevLett.76.3762
http://www.ncbi.nlm.nih.gov/pubmed/10061103
http://doi.org/10.1103/PhysRevLett.99.116103
http://www.ncbi.nlm.nih.gov/pubmed/17930453
http://doi.org/10.1016/j.actpsy.2007.10.001
http://www.ncbi.nlm.nih.gov/pubmed/18096122

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Definition of the Informational Measure of Symmetry 
	Informational Measure of Symmetry of the Patterns Generated by the Penrose Tiling 

	Conclusions 
	References

