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Abstract: Entropy is usually used to measure the uncertainty of uncertain random variables. It
has been defined by logarithmic entropy with chance theory. However, this logarithmic entropy
sometimes fails to measure the uncertainty of some uncertain random variables. In order to solve
this problem, this paper proposes two types of entropy for uncertain random variables: sine entropy
and partial sine entropy, and studies some of their properties. Some important properties of sine
entropy and partial sine entropy, such as translation invariance and positive linearity, are obtained.
In addition, the calculation formulas of sine entropy and partial sine entropy of uncertain random
variables are given.
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1. Introduction

Entropy is a parameter describing the disorder of objective things. Shannon [1]
believes that information is the elimination or reduction of uncertainty in people’s under-
standing of things. He calls the degree of uncertainty information entropy. Since then,
some scholars have studied Shannon entropy. Using fuzzy set theory, Zadeh [2] introduced
fuzzy entropy to quantify the number of fuzziness. Following that, De Luca and Termini [3]
proposed a definition of fuzzy entropy, that is, the uncertainty related to the fuzzy set.
After that, many studies involved the definition and application of fuzzy entropy, such as
Bhandary pal [4], Pal and PAL [5], Pal and Bezdek [6]. Furthermore, Li and Liu [7] put
forward the definition of entropy of fuzzy variable.

In 2007, in order to study the uncertainty related to belief degree, Liu [8] established
uncertainty theory. As a branch of mathematics, Liu [9] improved the theory in 2009.
Uncertain variable was defined [10]. After that, Liu [9] gave a definition of expect value of
uncertain variable, and Liu and Ha [11] gave a formula for calculating the expected value
of uncertain variable function. Liu [8] proposed some formulas by uncertainty distribution
for calculating variance and moment. Yao [12], and Sheng and Samarjit [13] proposed
a formula using inverse uncertainty distribution for calculating variance and moment.
After that, Liu [8] proposed a concept of logarithmic entropy of uncertain variables. Later,
Dai and Chen [14] established a formula to calculate the entropy through the inverse of
uncertainty distribution. In addition, Chen and Dai [15] studied the maximum entropy
principle. After that, Dai [16] proposed quadratic entropy. Yao et al. [17] proposed sine
entropy of uncertain variables.

We know that in order to deal with the number of uncertainties, we have two math-
ematical tools: probability theory and uncertainty theory. The probability theory is a
powerful tool for modeling frequency through samples, and uncertainty theory is another
tool for modeling belief degree. However, when the system becomes more and more
complex, it creates both uncertainty and randomness. In 2013, Liu [18] established chance
theory for modeling the systems. Liu [19] also proposed and studied the basic concepts
of chance measure, which is a monotonically increasing set function and satisfies self-
duality. Hou [20] proved that the chance measure satisfies sub-additivity. Liu [19] also
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put forward some basic concepts, including uncertain random variable, and its chance
distribution and digital features, etc. Furthermore, Sheng and Yao [21] provided a formula
for calculating the variance. Sheng et al. [22] proposed the concept of logarithmic entropy
in 2017. After that, Ahmadzade et al. [23] proposed the concept of quadratic entropy,
and Ahmadzade et al. [24] studied the question of partial logarithmic entropy.

Since logarithmic entropy may not be able to measure the uncertainty in some cases.
Therefore, in order to further improve this problem, this paper will propose two new
entropies for uncertain random variables, namely sine entropy and partial sine entropy,
and discuss their properties. Furthermore, the calculation formulas of sine entropy and
partial sine entropy are obtained by using chance theory. Section 2 reviews some basic
concepts of chance theory. Section 3 introduces the concept and basic properties of sine
entropy of uncertain random variables. Furthermore, this paper will also propose the
concept of partial sine entropy and discuss its properties in Section 4. Finally, we will give
a summary in Section 5.

2. Preliminaries

In this part, we review some basic concepts of chance theory

Definition 1 (Liu [18]). Let (Γ,L,M) be an uncertainty space and (Ω,A, Pr) be a probability
space. Then, the product (Γ,L,M)× (Ω,A, Pr) is called a chance space. Let Θ ∈ L×A be an
uncertain random event. Then, the chance measure of Θ is defined as

Ch{Θ} =
∫ 1

0
Pr
{

ω ∈ Ω |M{γ ∈ Γ|(γ, ω) ∈ Θ} ≥ r
}

dr.

The chance measure satisfies: (i) Normality [18]: Ch{Γ×Ω} = 1; (ii) Duality [18]:
Ch{Θ}+ Ch{Θc} = 1 for and event Θ; (iii) Monotonicity [18]: Ch{Θ1} ≤ Ch{Θ2} for
any real number set Θ1 ⊂ Θ2. (iv) Subadditivity [20]: Ch{

⋃∞
i=1 Θi} ≤ ∑∞

i=1 Ch{Θi} for a
sequence of events Θ1, Θ2, · · · .

Definition 2 (Liu [18]). A function ξ is called an uncertain random variable if it is from a chance
space (Γ,L,M)× (Ω,A, Pr) to the set of real numbers such that {ξ ∈ B} is an event in L×A for
any Borel set B of real numbers.

Definition 3 (Liu [18]). Let ξ be an uncertain random variable. Then, the function

Φ(x) = Ch{ξ ≤ x}, x ∈ <

is a chance distribution of ξ.

Theorem 1 (Liu [19]). Let Ψ1, Ψ2, · · · , Ψm be probability distributions of independent random
variables η1, η2, · · · , ηm, and let Υ1, Υ2, · · · , Υn be uncertainty distributions of independent uncer-
tain variables τ1, τ2, · · · , τn, respectively. Then, chancedistributionof ξ = f (η1, η2, · · · , ηm, τ1, τ2, · · · , τn)
is

Φ(x) =
∫
<m

F(x, y1, · · · , ym)dΨ1(y1) · · ·dΨm(ym)

where F(x, y1, · · · , ym) is the uncertainty distribution of f (y1, y2, · · · , ym, τ1, τ2, · · · , τn) for any
(y1, y2, · · · , ym) ∈ <m and is determined by Υ1, Υ2, · · · , Υn.

Definition 4 (Sheng et al. [22]). Let Φ(x) be chance distribution of an uncertain random variable
ξ. Then, the entropy of ξ is defined by

H[ξ] =
∫ +∞

−∞
S
(

Φ(x)
)

dx

where S(t) = −t ln t− (1− t) ln(1− t).
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Definition 5 (Ahmadzade et al. [23]). Let η1, η2, · · · , ηm be independent random variables,
and τ1, τ2, · · · , τm be uncertain variables. Then, partial entropy of ξ = f (η1, η2, · · · , ηm, τ1, τ2, · · · ,
τm) is defined by

PH[ξ] =
∫
<m

∫ +∞

−∞
S
(

F(x, y1, · · · , ym)
)

dxdΨ1(y1) · · ·dΨm(ym)

where S(t) = −t ln t − (1 − t) ln(1 − t) and F(x, y1, · · · , ym) is uncertainty distribution of
f (y1, · · · , ym, τ1, · · · , τm) for any real numbers y1, · · · , ym.

3. Sine Entropy of Uncertain Random Variables

Since logarithmic entropy may not be able to measure the uncertainty of uncertain
random variables in some case. Therefore, we will propose a sine entropy of uncertain
random variables as a supplement to measure the uncertainty in fail of the logarithmic
entropy, as shown below.

Definition 6. Let Φ(x) be chance distribution of an uncertain random variable ξ. Then, we define
sine entropy

SH[ξ] =
∫ +∞

−∞
sin
(

πΦ(x)
)

dx.

Obviously, in the following, sin(πx) is a symmetric function with x = 0.5, and reaches
its unique maximum 1 at x = 0.5, and it is strictly increasing in [0, 0.5] and strictly decreas-
ing in [0.5, 1]. By Definition 6, we have SH[ξ] ≥ 0. If ξ = c, c is a special uncertainty, that
is a constant, then SH[ξ] = 0 and SH[ξ + c] = SH[ξ]. Set ξ ∈ [a, b], If chance distribution
Φ(x) = 0.5 of ξ, then SH[ξ] ≤ (b− a) .

Remark 1. We can find that the sine entropy of uncertain random variables is invariant under any
translations.

Example 1. Let Ψ be a probability distribution of random variable η, and let Υ be an uncertainty
distribution of uncertain variable τ. Then, sine entropy of the sum ξ = η + τ is

SH[ξ] =
∫ +∞

−∞
sin
(

π
∫ +∞

−∞
Υ(x− y)dΨ(y)

)
dx.

Example 2. Let Ψ be a probability distribution of random variable η > 0, and let Υ be an
uncertainty distribution of uncertain variable τ > 0. Then, sine entropy of the product ξ = ητ is

SH[ξ] =
∫ +∞

−∞
sin
(

π
∫ +∞

0
Υ(x/y)dΨ(y)

)
dx.

Example 3. Let Ψ be a probability distribution of random variable η , and let Υ be an uncertainty
distribution of uncertain variable τ.Then, sine entropy of the minimum ξ = η ∧ τ is

SH[ξ] =
∫ +∞

−∞
sin
(

π(Ψ(x) + Υ(x)−Ψ(x)Υ(x))
)

dx.

Example 4. Let Ψ be a probability distribution of random variable η, and let Υ be an uncertainty
distribution of uncertain variable τ. Then, sine entropy of the maximum ξ = η ∨ τ is

SH[ξ] =
∫ +∞

−∞
sin
(

πΨ(x)Υ(x)
)

dx.
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Theorem 2. Let Φ−1 be an inverse chance distribution of uncertain random variable ξ. Then, sine
entropy SH[ξ] is

SH[ξ] = π
∫ 1

0
Φ−1(1− α) cos(πα)dα.

Proof. According to known conditions that ξ has an inverse chance distribution Φ−1, then
ξ has a chance distribution Φ. We can obtain

sin(πΦ(x)) =
∫ Φ(x)

0
π cos(πα)dα = −

∫ 1

Φ(x)
π cos(πα)dα,

then the sine entropy of ξ can be obtained:

SH[ξ] =
∫ +∞

−∞
sin
(

πΦ(x)
)

d x

=
∫ 0

−∞
sin
(

πΦ(x)
)

dx +
∫ +∞

0
sin
(

πΦ(x)
)

d x

=
∫ 0

−∞

∫ Φ(x)

0
π cos(πα)dαdx−

∫ +∞

0

∫ 1

Φ(x)
π cos(πα)dαdx.

We can also obtain the following formula by Fubini theorem:

SH[ξ] =
∫ 0

−∞

∫ Φ(x)

0
π cos(πα)dαdx−

∫ +∞

0

∫ 1

Φ(x)
π cos(πα)dαd x

= −
∫ Φ(0)

0

∫ 0

Φ−1(α)
Φ−1(α)π cos(πα)dxdα−

∫ 1

Φ(0)
Φ−1(α)π cos(πα)dxdα

= −π
∫ 1

0
Φ−1(α) cos(πα)dα

= −π
∫ 0

1
Φ−1(1− α) cos(π − πα)d(−α)

= π
∫ 1

0
Φ−1(1− α) cos(πα)dα.

The proof is completed from this theorem.

Remark 2. Theorem 2 provides a new method to calculate sine entropy of an uncertain random
variable when the inverse chance distribution exists.

Theorem 3. Let Ψ1, Ψ2, · · · , Ψm be probability distributions of independent random variables
η1, η2, · · · , ηm, respectively, and let τ1, τ2, · · · , τn be independent uncertain variables. Then, the
sine entropy of ξ = f (η1, η2, · · · , ηm, τ1, τ2, · · · , τn) is

SH[ξ] =
∫ +∞

−∞
sin
(

π
∫
<m

F(x, y1, · · · , ym)dΨ1(y1) · · ·dΨm(ym)
)

dx

where for any real numbers y1, y2, · · · , ym, F(x, y1, · · · , ym) is the uncertainty distribution of
f (y1, y2, · · · , ym, τ1, τ2, · · · , τn).

Proof. For any real numbers y1, y2, · · · , ym we know that ξ has a chance distribution by
Theorem 1,

Φ(x) =
∫
<m

F(x, y1, · · · , ym)dΨ1(y1) · · ·dΨm(ym)
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where F(x, y1, · · · , ym) is the uncertainty distribution of f (y1, y2, · · · , ym, τ1, τ2, · · · , τn).
By definition of sine entropy, we have

SH[ξ] =
∫ +∞

−∞
sin
(

π
∫
<m

F(x, y1, · · · , ym)dΨ1(y1) · · ·dΨm(ym)
)

dx.

Thus, we proved this theorem.

Corollary 1. Let ξ = f (η1, η2, · · · , ηm, τ1, τ2, · · · , τn) be strictly decreasing with respect to
τk+1, τk+2, · · · , τn and strictly increasing with respect to τ1, τ2, · · · , τk. If Υ1, Υ2, · · · , Υn are
continuous, then the sine entropy of ξ is

SH[ξ] =
∫ +∞

−∞
sin

(
π
∫
<m

sup
f (y1,··· ,ym ,z1,··· ,zn)=x

(
min

1≤i≤k
Υi(zi) ∧ min

k+1≤i≤n
(1− Υi(zi))

)

dΨ1(y1) · · ·dΨm(ym)

)
dx.

Proof. By Theorem 1, we know that the chance distribution of ξ is

Φ(x) =
∫
<m

F(x, y1, · · · , ym)dΨ1(y1) · · ·dΨm(ym).

Then, we have

F(x, y1, · · · , ym) = sup
f (y1,··· ,ym ,z1,··· ,zn)=x

(
min

1≤i≤k
Υi(zi) ∧ min

k+1≤i≤n
(1− Υi(zi))

)
.

Thus, we can obtain

SH[ξ] =
∫ +∞

−∞
sin

(
π
∫
<m

sup
f (y1,··· ,ym ,z1,··· ,zn)=x

(
min

1≤i≤k
Υi(zi) ∧ min

k+1≤i≤n
(1− Υi(zi))

)

dΨ1(y1) · · ·dΨm(ym)

)
dx.

by Theorem 3. The proof is completed from this corollary.

Corollary 2. Let ξ = f (η1, η2, · · · , ηm, τ1, τ2, · · · , τn) be strictly decreasing with respect to
τk+1, τk+2, · · · , τn and strictly increasing with respect to τ1, τ2, · · · , τk. If Υ1, Υ2, · · · , Υn are
regular, then the sine entropy of ξ is

SH[ξ] =
∫ +∞

−∞
sin
(

π
∫
<m

F(x, y1, · · · , ym)dΨ1(y1) · · ·dΨm(ym)
)

dx

where F(x, y1, y2, · · · , ym) may be determined by its inverse uncertainty distribution F−1(α, y1,
y2, · · · , ym), that is

f
(

y1, · · · , ym, Υ−1
1 (α), Υ−1

2 (α), · · · , Υ−1
k (α), Υ−1

k+1(1− α), Υ−1
k+2(1− α), · · · , Υ−1

n (1− α)
)

.

Proof. By Theorem 1, for any real numbers y1, y2, · · · , ym, we know that the chance distri-
bution of ξ is

Φ(x) =
∫
<m

F(x, y1, · · · , ym)dΨ1(y1) · · ·dΨm(ym)

where F(x, y1, · · · , ym) is the uncertainty distribution of f (y1, y2, · · · , ym, τ1, τ2, · · · , τn).
From the assumption that f (η1, η2, · · · , ηm, τ1, τ2, · · · , τn) be strictly decreasing with re-
spect to τk+1, τk+2, · · · , τn and strictly increasing with respect to τ1, τ2, · · · , τk. It fol-
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lows that F(x, y1, · · · , ym) may be determined by its inverse uncertainty distribution
F−1(α, y1, · · · , ym) when Υ1, Υ2, · · · , Υn are regular, that is

f
(

y1, · · · , ym, Υ−1
1 (α), Υ−1

2 (α), · · · , Υ−1
k (α), Υ−1

k+1(1− α), Υ−1
k+2(1− α), · · · , Υ−1

n (1− α)
)

.

From Theorem 3, we can obtain

SH[ξ] =
∫ +∞

−∞
sin
(

π
∫
<m

F(x, y1, · · · , ym)dΨ1(y1) · · ·dΨm(ym)
)

dx

where F(x, y1, · · · , ym) and F(x, y1, · · · , ym) may be determined by its inverse uncertainty
distribution F−1(α, y1, · · · , ym) that is equal to

f
(

y1, · · · , ym, Υ−1
1 (α), Υ−1

2 (α), · · · , Υ−1
k (α), Υ−1

k+1(1− α), Υ−1
k+2(1− α), · · · , Υ−1

n (1− α)
)

.

The proof is completed of this corollary.

4. Partial Sine Entropy of Uncertain Random Variables

The concept of sine entropy of uncertain random variables are proposed theoretically
by using chance theory. However, sometimes we need to know how much the sine
entropy of uncertain random variables is related to uncertain variables? To answer this
question, following that, we will define a new concept of partial sine entropy of uncertain
random variables to measure how much the sine entropy of uncertain random variables is
related to uncertain variables. Therefore, we propose the concept of partial sine entropy as
following as.

Definition 7. Let τ1, τ2, · · · , τm be uncertain variables, and let η1, η2, · · · , ηm be independent
random variables. Then, the partial sine entropy of ξ is

PSH[ξ] =
∫
<m

∫ +∞

−∞
sin
(

πF(x, y1, · · · , ym)
)

dxdΨ1(y1) · · ·dΨm(ym)

where for any real numbers y1, · · · , ym, F(x, y1, · · · , ym) is the uncertainty distribution of
f (y1, · · · , ym, τ1, · · · , τm).

Theorem 4. Let Ψ1, Ψ2, · · · , Ψm be probability distributions of independent random variables
η1, η2, · · · , ηm, respectively, let τ1, τ2, · · · , τn be independent uncertain variables. If f is a measur-
able function, then the partial sine entropy of ξ = f (η1, η2, · · · , ηm, τ1, τ2, · · · , τn) is

PSH[ξ] =
∫
<m

∫ 1

0
πF−1(1− α, y1, · · · , ym) cos(πα)dαdΨ1(y1) · · ·dΨm(ym)

where for any real numbers y1, y2, · · · , ym, F−1(α, y1, · · · , ym) is the inverse uncertainty distribu-
tion of f (y1, y2,· · · , ym, τ1,τ2,· · · ,τn).

Proof. We know that sin(πα) is a derivable function with sin′(πα) = π cos(πα). Thus, we
have

sin
(

πF(x, y1, · · · , ym)
)
=
∫ F(x,y1,··· ,ym)

0
π cos(πα)dα = −

∫ 1

F(x,y1,··· ,ym)
π cos(πα)dα,
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then the partial sine entropy is

PSH[ξ] =
∫
<m

∫ +∞

−∞
sin
(

πF(x, y1, · · · , ym)
)

dxdΨ1(y1) · · ·dΨm(ym)

=
∫
<m

∫ 0

−∞
sin
(

πF(x, y1, · · · , ym)
)

dxdΨ1(y1) · · ·dΨm(ym)

+
∫
<m

∫ +∞

0
sin
(

πF(x, y1, · · · , ym)
)

dxdΨ1(y1) · · ·dΨm(ym)

=
∫
<m

∫ 0

−∞

∫ F(x,y1,··· ,ym)

0
π cos(πα)dαdxdΨ1(y1) · · ·dΨm(ym)

−
∫
<m

∫ +∞

0

∫ 1

F(x,y1,··· ,ym)
π cos(πα)dαdxdΨ1(y1) · · ·dΨm(ym).

By the Fubini theorem, we have

PSH[ξ] =
∫
<m

∫ F(0,y1,··· ,ym)

0

∫ 0

F−1(α,y1,··· ,ym)
π cos(πα)dxdαdΨ1(y1) · · ·dΨm(ym)

−
∫
<m

∫ 1

F(0,y1,··· ,ym)

∫ F−1(α,y1,··· ,ym)

0
π cos(πα)dxdαdΨ1(y1) · · ·dΨm(ym)

= −
∫
<m

∫ F(0,y1,··· ,ym)

0
F−1(α, y1, · · · , ym)π cos(πα)dαdΨ1(y1) · · ·dΨm(ym)

−
∫
<m

∫ 1

F(0,y1,··· ,ym)
F−1(α, y1, · · · , ym)π cos(πα)dαdΨ1(y1) · · ·dΨm(ym)

= −
∫
<m

∫ 1

0
F−1(α, y1, · · · , ym)π cos(πα)dαdΨ1(y1) · · ·dΨm(ym)

=
∫
<m

∫ 1

0
πF−1(1− α, y1, · · · , ym) cos(πα)dαdΨ1(y1) · · ·dΨm(ym).

The proof is completed from this theorem.

Example 5. Let Ψ be a probability distribution of random variable η, let Υ be an uncertainty
distribution of uncertain variable τ. Then, the partial sine entropy of the sum ξ = η + τ is

PSH[ξ] = S[τ].

Proof. It is obvious that the inverse uncertain distribution of uncertain variable y + τ is
F−1(α, y) = Υ−1(α) + y. By Theorem 4, we have

PSH[ξ] =
∫
<

∫ 1

0
πF−1(1− α, y) cos(πα)dαdΨ(y)

=
∫
<

∫ 1

0
π
(

Υ−1(1− α) + y
)

cos(πα)dαdΨ(y)

=
∫
<

∫ 1

0
πΥ−1(1− α) cos(πα)dαdΨ(y) +

∫
<

∫ 1

0
πy cos(πα)dαdΨ(y)

=
∫
<

∫ 1

0
πΥ−1(1− α) cos(πα)dαdΨ(y)

= S[τ].

Thus, the proof is finished.

Example 6. Let Ψ be a probability distribution of random variable η, let Υ be an uncertainty
distribution of uncertain variable τ. Then, the partial sine entropy of the product ξ = ητ is

PSH[ξ] = E[η]S[τ].
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Proof. It is obvious that the inverse uncertain distribution of uncertain variable yτ is
F−1(α, y) = Υ−1(α)y. By Theorem 4, we have

PSH[ξ] =
∫
<

∫ 1

0
πF−1(1− α, y) cos(πα)dαdΨ(y)

=
∫
<

∫ 1

0
πΥ−1(1− α)y cos(πα)dαdΨ(y)

=
∫ 1

0
πΥ−1(1− α) cos(πα)dα

∫
<

ydΨ(y)

= E[η]S[τ].

Thus, the proof is finished.

Example 7. Let Υ1 and Υ2 be two uncertainty distributions of uncertain variables τ1 and τ2,
respectively, and let Ψ1 and Ψ2 be two probability distributions of random variables η1 and η2,
respectively. Set ξ1 = τ1 + η1 and ξ2 = τ2 + η2, then

PSH[ξ1ξ2] = S[τ1τ2] + E[η1]S[τ2] + E[η2]S[τ1].

Proof. It is obvious that the inverse uncertain distributions of uncertain variables y1 + τ1
and y2 + τ2 are F−1

1 (α, y1) = y1 + Υ−1
1 (α), F−1

2 (α, y2) = y2 + Υ−1
2 (α) and F−1(α, y1, y2) =

(y1 + Υ−1
1 (α))(y2 + Υ−1

2 (α)). By Theorem 4, we can obtain

PSH[ξ1ξ2] =
∫
<2

∫ 1

0
πF−1(1− α, y1, y2) cos(πα)dαdΨ1(y1)dΨ1(y1)

=
∫
<2

∫ 1

0
πΥ−1

1 (1− α, y1)Υ−1
2 (1− α, y2) cos(πα)dαdΨ1(y1)dΨ1(y1)

=
∫
<2

∫ 1

0
π
(

Υ−1
1 (1− α) + y1

)(
Υ−1

2 (1− α) + y2

)
cos(πα)dαdΨ1(y1)dΨ1(y1)

=
∫ 1

0
πΥ−1

1 (1− α)Υ−1
2 (1− α) cos(πα)dα

+
∫
<

∫ 1

0
πy1Υ−1

2 (1− α) cos(πα)dαdΨ1(y1)

+
∫
<

∫ 1

0
πy2Υ−1

1 (1− α) cos(πα)dαdΨ2(y2)

= S[τ1τ2] + E[η1]S[τ2] + E[η2]S[τ1].

Thus, the proof is finished.

Example 8. Let Υ1 and Υ2 be two uncertainty distributions of uncertain variables τ1 and τ2,
respectively, and let Ψ1 and Ψ2 be two probability distributions of random variables η1 and η2,
respectively. Set ξ1 = τ1η1 and ξ2 = τ2η2, then

PSH
[

ξ1

ξ2

]
= S

[
τ1

τ2

]
E[η1]E

[
1
η2

]
.

Proof. It is obvious that the inverse uncertain distributions of uncertain variables y1τ1 and

y2τ2 are F−1
1 (α, y1) = y1Υ−1

1 (α), F−1
2 (α, y2) = y2Υ−1

2 (α) and F−1(α, y1, y2) =
y1Υ−1

1 (α)

y2Υ−1
2 (1−α)

.

By Theorem 4, we can obtain
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PSH
[

ξ1

ξ2

]
=
∫
<2

∫ 1

0
πF−1(1− α, y1, y2) cos(πα)dαdΨ1(y1)dΨ1(y1)

=
∫
<2

∫ 1

0
π

Υ−1
1 (1− α, y1)

Υ−1
2 (α, y2)

cos(πα)dαdΨ1(y1)dΨ1(y1)

=
∫
<2

∫ 1

0
π

y1

y2

Υ−1
1 (1− α)

Υ−1
2 (α)

cos(πα)dαdΨ1(y1)dΨ1(y1)

=
∫ 1

0
π

Υ−1
1 (1− α)

Υ−1
2 (α)

cos(πα)dα
∫
<2

y1

y2
dΨ1(y1)dΨ2(y2)

=
∫ 1

0
π

Υ−1
1 (1− α)

Υ−1
2 (α)

cos(πα)dα
∫
<

y1dΨ1(y1)
∫
<

1
y2

dΨ2(y2)

= S
[

τ1

τ2

]
E[η1]E

[
1
η2

]
.

Thus, the proof is finished.

Theorem 5. Let τ1, τ2, · · · , τn be independent uncertain variables, and let η1, η2, · · · , ηn be in-
dependent random variables. Set ξ1 = f1(η1, τ1), ξ2 = f2(η2, τ2), · · · , and ξn = fn(ηn, τn). If
f (x1, x2, · · · , xn) is strictly increasing with respect to x1, x2, · · · , xm and strictly decreasing with
respect xm+1, xm+2, · · · , xn. Then, the partial sine entropy of ξ = f (ξ1, ξ2, · · · , ξn) is

PSH[ξ]

=
∫
<m

∫ 1

0
π f
(

F−1
1 (1− α, y1), · · · , F−1

m (1− α, ym), F−1
m+1(α, ym+1), · · · , F−1

n (α, yn)
)

cos(πα)dαdΨ1(y1) · · ·dΨn(yn)

where F−1
i (α, yi) or F−1

i (1− α, yi) are the inverse uncertainty distribution of f (yi, τi) for any real
numbers yi, i = 1, 2, · · · , n.

Proof. It is obvious that the inverse uncertain distribution of uncertain variable, we have

F−1(α, y1, y2, · · · , yn)

= f
(

F−1
1 (α, y1), · · · , F−1

m (α, ym), F−1
m+1(1− α, ym+1), · · · , F−1

n (1− α, yn)
)

.

By Theorem 4, we can obtain

PSH[ξ]

=
∫
<m

∫ 1

0
π f
(

F−1
1 (1− α, y1), · · · , F−1

m (1− α, ym), F−1
m+1(α, ym+1), · · · , F−1

n (α, yn)
)

cos(πα)dαdΨ1(y1) · · ·dΨn(yn).

The proof is completed from this theorem.

Theorem 6. Let τ1, τ2, · · · , τn be independent uncertain variables, and let η1, η2, · · · , ηn be in-
dependent random variables. Set ξ1 = f1(η1, τ1), ξ2 = f2(η2, τ2), · · · , and ξn = fn(ηn, τn). For
any real numbers c1, c2, · · · , cn, we have

PSH

[
n

∑
i=1

ciξi

]
=

n

∑
i=1
|ci|PSH[ξi].

Proof. This problem will be proved by three steps.
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Step 1: We prove PSH[c1ξ1] = |c1|PSH[ξ1]. If c1 > 0, then c1 f1(y1, τ1) has an in-
verse uncertainty distribution F−1

1 (y1, α) = c1F−1
1 (y1, α), where F−1

1 (y1, α) is the inverse
uncertainty distribution of f1(η1, τ1). We have

PSH[c1ξ1] =
∫
<

∫ 1

0
πF−1

1 (1− α, y1) cos(πα)dαdΨ1(y1)

=
∫
<

∫ 1

0
πc1F−1

1 (1− α, y1) cos(πα)dαdΨ1(y1)

= c1

∫
<

∫ 1

0
πF−1

1 (1− α, y1) cos(πα)dαdΨ1(y1)

= |c1|PSH[ξ1].

If c1 < 0, then c1 f1(y1, τ1) has an inverse uncertainty distribution F−1
1 (y1, α) =

c1F−1
1 (y1, 1− α), where F−1

1 (y1, 1− α) is the inverse uncertainty distribution of f1(η1, τ1).
We have

PSH[c1ξ1] =
∫
<

∫ 1

0
πF−1

1 (1− α, y1) cos(πα)dαdΨ1(y1)

=
∫
<

∫ 1

0
πc1F−1

1 (α, y1) cos(πα)dαdΨ1(y1)

= c1

∫
<

∫ 0

1
πF−1

1 (1− α, y1) cos(πα)dαdΨ1(y1)

= −c1

∫
<

∫ 0

1
πF−1

1 (1− α, y1) cos(πα)dαdΨ1(y1)

= |c1|PSH[ξ1].

If c1 = 0, then we immediately have PSH[c1ξ1] = 0 = |c1|PSH[ξ1]. Thus, we always
have

PSH[c1ξ1] = |c1|PSH[ξ1].

Step 2: We prove

PSH[ξ1 + ξ2 + · · ·+ ξn] = PSH[ξ1] + PSH[ξ2] + · · ·+ PSH[ξn].

The inverse uncertainty distribution of f1(y1, τ1) + f1(y2, τ2) + · · ·+ f1(yn, τn) is

F−1(y1, y2, · · · , yn, α) = F−1
1 (y1, α) + F−1

2 (y2, α) + · · ·+ F−1
n (yn, α).

We can obtain

PSH[ξ1 + ξ2 + · · ·+ ξn]

=
∫
<n

∫ 1

0
πF−1(y1, y2, · · · , yn, 1− α) cos(πα)dαdΨ1(y1)dΨ2(y2) · · ·dΨn(yn)

=
∫
<n

∫ 1

0
π
(

F−1
1 (y1, 1− α) + F−1

2 (y2, 1− α) + · · ·+ F−1
n (yn, 1− α)

)
cos(πα)dαdΨ1(y1)dΨ2(y2) · · ·dΨn(yn)

=
∫
<n

∫ 1

0
πF−1

1 (y1, 1− α) cos(πα)dαdΨ1(y1)dΨ2(y2) · · ·dΨn(yn)

+
∫
<n

∫ 1

0
πF−1

2 (y2, 1− α) cos(πα)dαdΨ1(y1)dΨ2(y2) · · ·dΨn(yn) + · · ·

+
∫
<n

∫ 1

0
πF−1

n (yn, 1− α) cos(πα)dαdΨ1(y1)dΨ2(y2) · · ·dΨn(yn)

=PSH[ξ1] + PSH[ξ2] + · · ·+ PSH[ξn]
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by Theorem 5.
Step 3: By Step 1 and Step 2, for any real numbers ci, i = 1, 2, · · · , n, we can obtain

PSH

[
n

∑
i=1

ciξi

]
=

n

∑
i=1
|ci|PSH[ξi].

Thus, the proof is finished.

Remark 3. From Theorem 6, we see that the partial sine entropy is positive linearity any real
numbers.

5. Conclusions

Chance theory is a mathematical method to research the phenomenon with uncertainty
and randomness. The entropy of uncertain random variables is very important and
necessary for measuring uncertainty. In this paper, two new definitions of sine entropy
and partial sine entropy were proposed, and some properties of sine entropy and partial
sine entropy were studied. Using chance distribution or inverse chance distribution,
some calculation formulas of sine entropy and partial sine entropy of uncertain random
variables were derived. The partial sine entropy were investigated, which it was translation
invariance and positive linearity.
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