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1. Introduction

The property of a mathematical object to remain unchanged after an operation or a
transformation is called invariance. Symmetry is a type of invariance. Invariants usually
reflect intrinsic properties of the object of study [1]. The reflection principle is invariably
presented as a consequence of the strong Markov property. The reflection principle is
one of the most important properties of Brownian motion. Brownian motion sample
paths satisfy the Markov property, symmetry, reflection principle, invariance scaling, time
inversion [2,3], and new symmetry nominated as the quasi-time-reversal invariance [4].
It turned out to be of the Brownian motion is the clef to confirm the period symmetry for
diffusion operations on the circle.

It is noteworthy that the Brownian motion is closely depicted through the Langevin
equation when the force of random fluctuation is proposed to be white noise. If the
force of random fluctuation is not white noise, the particle motion is portrayed by the
generalized Langevin equation [5]. In a fractal medium, varied popularizations of the
Langevin equation have been suggested to depict dynamical operations. In general, the
differential equations of integer order can not accurately characterize the experiential and
area measurement data, as a different approach, differential equation models of fractional
order are now being used [6]. Based on the fractional Langevin equation, Mainradi and
Pironi [7] had reintroduced Brownian motion. Analytical expressions of the correlation
functions were obtained using the two fluctuation-dissipation theorems and fractional
calculus approaches. The fractional Langevin equation has been received the attention of
many scientists due to its extremely useful applications in different fields of science and
has been dealt with under different conditions (see [8–14]).

Undoubtedly, the close connection between Langevin equations, Brownian motion,
and the symmetry principles, observed through the previous discussion, encourages any
author to study these equations, their solutions, and the properties of their solutions in
various fields. Therefore, in this investigation, we address the fraction Langevin coupled
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system of fractional Caputo type. We aim to establish sufficient conditions the existence
results to the next system

cDβi (cDαi + λi)vi(t) = gi(t, vj(t),c Dγi vj(t)), t ∈ [0, 1], i 6= j (1)

subjected to the specific boundary conditions

vi(0) = 0, cDαi vi(0) +c Dαi vi(1) = 0,

vi(1) =
∫ 1

0
v1(s)dxi(s) +

∫ 1

0
v2(s)dyi(s). (2)

where for i = 1, 2, vi(t) are the displacements of two particles in the unit interval [0, 1],
cDβi and cDαi are the fractional derivatives in the sense of Caputo, 0 < αi < 1, 1 < βi ≤
2, 0 < γi < αj, λi ∈ R and the integrals implied by the conditions are the Stieltjes integral
with respect to the functions xi(s), yi(s) : [0, 1] → R, i = 1, 2 and gi : [0, 1]×R×R → R
which are continuous and might include an extrinsic force field, a position-dependent
phenomenological fluid friction coefficient, the strength of the stochastic force, or random
fluctuation force (may be white noise term or not).

The Riemann–Stieltjes integrals are beneficial and valuable mathematical tools when
acting with random and discrete variables synchronously. They have several applications
in statistics and physics but are restricted in their applications with Stochastic processes.

The existence theorem is a method that allows us to determine whether a solution to a
differential equation exists that fulfills specified initial or boundary conditions. Indeed, it
is too hard to give an exact solution to the differential equation in its general form. Thus,
contributors consider the existence, uniqueness, numerical algorithms, etc., to discuss the
solution and its properties. In the past few decades, interest has greatly increased in the
study of the existence theory of solution to differential equations, especially to fractional
ones, see [15–18] and the references cited therein.

Fractional differential equations have recently received a lot of attention because of
their wide range of applications in engineering, physics, chemistry, biology, and other
domains. In the last few decades, researchers have been interested in differential equations
of fractional order. It arises from fractional-order derivatives offering powerful tools for
the description of memory and inherited properties of different materials and processes in
different fields of science and engineering [19–22].

The coupled system of differential equations with fractional order is considered an
important and valuable point to study because of its many applications [23,24]. It is notable
that the nonlinear term in (1) is dependent on the fractional derivative of the unknown
function. As far as we know, this paper seems to be the first work to deal with this case on
a fractional Langevin coupled system of Caputo type under the conditions described in (2).

Our action plan is in the following manner: In the second section, we introduce some
lemmas needed in our main results. In the third section, the existence results by using
Schauder fixed point theorem are proven. An example showing our results is attached in
the final section.

2. Preliminaries and Relevant Lemmas

Here, we begin by introducing various notations, fundamental facts, and definitions
that will be used in the next sections. For more details see [25,26].

Definition 1. Suppose that u : [0, ∞)→ R is a continuous function, the R-L integral with order
σ > 0 is presented as

Iσu(t) =
∫ t

0

(t− τ)σ−1

Γ(σ)
u(τ)dτ
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assuming the integral’s right-hand side exists, and Γ(σ) is the Euler gamma function known as

Γ(σ) =
∫ ∞

0
τσ−1e−τdτ, α > 0.

Definition 2. The Caputo derivative of order σ > 0 to the function u : [0, ∞)→ R is introduced as

cDσu(t) =
1

Γ(m− σ)

∫ t

0
(t− τ)m−σ−1u(m)(τ)dτ

where m − 1 < σ ≤ m and m ∈ N, on the assumption that the R-H-S exists and is finite.
Remember that the value of Caputo derivative is zero for any constant.

Lemma 1. Let α and β be positive reals. Then,

Iα Iβu(t) = Iα+βu(t)

where u is a continuous function.

Lemma 2. Assume that m ∈ N and m− 1 < α ≤ m. Then,

Iα cDαv(t) = v(t) + a0 + a1t + · · ·+ am−1tm−1

where v is a continuous function.

Definition 3. Let p[c, d] = {c = t0, t1, · · · , tn = d} be a partition of the interval [c, d]. Define
Vp(h) as

Vp(h) =
n

∑
r=1

∣∣∣h(tr)− h(tr−1)
∣∣∣.

Then, we state that the function h : [c, d]⇒ R is of bounded variation (h ∈BV[c, d]) if the set
{Vp(h) : p ∈ P[c, d]} is bounded above, and sup Vp(h) is called a total variation of h and denoted
by Vd

c h.

Lemma 3. The Stieltjes–Riemann integral
∫ d

c g(τ)dh(τ) exists if g(t) ∈ C([c, d],R) and h :
[c, d]⇒ R are functions of bounded variations.

Lemma 4. Let g and h be as in Lemma 3 and K = max
t∈[c,d]

|g(t)|. Then,

∣∣∣∣ ∫ d

c
g(τ)dh(τ)

∣∣∣∣ 6 KVd
c h(t).

Corollary 1. If the function h be monotonically on [c, d] (decreasing or increasing ), then the
Stieltjes–Riemann integral

∫ d
c g(τ)dh(τ) exists and∣∣∣∣ ∫ d

c
g(τ)dh(τ)

∣∣∣∣ 6 K
∣∣∣h(d)− h(c)

∣∣∣
such that each of K and the function g is as in Lemma 4.

For more information on the Riemann–Stieltjes integral and functions of bounded
variation, we recommend reading [27–29].
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Lemma 5. For i = 1, 2, let

Λi(t) =
(2t− 1− αi)tαi

1− αi
,

∆i(t) =
(1− t)tαi

(1− αi)Γ(αi + 1)
.

Then the problem

cDβi (cDαi + λi)vi(t) = gi(t), t ∈ [0, 1] (3)

vi(0) = 0, cDαi vi(0) +c Dαi vi(1) = 0,

vi(1) =
∫ 1

0
v1(s)dxi(s) +

∫ 1

0
v2(s)dyi(s). (4)

has a unique solution illustrated by

vi(t) = Iαi+βi gi(t)− λi Iαi vi(t) + Λi(t)(λi Iαi vi(1)− Iαi+βi gi(1)) + ∆i(t)Iβi gi(1)

+ (Λi(t) + λi∆i(t))
(∫ 1

0
v1(s))dxi(s) +

∫ 1

0
v2(s)dyi(s)

)
, (5)

where 0 < αi < 1, 1 < βi ≤ 2, λi ∈ R and gi ∈ C[0, 1].

Proof. By operating Iβi followed by Iαi on both sides of (3) and using Lemma 2, we get

cDαi vi(t) = Ai + Bit + Iβi gi(t)− λivi(t), (6)

vi(t) = Ai
tαi

Γ(αi + 1)
+ Bi

tαi+1

Γ(αi + 2)
+ Iαi+βi gi(t)− λi Iαi vi(t) + Ci,

The first condition (4) gives Ci = 0 and the second and third conditions give

2Ai + Bi = −Iβi gi(1) + λi

(∫ 1

0
v1(s)dxi(s) +

∫ 1

0
v2(s)dyi(s)

)
Ai

Γ(α + 1)
+

Bi
Γ(α + 2)

= −Iαi+βi gi(1) + λi Iαi vi(1) +
∫ 1

0
v1(s)dxi(s) +

∫ 1

0
v2(s)dyi(s)

By solving the previous equations, we get

Ai =
1

1− αi
{Γ(αi + 2)(Iαi+βi gi(1)− λi Iαi vi(1))− Iβi gi(1)

+ [λi − Γ(αi + 2)][
∫ 1

0
v1(s)dxi(s) +

∫ 1

0
v2(s)dyi(s)]},

Bi =
1

1− αi
{2Γ(αi + 2)(λi Iαi vi(1)− Iαi+βi gi(1)) + (1 + αi)Iβi gi(1)

+ [2Γ(αi + 1)− λi][
∫ 1

0
v1(s)dxi(s) +

∫ 1

0
v2(s)dyi(s)]}.

Substituting the above values of Ai, Bi in (3) to obtain the desired results.

Postulate the space of all continuous functions on the unit interval [0, 1] is denoted by
C(I). We define the space

Vi = {vi(t) ∈ C(I) and cDγj vi(t) ∈ C(I)}, i = 1, 2

with the norm

‖ vi ‖Vi= max
t∈I
| vi(t) | +max

t∈I
|c Dγj vi(t) |, i 6= j = 1, 2.
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Consider the class Ψ of continuous functions which defined as

Ψ = {ĝi : ĝi = gi(t, vj(t), cDγi vj(t)), (t, vj(t),c Dγi vj(t)) ∈ I ×R×R, i, j = 1, 2, i 6= j}.

Lemma 6. Suppose that ĝi ∈ Ψ; i = 1, 2. Then, (v1, v2) ∈ V1 ×V2 is a solution of the problem
(1) if and only if (v1, v2) ∈ V1 ×V2 is a solution of the next coupled system

vi(t) = Iαi+βi ĝi(t)− λi Iαi vi(t) + Λi(t)(λi Iαi vi(1)− Iαi+βi ĝi(1)) + ∆i(t)Iβi ĝi(1)

+ (Λi(t) + λi∆i(t))(
∫ 1

0
v1(s)dxi(s) +

∫ 1

0
v2(s)dyi(s)). (7)

Proof. Let (v1, v2) ∈ V1 × V2 be a solution of the problem (1). By the proof of Lemma 3,
we can get that (v1, v2) is a solution of (7).

Conversely, let (v1, v2) ∈ V1 × V2 be a solution of the system (7). Then, from (5),
we have

cDβi (cDαi vi(t) + λivi(t)) =c Dβi

(
Iβi ĝi(t) +

Γ(αi + 2)
(1− αi)

(2t− 1)
[
λi Iαi v1(1)− Iαi+βi ĝi(1)

]
+

1
(1− αi)

((1+αi)t− 1)Iβi ĝi(1) +
1

(1− αi)

[
(1 + αi)(2Γ(αi + 2) + λi)t

−(λi + Γ(αi+2)
][ ∫ 1

0
v1(s)dxi(s) +

∫ 1

0
v2(s)dyi(s)

])
= ĝi(t), i = 1, 2.

The Lemma’s proof is completed.

Let the operator T : V1 × V2 → V1 × V2 be defined as T(v1, v2) =

(
T1
T2

)
where, for

i = 1, 2, we have

(Tivi)(t) = Iαi+βi ĝi(t)− λi Iαi vi(t) + Λi(t)(λi Iαi vi(1)− Iαi+βi ĝi(1)) + ∆i(t)Iβi ĝi(1)

+ (Λi(t) + λi∆i(t))(
∫ 1

0
v1(s)dxi(s) +

∫ 1

0
v2(s)dyi(s))

and

cDγj(Tivi)(t) = Iαi+βi−γj ĝi(t)− λi I
αi−γj vi(t) +c Dγj Λi(t)(λi Iαi vi(1)− Iαi+βi ĝi(1))

+c Dγj ∆i(t)Iβi ĝi(1) + (cDγj Λi(t) + λc
i Dγj ∆i(t))

(∫ 1

0
v1(s)dxi(s) +

∫ 1

0
v2(s)dyi(s)

)
.

Hence, in view of the Lemma 7, the operator T has a fixed point which is consistent
with a solution of the system (1).

Now, before beginning to prove the basic part in this research, for i, j = 1, 2, i 6= j, we
define a set of values that we need later.

ηi = V1
0 xi + V1

0 yi, (8)

ϕi = ϕi(0) + ϕi(γj), (9)

Mi =Mi(0) +Mi(γj), (10)

Ci = Ci(0) + Ci(γj) (11)
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where

ϕi(γj) =
1

Γ(αi + βi − γj + 1)
+

Ai(γj)

Γ(αi + βi + 1)
+

Bi(γj)

Γ(βi + 1)
,

Mi(γj) =
∫ 1

0

[(
1

Γ(αi + βi − γj)
+

Ai(γj)

Γ(αi + βi)

)
(1− s)αi+βi−γj−1 +

Bi(γj)

Γ(βi)
(1− s)βi−1

]
φi(s)ds

Ci(γj) =
λi

Γ(αi − γj + 1)
+

λi Ai(γj)

Γ(αi + 1)
+ ηi(Ai(γj) + λiBi(γj)).

Such that, from [30], we have

1. Ai(γj) = max
t∈[0,1]

|Dγj Λi| = Γ(αi+2)
(1−αi)Γ(αi−γj+2)


1− αi + γj if αi ≤

1
2
+ γj(

αi − γj

2

)αi−γj

if αi >
1
2
+ γj

2. Bi(γj) = max
t∈[0,1]

|Dγj ∆i| = 1
(1−αi)Γ(αi−γj+2)

[
(1+αi)(αi−γj)

αi−γj

(1+αi−γj)
1+αi−γj

+ γj

]
.

3. Existence Results

Let us suppose the assumptions below

(H1) For i = 1, 2 and gi ∈ Ψ. Then,

|gi(t, ζ, ξ)| ≤ φi(t) + ai|ζ|$i + b1|ξ|σi

for all (t, ζ, ξ) ∈ [0, 1]×R×R where φi(t) ∈ L[0, 1], ai, bi > 0 and 0 < $i, σi < 1.

(H2) For i = 1, 2 and gi ∈ Ψ. Then,

|gi(t, ζ, ξ)| ≤ φi(t) + ai|ζ|$i + b1|ξ|σi

for all (t, ζ, ξ) ∈ [0, 1]×R×R where φi(t) ∈ L[0, 1], ai, bi > 0 and $i, σi > 1.

Theorem 1. Suppose that xi(s), yi(s) : [0, 1] → R, i = 1, 2 are functions of bounded variation
and one of the previous assumptions holds. Then, the problem (1) has a solution.

Proof. The linear operator T : V1 × V2 → V1 × V2 is well-defined if it has a unique
expression. Since vi ∈ Vi has a unique expression of continuous function gi for i = 1, 2 in
the form of Lemma 6, it is clear that the operator T is well-defined.

Let us consider that (H1) is satisfied. Define the ball Ω as

Ω = {(v1(t), v2(t))|(v1(t), v2(t)) ∈ V1 ×V2, ‖ (v1(t), v2(t)) ‖6 L, t ∈ I}

such that

L ≥ max
i=1,2

{
(3ϕiai)

1
1−$i , (3ϕibi)

1
1−σi ,

3Mi
1− 3Ci

}
From Lemma 2 and the properties of fractional calculus, we get

|(Tivi)(t)| ≤
∫ 1

0

[
1 + Ai(0)
Γ(αi + βi)

(1− s)αi+βi−1 +
Bi(0)
Γ(βi)

(1− s)βi−1
]

φi(s)ds

+ (aiL$i + ajLσi )

(
1 + Ai(0)

Γ(αi + βi + 1)
+

Bi(0)
Γ(βi + 1)

)
+ L

(
λi(1 + Ai(0))

Γ(αi + 1)
+ ηi(Ai(0) + λiBi(0))

)
=Mi(0) + (aiL$i + biLσi )ϕi(0) + LCi(0).
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Similarly,

|(cDγj Tivi)(t)| =Mi(γj) + (aiL$i + biLσi )ϕi(γj) + LCi(γj).

So,
‖ Tiu ‖Vi≤Mi + (aiL$i + biLσi )ϕi + LCi ≤ L

where ϕi, Mi and Ci are defined as in (9)–(11), respectively. Then, we get that T(Ω) ⊆ Ω
provided that Ci < 1/3.

Now with regard to the second condition (H2), we lay down that

L 6 min
i=1,2

{(
1

3ϕiai

) 1
$i−1

,
(

1
3ϕibi

) 1
σi−1

,
3Mi

3Ci − 1

}

By following the same steps as above we obtain

‖ Tiu ‖Vi≤Mi + (aiL$i + biLσi )ϕi + LCi ≤ L

which implies that T(Ω) ⊆ Ω provided that Ci > 1/3.
For showing that T is a completely continuous, we take Ni = maxt∈I ĝi(t) for any

vi, vj ∈ Ω, i, j = 0, 1, i 6= j such that 0 < t2 < t1 < 1, then we have

|(Tivi)(t1)− (Tivi)(t2)|

≤
∫ t2

0

(t1 − s)αi+β−1 − (t2 − s)αi+βi−1

Γ(αi + βi)
ĝi(s)ds +

∫ t1

t2

(t1 − s)αi+β−1

Γ(αi + βi)
ĝi(s)ds

+ |λi|
∫ t2

0

(t2 − s)αi−1 − (t1 − s)αi−1

Γ(αi)
vi(s)ds + |λi|

∫ t1

t2

(t1 − s)αi−1

Γ(αi)
vi(s)ds

+ |Λi(t1)−Λi(t2)|
(

λi
Γ(αi)

∫ 1

0
(1− s)αi−1vi(s)ds +

1
Γ(αi + βi)

∫ 1

0
(1− s)αi+βi−1 ĝi(s)ds

)
+ |∆i(t1)− ∆i(t2)|

∫ 1

0

(1− s)βi−1

Γ(βi)
ĝi(s)ds

+ (|Λi(t1)−Λi(t2)|+ |λi||∆i(t1)− ∆i(t2)|)
(∫ 1

0
v1(s)dxi(s) +

∫ 1

0
v2(s)dyi(s)

)
≤

Ni(t
αi+βi
1 − tαi+βi

2 )

Γ(αi + βi + 1)
+

2|λi|L(t1 − t2)
αi

Γ(αi + 1)

+

[
2|λi|L

Γ(αi + 1)
+

2Ni
Γ(αi + βi + 1

+
Ni

Γ(αi + 1)Γ(βi + 1)
+ Lηi

(
2 +

|λi|
Γ(αi + 1)

)] tαi+1
1 − tαi+1

2
1− αi

+

[
(1 + αi)|λi|L

Γ(αi + 1)
+

(1 + αi)Ni
Γ(αi + βi + 1)

+
Ni

Γ(αi + 1)Γ(βi + 1)
+

Lηi(Γ(αi + 2) + |λi|)
Γ(αi + 1)

]
tαi
1 − tαi

2
1− αi

.

By using the relation cDγtα = Γ(α+1)tα−γ

Γ(α−γ+1) , we find that
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|cDγj Tivi(t1)−c Dγj Tivi(t2)|

≤
∫ t2

0

(t1 − s)αi+βi−γj−1 − (t2 − s)αi+βi−γj−1

Γ(αi + βi − γj)
|ĝi(s)|ds +

∫ t1

t2

(t1 − s)αi+βi−γj−1

Γ(αi + βi − γj)
|ĝi(s)|ds

+ |λi|
∫ t2

0

(t2 − s)αi−γj−1 − (t1 − s)αi−γj−1

Γ(αi − γj)
|vi(s)|ds + |λi|

∫ t1

t2

(t1 − s)αi−γj−1

Γ(αi − γj)
|vi(s)|ds

+ |cDγj Λi(t1)−c Dγj Λi(t2)|
(
|λi|

∫ 1

0

(1− s)αi−1

Γ(αi)
|vi(s)|ds +

∫ 1

0

(1− s)αi+βi−1

Γ(αi + βi)
|ĝi(s)|ds

)
+ |cDγj ∆i(t1)−c Dγj ∆i(t2)|

∫ 1

0

(1− s)βi−1

Γ(βi)
|ĝi(s)|ds

+ (|cDγj Λi(t1)−c Dγj Λi(t2)|+ |λi||cDγj ∆i(t1)−c Dγj ∆i(t2)|)

×
(∫ 1

0
v1(s)dxi(s) +

∫ 1

0
v2(s)dyi(s)

)

6
Ni(t

αi+βi−γj
1 − t

αi+βi−γj
2 )

Γ(αi + βi − γj + 1)
+

2|λi|L(t1 − t2)
αi−γj

Γ(αi − γj + 1)

+

[
2|λi|L +

2Γ(αi + 1)Ni
Γ(αi + βi + 1

+
Ni

Γ(αi + 1)Γ(βi + 1)
+ Lηi(2Γ(αi + 1) + |λi|)

]

×
(1 + αi)(t

αi−γj+1
1 − t

αi−γj+1
2 )

(1− αi)Γ(1− αi − γj + 2)

+

[
(1 + αi)|λi|L +

Γ(αi + 2)Ni
Γ(αi + βi + 1

+
Ni

Γ(βi + 1)
+ Lηi(Γ(αi + 2) + |λi|)

]
t
αi−γj
1 − t

αi−γj
2

(1− αi)Γ(αi − γj + 1)
.

Accordingly, we conclude that TΩ is an equicontinuous set. It is also clearly bounded
since TΩ ⊆ Ω. The Shauder fixed point theorem shows that the solution exists in Ω.

Remark 1. The radius of the ball Ω depends on the values of $i and σi which have several bounds
with respect to one. Here, we mentioned two cases when 0 < $i, σi < 1 and $i, σi > 1. One might
take another values to them. For instance, $i = σi = 1. In this case, we have to provide that
(ai + bi)ϕi + Ci < 1 and the radius L ≥Mi/(1− (ai + bi)ϕi − Ci).

4. An Illustrative Example

A Hamiltonian model for a simple dynamical system connected to the environment is
used to create a theoretical Langevin equation [31]. The Langevin equation uses Newton’s
law to address the dynamics of a Brownian particle by combining the influence of Stokes
fluid friction and thermal fluctuations in the particle’s proximity into a random force with
appropriately assigned attributes. The simplest fractional Langevin equation to a dynamical
system unlock to the environment takes the style (1) where vi(t) are the displacements of
the particle, λi are dissipation parameters, and gi, in the general style, the particle at time
t modeled by the position vi(t) and velocity cDrvi(t) . The functions gi might include an
extrinsic force field, a position-dependent phenomenological fluid friction coefficient, the
strength of the stochastic force, or random fluctuation force (may be white noise term or
not). In the following example, we assume that there is no Gaussian white noise term that
agrees with its mean equal zero and the functions gi contain external force proportional to
the power of the displacement and velocity as in the following example.
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Example 1. Postulate the next problem

cD
3
2 (cD

1
3 +

1
30

)u(t) = (t− 1
4
)2((v(t))

3
2 + (cD

1
10 v(t))2), t ∈ [0, 1],

cD
7
4 (cD

1
4 +

1
40

)v(t) = (t− 1
4
)2((u(t))

9
5 + (cD

1
20 u(t))

7
4 ), t ∈ [0, 1].

u(0) = 0, u(1) =
∫ 1

0
u(s)dx1(s) +

∫ 1

0
v(s)dy1(s), cD

1
3 u(0) +c D

1
3 u(1) = 0,

v(0) = 0, v(1) =
∫ 1

0
u(s)dx2(s) +

∫ 1

0
v(s)dy2(s), cD

1
4 u(0) +c D

1
4 u(1) = 0.

We can observe that φ1(t) = φ1(t) = 0, ai = bi = 9
16 , C1 = 0.2995493010 < 1

3 and
C2 = 0.2497957216 < 1

3 . Then, the problem has a solution if L < 0.2861152180 subject
to that we take x1(t) = y1(t) = 1

32 (x2 − 1)2, which is monotonically decreasing function,
x2(t) = y2(t) = 1

32 x2 which monotonically increasing function. Accordingly η1 = η2 = 1
16 .

5. Conclusions

In our contribution, we presented a discussion of the existence results for a fractional
Langevin coupled system of Caputo type under specific boundary conditions involving
Stieltjes integral boundary. We applied Shauder fixed-point theorem to get our result, and
we gave an example that illustrates this result.
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