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Abstract: Process tomography, the experimental characterization of physical processes, is a central
task in science and engineering. Here, we investigate the axiomatic requirements that guarantee the
in-principle feasibility of process tomography in general physical theories. Specifically, we explore
the requirement that process tomography should be achievable with a finite number of auxiliary
systems and with a finite number of input states. We show that this requirement is satisfied in every
theory equipped with universal extensions, that is, correlated states from which all other correlations
can be generated locally with non-zero probability. We show that universal extensions are guaranteed
to exist in two cases: (1) theories permitting conclusive state teleportation, and (2) theories satisfying
three properties of Causality, Pure Product States, and Purification. In case (2), the existence of
universal extensions follows from a symmetry property of Purification, whereby all pure bipartite
states with the same marginal on one system are locally interconvertible. Crucially, our results hold
even in theories that do not satisfy Local Tomography, the property that the state of any composite
system can be identified from the correlations of local measurements. Summarizing, the existence
of universal extensions, without any additional requirement of Local Tomography, is a sufficient
guarantee for the characterizability of physical processes using a finite number of auxiliary systems
and with a finite number of input systems.

Keywords: general probabilistic theories; operational probabilistic theories; process tomography;
dynamically faithful states; universal extensions; teleportation, purification

1. Introduction

The experimental characterization of physical processes is an important component of
the scientific method. Such a characterization, known as process tomography, is widely
adopted in classical [1] and quantum technologies [2–14]. In general, one can regard the
in-principle feasibility of process tomography as a requirement for the construction of new
physical theories: arguably, a sensible physical theory should describe processes that—at
least in principle—can be characterized experimentally.

Operational axioms inspired by process tomography were first proposed by D’Ariano
in a sequence of works [15–18], where they featured as potential candidates for an axioma-
tization of quantum theory. In this paper, we will explore the conditions that guarantee the
feasibility of process tomography in general physical theories, independently of the quan-
tum axiomatization problem. Specifically, our goal will be to identify physical conditions
that guarantee the achievability of process tomography using a finite number of auxiliary
systems and a finite number of input states.

To understand the role of auxiliary systems in process tomography, it is useful to
consider first a popular approach known as standard process tomography [2,3], where no
auxiliary system is used. Standard process tomography aims at characterizing processes
by letting them act on a set of input states and by analyzing the output with a set of
measurements, as in the following schematic:
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ρ(i) A P B m(j) . (1)

Here, an unknown process P (with input system A and output system B) is tested
on a set of fiducial states {ρ(i)}N

i=1 with a set of fiducial measurements {m(j)}M
j=1. We use

the boldface notation m(j) to indicate that the j-th measurement has multiple outcomes,
labelled by some index that is not written down explicitly. By choosing a complete set of
fiducial states and measurements, one can then identify the action of the process P on its
input system—that is, one can uniquely determine the function fP that maps a generic
input state of system A into the corresponding output state of system B.

In classical and quantum physics, standard process tomography is sufficient to com-
pletely characterize physical processes: by determining the function fP , one can identify
the action of the process P in every possible experiment, even including experiments
where the process P acts locally on a part of a composite system. For example, this includes
experiments of the form

Ψ
A P B

M
C

, (2)

where P is applied locally on a joint state Ψ of systems A and system C, and a joint
measurement M is performed on systems B and C.

In classical and quantum theory, the outcome probabilities of all experiments of type (2)
are uniquely determined by the outcome probabilities of experiments of type (1). The origin
of this favourable situation is a property, known as Local Tomography, whereby the states
of every composite system can be uniquely identified by performing local measurements on
the components [16,17,19–27]. In quantum foundations, Local Tomography has often been
taken as an axiom for the characterization of standard quantum theory (on complex Hilbert
spaces)[21,25,28–34] and as a principle for the construction of new physical theories [22–24]. In
locally tomographic theories, the action of a process on its input system uniquely determines the
action of the process on every composite system [24]. As a result, standard process tomography
provides a complete characterization of physical processes.

The situation is radically different when Local Tomography does not hold. A simple
counterexample arises in real-vector-space quantum theory [35], a variant of standard quan-
tum theory that violates Local Tomography [19,20] and deviates from standard quantum
theory in a number of operational tasks [20,24,36–41]. In real-vector-space quantum theory,
one can find explicit examples of processes that have the same input-output function, and
yet act in completely different ways on composite systems [42].

When Local Tomography fails, the only way to unambiguously identify a process
is to test its action on composite systems, using an approach known as ancilla-assisted
process tomography [4–8]. This approach consists in performing experiments of the type of
Equation (2). Now, the crucial question is: which auxiliary systems C have to be taken into
account? In the worst case, the answer could be “all possible systems”: the characterization
of an unknown physical process may require experiments performed, as it were, on the
whole universe. It seems natural to demand, as a basic principle, that physical theories
should be free from this pathology. In a sensible physical theory, it should be in principle
possible to identify any given process up to any desired level of accuracy using a finite
number of experimental settings. This means: testing the process with a finite number of
auxiliary systems, preparing a finite number of states, and performing a finite number of
measurements, each with a finite number of outcomes.

In this paper, we will focus on the requirements of a finite number of auxiliary sys-
tems/finite number of inputs states, and we will consider the case of process tomography
with ideally perfect accuracy. We will require that, at least in principle, physical processes can
be completely characterized by probing their action with a finite number of auxiliary systems.



Symmetry 2021, 13, 1985 3 of 33

Note that, in turn, every finite set of auxiliary systems {Ci}k
i=1 can be replaced without loss of

generality by a single auxiliary system R, for example by merging all the systems of the finite
set into a composite system. Indeed, most of the frameworks for general probabilistic theories
include a notion of system composition, denoted by ⊗ and corresponding to a generalization
of the tensor product in quantum theory [21–24,27,28,34,42–48]. As long as the number of
components is finite, the composite system is well defined in all these frameworks. At the
mathematical level, the composition⊗ is defined as the tensor product in a monoidal category
describing physical systems and processes between them [49–52]. When monoidal categories
are used as a framework for general physical theories, they are often called process theories [53].

These observations motivate the following requirement:

Principle 1 (Dynamically Faithful Systems). For every pair of systems A and B, there exists an
auxiliary system R such that all processes with input A and output B can be completely characterized
by their action on the states of the composite system A⊗ R.

We will also consider a slightly stronger requirement, inspired by D’Ariano’s early
axiomatization works [15–18]. The requirement stipulates the achievability of process
tomography with a single state of a suitable composite system.

Principle 2 (Dynamically Faithful States). For every pair of systems A and B, there exists an
auxiliary system R such that all processes with input A and output B can be completely characterized
by their action on a single state of the composite system A⊗ R.

Dynamically Faithful Systems/Dynamically Faithful States are strictly weaker require-
ments than Local Tomography. For example, real-vector-space quantum theory violates
Local Tomography but satisfies Dynamically Faithful States (and therefore Dynamically
Faithful Systems): every real-vector-space process with input A can be uniquely charac-
terized by its action on an entangled state of the composite system A⊗A [24]. It is also
worth noting that Dynamically Faithful Systems/Dynamically Faithful States do not imply
finite dimensionality: for example, all the processes on a quantum system with separable
Hilbert space can be characterized by preparing a single bipartite state [6]. Nevertheless,
in this paper we will be mostly concerned with finite dimensional systems for simplicity of
presentation. Note that we do not make any assumption on the size (however defined) of
the system R. A further strengthening of our requirements would by to demand that the
size of system R be bounded in terms of the sizes of systems A and B. For example, one
could demand that R be embeddable into A⊗ B, or that R be operationally equivalent to
system A, as it happens in quantum theory and in classical probability theory.

The core result of the paper is a mathematical characterization of the theories satisfying
Dynamically Faithful States. The characterization is valid for a broad class of physical
theories—so broad that, in fact, it even includes non-causal theories where the choices of
experiments performed in the future can affect the outcome probabilities of experiments
performed in the past. After providing the mathematical characterization, we identify
physical conditions that guarantee Dynamically Faithful States. Specifically, we show that
Dynamically Faithful States holds in all theories where all correlations of a given physical
system with its environment can be probabilistically generated by local operations on
a single “universally correlated state”. We call this property Universal Extension. Two
important classes of theories satisfying Universal Extension are (1) the theories allowing
for conclusive teleportation [49,54], and (2) the theories satisfying three requirements of
Causality, Pure Product States, and Purification. Informally, Causality is the requirement
that the outcome probabilities of present experiments are independent on the choice of future
experiments [24,26–28,42,46,53,55,56]. Pure Product States is the requirement that if the parts
of a composite system are in pure states, then the whole composite system is in a pure state.
Purification is the requirement that every mixed state can be extended to a pure state, and
that such extension is unique up to local symmetry transformations [24,26–28,42,46,57,58].
Remarkably, the symmetry property of purifications guarantees that every purification is a
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universal extension, and therefore every theory with purification has Dynamically Faithful
States. Our main results can be summarized by the following logical implications:

1. Conclusive Teleportation =⇒ Universal Extension;
2. Causality, Pure Product States, and Purification =⇒ Universal Extension;
3. Universal Extension =⇒ Dynamically Faithful States =⇒ Dynamically Faithful Systems.

The overall conclusion of our results is that Universal Extension guarantees the in-
principle characterizability of physical processes, without invoking any assumption of
Local Tomography.

2. Materials and Methods

In this section, we briefly introduce the framework and the notation used in the paper.

2.1. Operational-Probabilistic Theories

A major trend in quantum foundations is the study of information-processing tasks
in a broad class of general probabilistic theories, which include quantum theory as a
special case [21–24,27,28,42–47]. A convenient approach to general probabilistic theories is
provided by the framework of operational-probabilistic theories (OPTs) [24,27,28,42,44–48,59].
The framework consists of two distinct conceptual ingredients: an operational structure,
describing circuits that produce outcomes, and a probabilistic structure, which assigns
probabilities to the outcomes. The operational structure is inspired by the approach of
categorical quantum mechanics [49–52] (see also [53] for a recent presentation), and follows
it rather closely, although there are a few relevant differences in the way classical outcomes
are treated [48,59].

The OPT framework describes a set of experiments that can be performed on a given
set of systems with a given set of physical processes. The framework is based on a primitive
notion of composition, whereby every pair of physical systems A and B can be combined
into a composite system A⊗ B. The set of all physical systems is closed under composition,
and will be denoted by Sys. Physical processes can be combined in sequence or in parallel
to build circuits, such as

ρ

A A A′ A′ A′′ a

B B B′ b
. (3)

In this example, A, A′, A′′, B, and B′ are systems, ρ is a state of the composite system
A⊗ B, A, A′ and B are transformations (a.k.a. processes), a and b are measurements. We
use boldface fonts a and b for measurements in order to indicate that they generally have
multiple outcomes. When necessary, we will explicitly write a = (ax)x∈X and b = (by)y∈Y,
where x and y are measurement outcomes, and X and Y are the sets of possible outcomes
of the two measurements, respectively. Here ax and by play the same role as the linear
operators associated to the outcomes of quantum measurements. Following a traditional
terminology dating back to Ludwig [60], we will call them effects.

Among the physical systems, every OPT includes a trivial system, denoted by I
and corresponding to the degrees of freedom ignored by theory. States (resp. effects) are
transformations with the trivial system as input (resp. output).

Transformations from the trivial system to itself are called scalars. Physically, they
are associated to circuits with no external wires, like the circuit in Equation (3). In the
OPT framework, scalars are typically identified with numerical probabilities, valued in
the interval [0, 1] ⊂ R. More generally, other identifications are also possible, including
signed probabilities or possibilities, as shown in the work of Gogioso and Scandolo [48].
In the following, we will not make any assumption on the nature of the scalars, although
we will often call them “probabilities” to facilitate the connection to the existing literature
in quantum foundations.

For generic systems A and B, we denote by:
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• Transf(A→ B) the set of transformations from A to B, also called transformations of
type A→ B;

• St(A) := Transf(I→ A) the set of states of system A;
• Eff(A) := Transf(A→ I) the set of effects on system A;
• B ◦ A (or BA, for short) the sequential composition of two transformations A and B,

with the input of B matching the output of A;
• A⊗B the parallel composition of the transformations A and B;
• IA the identity transformation on system A;
• 1 := II the identity transformation on the trivial system.

Definition 1. We say that two transformations P and P ′ are operationally indistinguish-
able [24] if they give rise to the same probabilities in all possible experiments, namely.

Γ
A P B

E
C

= Γ
A P ′ B

E
C

∀C ∈ Sys
∀Γ ∈ St(A⊗C)
∀E ∈ Eff(B⊗C)

(4)

In this paper, we will focus our attention on quotient theories [42,46], where physical
transformations that are operationally indistinguishable are identified: in other words, we
will assume that condition (4) implies the equality

A P B = A P ′ B . (5)

When the scalars are positive real numbers, the set of transformations Transf(A→ B)
in the quotient theory can be regarded as elements of an ordered vector space [24,42,46,61].

Every transformation takes place in a test, that is, a non-deterministic process that
generates an outcome out of a set of possible outcomes. Mathematically, a test of type
A→ B, with outcomes in X, is a list of transformations of type A→ B indexed by elements
of the outcome set X. We denote such a list by T = (Tx)x∈X, with Tx ∈ Transf(A→ B) for
every x ∈ X.

Tests of type I → A are called preparation tests, or sources. A preparation test ρ =
(ρx)x∈X describes the non-deterministic preparation of the state ρx, heralded by an outcome
x ∈ X. In quantum theory, the states in a preparation test are subnormalized density matrices,
and the trace of each subnormalized density matrix is interpreted as the probability of the
corresponding preparation.

Tests of type A→ I are called measurements. A measurement a = (ax)x∈X is a collection
of effects labelled by measurement outcomes.

A transformation is deterministic if it is part of a test with a single outcome. By defini-
tion, deterministic transformations can be performed deterministically by setting up the
corresponding test. We use the notations:

• DetTransf(A→ B) for the set of deterministic transformations of type A→ B;
• DetSt(A) for the set of deterministic states of system A;
• DetEff(A) for the deterministic effects of system A.

For the trivial system I, we assume that there exists only one deterministic transforma-
tion of type I→ I, namely the identity transformation 1. This assumption was introduced
by Coecke in Ref. [62], motivated by the interpretation of the scalars as “probabilities”,
which suggests that there should be only one deterministic scalar, corresponding to the
notion of certainty.

We assume that the set of tests is closed under coarse-graining, the operation of joining
together two or more outcomes. Given a test T = (Tx)x∈X and a partition of the outcome
set X into disjoint subsets (Xy)y∈Y, we define the coarse-grained test S = (Sy)y∈Y as the test
with transformations

Sy := ∑
x∈Xy

Tx . (6)
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At this level, the symbol of sum is just a notation for the operation of coarse-graining:
the only mathematical requirements on the coarse-graining operation is that it distributes
over parallel and sequential composition, namely

A⊗

 ∑
x∈Xy

Tx

 = ∑
x∈Xy

(A⊗ Tx) and

 ∑
x∈Xy

Tx

⊗A = ∑
x∈Xy

(Tx ⊗A) , (7)

for every transformation A,

B ◦

 ∑
x∈Xy

Tx

 = ∑
x∈Xy

(B ◦ Tx) , (8)

for every transformation B with input matching the output of T , and ∑
x∈Xy

Tx

 ◦ C = ∑
x∈Xy

(Tx ◦ C) , (9)

for every transformation C with output matching the input of T . Closely related notions of
coarse-graining were proposed in the works of Tull [59], Gogioso and Scandolo [48], where
Equations (7)–(9) were assumed together with a few additional requirements.

Since there is only one deterministic transformation of type I→ I (the scalar 1), every
test p = (px)x∈X of type I→ I satisfies the normalization condition

∑
x∈X

px = 1 . (10)

This condition is the analogue of the normalization of a probability distribution. For
this reason, in the following we will call the tests of type I → I “probability distributions”,
even though in general the scalars may not be real numbers in the interval [0, 1].

When the scalars are real numbers, the sum notation used above is consistent with the
notion of sum in the ordered vector space containing the physical transformations in the
quotient theory [24,42,46,61] (cf. Definition 1 and comments below it).

2.2. Framework Assumptions

In this paper, we will make four basic assumptions that are shared by most proba-
bilistic theories in the literature. We spell out the assumptions explicitly because they will
play a significant role in our results, and it is convenient to keep track of which assumption
is used in which result. For example, we will write “Lemma 1 (A1, A2, A3)” to state that
that Lemma 1 follows from assumptions 1, 2, and 3.

Our first assumption is that all non-deterministic tests arise from deterministic pro-
cesses followed by measurements. This assumption is compatible with the idea that the
outcomes can be read-out from some physical system, like the display of a device, and
that such system is also described by the theory. The readout process is then realized as a
deterministic transformation, followed by a measurement on the display:

Assumption 1 (Displays [46]). Every test arises from a deterministic transformation followed by
a measurement on one of the output systems.

Formally, Assumption 1 is that every test T = (Tx)x∈X of type A→ B can be realized as:

A Tx
B = A

D
B ∀x ∈ X .

C cx

(11)
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for some system C, some deterministic transformation D, and some measurement c = (cx)x∈X.
Our second assumption is that the set of systems described by the theory includes

some “coin”, that is, some physical system that generates random outcomes. In the familiar
setting where probabilities are numbers in the interval [0, 1], the assumption is that there
exists some two-outcome experiment whose outcome probabilities are both non-zero. In
the general case, an analogue of non-zero probability is a cancellative scalar: a scalar s is
cancellative if the condition s p = s p′ implies p = p′ for every pair of scalars p and p′.

Assumption 2 (Coins). There exist two-outcome experiments whose outcome probabilities are
both cancellative.

We stress that we do not assume the existence of coins with arbitrary biases: even if
the scalars are real numbers, we do not assume that they are the whole interval [0, 1].

An important property of cancellative scalars is that they cancel out in equations
involving arbitrary transformations:

Lemma 1. For a cancellative scalar s, the condition sP = sP ′ implies P = P ′, for every pair of
processes P and P ′ of the same type.

Proof. Given two processes P and P ′ of type A→ B, the condition sP = sP ′ implies

s Γ
A P B

E
C

= s Γ
A P ′ B

E
C

∀C ∈ Sys
∀Γ ∈ St(A⊗C)
∀E ∈ Eff(B⊗C) ,

(12)

which in turn implies

Γ
A P B

E
C

= Γ
A P ′ B

E
C

∀C ∈ Sys
∀Γ ∈ St(A⊗C)
∀E ∈ Eff(B⊗C)

(13)

because s is cancellative. Hence, the processes P and P ′ are operationally indistinguishable,
in the sense of Definition 1. Since we are dealing with a quotient theory, this condition
implies P = P ′.

Our third assumption is that it is possible to perform randomized tests. Informally,
a randomized test is a test where one tosses a coin and performs a test depending on the
outcome of the coin toss. Here we give the formal definition for the randomization of two
tests (the extension to more than two tests is straightforward):

Definition 2. Let T and S be two tests of type A→ B, with outcomes in X and Y, respectively,
and let (p0, p1) be a probability distribution allowed by the theory (i.e., a test of type I→ I). The
randomization of T and S with probabilities (p0, p1) is a test R of type A→ B, with outcomes in
the disjoint union Z = Xt Y, in which all elements of X are regarded as distinct from all elements
of Y. The test R is defined as

Rz =


p0 Tz z ∈ X

p1 Sz z ∈ Y .
(14)

Our third assumption is that all randomizations are valid tests:

Assumption 3 (Randomizations). The set of tests is closed under randomizations.
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The Randomizations Assumption, together with the possibility of coarse graining,
guarantees the existence of random mixtures, defined as follows:

Definition 3. Let σ and τ be two deterministic states of system A and let (p0, p1) be a probability
distribution allowed by the theory. The mixture of σ and τ with probabilities (p0, p1) is the
deterministic state ρ defined by

ρ := p0 σ + p1 τ. (15)

The fact that ρ is a deterministic state follows from the fact that ρ is the coarse-graining of the
randomized test ρ = (ρ0, ρ1) with ρ0 = p0 σ and ρ1 = p1 τ.

The notion of mixture introduces a pre-order relation on the set of deterministic states:

Definition 4. Let ρ and σ be two deterministic states of system A. We say that ρ contains σ,
denoted as ρ w σ, if ρ = p0 σ + p1 τ, where (p0, p1) is a probability distribution allowed by the
theory, p0 is a cancellative scalar, and τ is a deterministic state.

Note that the relation w is transitive: if ρ w σ and σ w τ, then ρ w τ.
Our final assumption is about the existence of complete states, defined as follows:

Definition 5. A deterministic state ρ ∈ DetSt(A) is complete if ρ w σ for every deterministic
state σ ∈ DetSt(A).

The assumption is:

Assumption 4 (Complete States). For every system, there exists at least one complete state.

While Assumptions 1, 2, and 3 are satisfied by most probabilistic theories, including
infinite dimensional ones, Assumption 4 is more specific to the finite dimensional setting.
It is satisfied in the standard scenario where the set of deterministic states is a finite-
dimensional convex set. In this scenario, the complete states are exactly the points in the
interior of the convex set. Assumption 4 is also satisfied in some theories where the set of
deterministic states is not convex. For example, it is satisfied in Spekkens’ toy theory [63,64],
where some convex combinations are forbidden but nevertheless the set of deterministic
states contains a complete state. However, Assumption 4 is generally not satisfied by
classical and quantum theory infinite dimensions. An infinite-dimensional generalization
of the notion of complete state will be discussed in Section 3.2.

2.3. Local Tomography

In this section, we review the property of Local Tomography. The scope of this review
is to clarify, by contrast, what it means to characterize physical processes in theories where
Local Tomography does not hold.

The Local Tomography has been formulated in several forms and under different
names [16,19–25]. A simple formulation is the following [26].

Definition 6 (Local Tomography). A physical theory satisfies Local Tomography if the state of
every composite system is uniquely determined by the joint statistics of local measurements on the
components.

Mathematically, Local Tomography states that, for every pair of systems A and B, and
for every pair of states of the composite system A⊗ B, say ρ and ρ′, the condition

ρ
A a

B b
= ρ′

A a ∀a ∈ Eff(A)

B b ∀b ∈ Eff(B)
(16)
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implies the equality

ρ
A

B
= ρ′

A

B .
(17)

2.4. Standard Process Tomography

Local Tomography has an important implication for the task of characterizing physical
processes: in every locally tomographic theory, the action of a process on its input system
determines the action of the process on all possible composite systems. Explicitly, one has
the following

Proposition 1 (Lemma 14 of [24]). Suppose that the theory satisfies Local Tomography. Then, for
every pair of systems A and B and for every pair of processes P and P ′ of type A→ B, the condition

ρ A P B = ρ A P ′ B ∀ρ ∈ St(A) (18)

implies the equality

Γ
A P B

C
= Γ

A P ′ B ∀C ∈ Sys

C ∀Γ ∈ St(A⊗C) ,
(19)

or equivalently, the equality

A P B = A P ′ B . (20)

When system A is finite dimensional, Proposition 1 guarantees that one can charac-
terize an arbitrary process of type A → B by applying it to a fiducial set of input states
of system A, and by characterizing the output states of system B with a fiducial set of
measurements. This result is the conceptual foundation underpinning standard process
tomography [2,3].

Interestingly, a converse of Proposition 1 also holds, under the assumption that the all
states of all composite systems can be probabilistically generated by acting locally on one
part of a fixed bipartite state. This point is discussed in Appendix A.

2.5. The Counterexample of Real-Vector-Space Quantum Theory

When Local Tomography does not hold, standard process tomography may not
work. A simple example can be found in real-vector-space quantum theory [35], a variant
of standard quantum theory that violates Local Tomography [19,20] and deviates from
standard quantum theory in a number of operational tasks [20,24,36–41]. The example,
introduced in [42], involves two processes, P and P ′, acting on a “rebit”, that is, a two-
dimensional quantum system associated to the vector space R2. Mathematically, the two
processes are defined by the linear maps:

P(M) =
1
2
(M + YMY)

P ′(M) =
1
2
(XMX + ZMZ) , (21)

where M is a generic 2× 2 matrix and X :=
(

0 1
1 0

)
, Y :=

(
0 −i
i 0

)
, Z :=

(
1 0
0 −1

)
are

the three Pauli matrices. Now, consider the action of the two processes on a single-rebit,
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whose possible states are described by density matrices with real entries. Writing a generic
real-valued density matrix ρ in the Bloch form

ρ =
I + cos θ X + sin θ X

2
, θ ∈ [0, 2π) (22)

we can easily obtain the relation

P(ρ) = I
2
= P ′(ρ) , (23)

meaning that the two processes P and P ′ act in the same way on every single-rebit input state.
On the other hand, the processes P and P ′ are clearly different. The difference can

be detected by applying the processes on a maximally entangled state of two rebits: for
example, using the notation

|Φ+〉 :=
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉√

2

|Φ−〉 :=
|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉√

2

|Ψ+〉 :=
|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉√

2

|Ψ−〉 :=
|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉√

2
, (24)

one has

(P ⊗ I)(|Φ+〉〈Φ+|) = 1
2
|Φ+〉〈Φ+|+ |Ψ−〉〈Ψ−|

(P ⊗ I)(|Φ+〉〈Φ+|) = 1
2
|Ψ+〉〈Ψ+|+ |Φ−〉〈Φ−| . (25)

Note that the output states are not only different, but also orthogonal, meaning that a
joint measurement on the two rebits can tell the two states apart without any error. The
two states in the r.h.s. of Equation (25) were first studied by Wootters [20] as an example of
bipartite states that perfectly distinguishable by global measurements, and yet completely
indistinguishable by local measurements in real-vector-space quantum theory.

Summarizing, standard process tomography does not work in real-vector-space quan-
tum theory: in order to unambiguously characterize an unknown process on real-vector
space quantum states, it is mandatory to test it on composite systems.

2.6. Process Tomography without the Assumption of Local Tomography

In the lack of Local Tomography, process tomography requires experiments on composite
systems. Now, the key question is: which composites have to be tested? In principle, the answer
could be “all”: a process with input system A may have to be tested on every composite system
A⊗ C for every possible auxiliary system C. Loosely speaking, the only way to completely
characterize a process would be to make experiments on “the whole universe”.

This situation does not arise in real-vector-space quantum theory: there, a complete
process tomography can be achieved by preparing a single input state of a single composite
system. Specifically, process tomography can be achieved by preparing two identical copies
of the input system in a maximally entangled state and by letting the process act on one
copy. We do not provide a proof here because later in the paper we will give a general proof
valid for all theories obeying the Purification Principle (see Section 3.5.3 for the formal
definition). Since real-vector-space quantum theory satisfies the Purification Principle, the
general proof applies.)

Summarizing, real-vector-space quantum theory satisfies the principle of Dynamically
Faithful States (Principle 2 in the introduction). In the rest of the paper we will investigate
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the conditions that guarantee the validity of Dynamically Faithful States in general physical
theories.

3. Results
3.1. Four Levels of Process Tomography

The goal of tomography is to characterize the action of an unknown process on all
possible inputs. Nevertheless, it is also useful to first consider intermediate tasks where
the goal is to characterize the process on a subset of inputs. In this Section we define three
such tasks, listed in order of increasing strength. All together, these three tasks and the task
of full process tomography define four levels of characterization of physical processes.

3.1.1. Equality on a Source

Consider the situation where a source prepares system A in a non-deterministic
fashion. Such a source can be described by a preparation test ρ = (ρx)x∈X, where the
preparation of the state ρx is heralded by the outcome x. The states in the source are then
used as inputs:

Definition 7. We say that two processes P and P ′, of type A → B, are equal on the source
(ρx)x∈X if one has:

ρx A P B = ρx A P ′ B ∀x ∈ X . . (26)

When this is the case, we write P ∼ρ P ′.

It is easy to see that ∼ρ is an equivalence relation. The equivalence relation ∼ρ defines
a weak notion of process tomography, where the goal is just to identify the action of
processes on the fixed set of states {ρx , x ∈ X}.

3.1.2. Equality upon Input of a State

We now consider a stronger notion of process tomography. Instead of characterizing a
process on a single source, one can try to characterize the process on all sources with the
same average state. The average state of a source ρ = (ρx)x∈X is the deterministic state

ρ := ∑
x∈X

ρx , (27)

obtained by coarse-graining over all possible outcomes.

Definition 8. We say that two processes P and P ′, of type A→ B, are equal upon input of ρ if
they are equal on every source ρ = (ρx)x∈X with average state equal to ρ. When this is the case, we
write P =ρ P ′.

The condition P =ρ P ′ is equivalent to the condition

σ A P B = σ A P ′ B ∀σ : σ v ρ , (28)

where the notation σ v ρ means that σ is contained in ρ, that is, that there exists a source
ρ = (ρ0, ρ1) such that ρ0 + ρ1 = ρ and ρ0 = p0 σ for some cancellative scalar p0 (Note that
this definition is slightly more general than Definition 4: here do not require the state σ to
be deterministic).

In quantum information, the notion of equality upon input of ρ was introduced in [65]. Its
extension to general probabilistic theories was discussed in [24,27,28].

It is easy to check that equality upon input of ρ is an equivalence relation. Note that, by
definition, identifying a process upon input of ρ is more demanding than just identifying it
on a specific source (ρx)x∈X with average state ρ.
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3.1.3. Equality on the Extensions of a State

All notions of process tomography considered so far focussed on the action of a
process on its input system alone. To identify the process, however, one also needs to
characterize its local action on composite systems.

Definition 9. Let ρ ∈ DetSt(A) be a deterministic state of system A. An extension of ρ on
system E is a deterministic state Γ ∈ DetSt(A⊗ E) satisfying the relation:

Γ
A = ρ A

E e
(29)

for some deterministic effect e ∈ DetEff(E). We denote by Ext(ρ, E) the set of all extensions of ρ on
system E.

Our third level of process tomography is to identify the action of a process on all the
extensions of a given state.

Definition 10. We say that two processes P and P ′ are equal on the extensions of ρ if one has

Γ
A P B

E
= Γ

A P ′ B

E
(30)

for every possible system E and for every possible extension Γ ∈ Ext(ρ, E). In this case, we write
P ≡ρ P ′.

In general, equality of all the extensions of ρ implies equality upon input of ρ. This
is because all sources with average state ρ can be viewed as extensions of ρ involving an
environment serving as a “display”. Explicitly, we have the following:

Lemma 2 (A1). Let ρ ∈ DetSt(A) be a deterministic state of system A, and let ρ = (ρx)x∈X be
an arbitrary source with average state ρ. Then, there exists an extension Γ ∈ Ext(ρ, E), for suitable
system E, such that, for every pair of processes P and P ′ of type A→ B, with arbitrary system B,
the condition

Γ
A P B

E
= Γ

A P ′ B

E
(31)

implies the condition

ρx A P B = ρx A P ′ B ∀x ∈ X . (32)

The proof is provided in Appendix B. An immediate consequence is that equality on
all the extensions of ρ implies equality upon input of ρ:

Corollary 1 (A1). Let ρ ∈ DetSt(A) be a deterministic state of system A. Then, for every pair of
processes P and P ′ of type A→ B, with arbitrary system B, one has the implication

P ≡ρ P ′ =⇒ P =ρ P ′ . (33)

In Appendix B we also show that the relations ≡ρ and =ρ coincide in the special case
of theories satisfying Local Tomography and Causality, the principle that the outcome
probabilities of present experiments are independent on the choice of future experiments
[24,26–28,42,46,53,55,56].
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3.1.4. Equality on All States

The ultimate goal of process tomography is to identify the action of an unknown
process on all possible states. Using the results collected so far, the condition for perfect
identification can be expressed as follows:

Lemma 3 (A1). Let P and P ′ be two processes of type A→ B. Then, one has the condition

P = P ′ ⇐⇒ P ≡ρ P ′ , ∀ρ ∈ DetSt(A) . (34)

The proof is provided in Appendix C. Summarizing, two processes of type A→ B are
equal if and only if they coincide on all the extensions of all deterministic states of system
A. In Section 3.4 we will show that, in fact, the extensions of a single state are enough.

3.2. Tomographic Ordering and Dynamically Faithful States

A natural notion in the context of process tomography is the notion of tomographic
ordering:

Definition 11. Let Φ ∈ St(A⊗ R) and Ψ ∈ St(A⊗ E) be two (possibly non-deterministic)
states. We say that Φ is tomographically more powerful than Ψ for processes of type A→ B,
if, for every pair of processes P and P ′ of type A→ B, the condition

Φ
A P B

R
= Φ

A P ′ B

R
(35)

implies the condition

Ψ
A P B

E
= Ψ

A P ′ B

E .
(36)

When this is the case, we write Φ �A→B Ψ.

In general, the relation of tomographic ordering (for a fixed systems A and B) may or
may not have a maximum. When it does, this maximum is called a dynamically faithful state:

Definition 12 (Dynamically faithful state [15–18,24,27,28,42]). A (possibly non-deterministic)
state Φ ∈ St(A⊗ R) is dynamically faithful for processes of type A→ B if, for every pair of
processes P and P ′ of type A→ B, the condition

Φ
A P B

R
= Φ

A P ′ B

R
(37)

implies

A P B = A P ′ B . (38)

Originally [15–18], the term “dynamically faithful” was used to refer to states that
determine the action of an unknown process on its input system, up to probabilistic
rescalings, that is, states for which the condition (35) implies Pρ ∝ P ′ρ for every state
ρ ∈ St(A). Later [24,27,28,42], the term was used to denote states that identify the action of
the process on arbitrary composite systems, as per Definition 12.

In every theory satisfying the Displays Assumption 1, dynamically faithful states can
be taken to be deterministic without loss of generality:
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Lemma 4 (A1). For a generic pair of systems A and B, if there exists a dynamically faithful state for
processes of type A→ B, then there exists a deterministic dynamically faithful state for processes
of type A→ B.

Proof. Let Φ ∈ St(A⊗ R) be a (possibly non-deterministic) dynamically faithful state
for processes of type A → B, and let ρ = (ρx)x∈X be a source that produces the state
Φ, say ρx0 = Φ for some outcome x0 ∈ X. Since Φ is dynamically faithful, equality of
two processes on the source ρ implies equality of the processes themselves: for every
pair of processes P and P ′ of type A→ B, the condition (P ⊗ IR) ∼ρ (P ′ ⊗ IR) implies
the condition P = P ′. Then, Lemma 2 shows that there exists a deterministic state
Γ ∈ DetSt(A⊗ R⊗ E), for suitable system E, such that the condition (P ⊗ IR ⊗ IE)Γ =
(P ′⊗IR⊗IE)Γ implies (P ⊗IE) ∼ρ (P ′⊗IE) (and therefore P = P ′, in the present case).
Hence, the deterministic state Γ is dynamically faithful for processes of type A→ B.

3.3. Relation between Tomographic Ordering and Containment

There is an important connection between the tomographic ordering and the contain-
ment relation defined earlier in the paper. Recall the definition: a deterministic state ρ
contains another deterministic state σ, denoted as ρ w σ, if ρ is a non-trivial mixture of σ
and some other state τ, namely ρ = p0 σ + p1 τ where (p0, p1) are probabilities and p0 is
cancellative. Here we show that the containment relation orders the deterministic states
according to the tomographic power of their extensions.

Lemma 5 (A1,A3). Let ρ and σ be two deterministic states of system A. If ρ contains σ, then for
every extension of σ, say Σ ∈ Ext(σ, E) there exists an extension of ρ, say Γ ∈ Ext(ρ, F), such that

Γ �A→B Σ (39)

for every system B.

The proof is provided in Appendix D.

A simple consequence of Lemma 5 is the following:

Corollary 2 (A1,A3). Let ρ and σ be two deterministic states of system A. If ρ contains σ, then,
for every system B and for every pair of processes P and P ′ of type A→ B, the condition P ≡ρ P ′
implies the condition P ≡σ P ′,

The case of complete states is especially important here. In this case, we have the
following:

Corollary 3 (A1,A3). If ω ∈ DetSt(A) is a complete state, then, for every system B and every
pair of processes P and P ′ of type A→ B, the condition P ≡ω P ′ implies the equality P = P ′.

Proof. Immediate from Corollary 2, Lemma 3, and the definition of complete state.

This result plays a crucial role in the rest of the paper. In passing, we note that it
also suggests an infinite-dimensional generalization of the notion of complete state. The
generalization is as follows: we say that a state ω ∈ DetSt(A) is tomographically complete
if the relation P ≡ω P ′ implies the equality P = P ′ for every pair of processes of type
A → B with arbitrary output system B. Corollary 3 shows that every complete state is
tomographically complete. In infinite dimensional settings, complete states in the sense of
Definition 5 may not exist, and one could regard tomographically complete states as the
appropriate notion. Notably, all the results in this paper hold if the notion of complete state
is replaced by the more general notion of tomographically complete state.
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3.4. Necessary and Sufficient Condition for Dynamically Faithful States

We are now ready to provide the core technical result of the paper:

Theorem 1 (A1,A2,A3,A4). For a generic pair of systems A and B, the following are equivalent:

1. there exists a dynamically faithful state for processes of type A→ B
2. there exists a complete state ω ∈ DetSt(A) such that the set of all the extensions of ω has a

maximum with respect to the tomographic ordering �A→B.

The proof is provided in Appendix E. The important point of the above theorem
is that one can focus the attention on the complete states. In summary, the existence of
dynamically faithful states boils down to the existence of a maximally powerful extension of a
complete state.

3.5. Physical Conditions for Dynamically Faithful States

We have seen that Dynamically Faithful States holds if and only if every complete
state has a maximally powerful extension. Still, this is just a mathematical requirement.
Can we find physical reasons for this requirement to be satisfied? Here we give three
physically motivated sufficient conditions.

3.5.1. Universal Extension

Heuristically, it is natural to imagine that the “maximally powerful extension” in
Theorem 1 determines all the other ways in which the system can be correlated to an envi-
ronment. Going further, we can imagine that all the other correlations can be physically gen-
erated from the “maximally powerful extension” using some (possibly non-deterministic)
process. The idea motivates the notion of universal extension, from which all the extensions
of a given state can be generated:

Definition 13 (Universal extension). A state ρ ∈ St(A) has a universal extension if there
exists a reference system R and a state Ψ ∈ St(A⊗R) with the property that every other extension
of ρ can be probabilistically generated from Ψ by applying a transformation on R. Explicitly: for
every system E, every extension Γ ∈ Ext(ρ, E) can be obtained as

p
A

Γ E
=

A

Ψ
R T E

, (40)

where p ∈ Transf(I→ I) is a cancellative scalar and T is a transformation of type R→ E.

Using this definition, we can formulate a requirement for general physical theories:

Principle 3 (Universal Extension). Every physical system has a complete state with a universal
extension.

Note that one could also consider the stronger requirement that every state have a
universal extension. The reasons why we did not phrase Principle 3 in this way are (1)
universal extensions of complete states are already sufficient for process tomography, and
(2) as we will see later in the paper, the possibility of conclusive teleportation guarantees
the existence of a universal extension of a a complete state, while in general it may not
guarantee the existence of universal extensions of arbitrary states.

We now show that Universal Extension guarantees Dynamically Faithful States. The
first step is the following lemma:
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Lemma 6. Suppose that a deterministic state ρ ∈ DetSt(A) has a universal extension Ψ ∈
DetSt(A⊗ R). Then, for every system B and for every pair of processes of type A→ B, say P and
P ′, the condition

Ψ
A P B

R
= Ψ

A P ′ B

R
(41)

implies the condition

P ≡ρ P ′ . (42)

Proof. Let Γ ∈ Ext(ρ, E) be an arbitrary extension of ρ, and let T ∈ Transf(R → E) be
the transformation in Equation (40). By applying the transformation T on both sides of
Equation (41), we obtain the relation

Ψ
A P B

R T E
= Ψ

A P ′ B

R T E
. (43)

Inserting Equation (40) into both sides of the equality, we then obtain:

p Γ
A P B

E
= p Γ

A P ′ B

E
, (44)

and, since p is cancellative,

Γ
A P B

E
= Γ

A P ′ B

E
(45)

(cf. Lemma 1). Since Γ is an arbitrary extension of ρ, we conclude that the equivalence
P ≡ρ P holds.

Applying the above lemma to a complete state, we obtain the following

Theorem 2 (A1,A3). Universal Extension implies Dynamically Faithful States.

Proof. Universal Extension guarantees that there exists a complete state ω ∈ DetSt(A)
with a universal extension Φ ∈ DetSt(A⊗ R), for some auxiliary system R. Since Φ is
a universal extension, for every system B and every pair of processes P and P ′ of type
A→ B, the equality

(P ⊗ IR)Φ = (P ′ ⊗ IR)Φ (46)

implies the condition

P ≡ω P ′ (47)

(cf. Lemma 6). Now, since ω is complete, the equality on the extensions of ω impliesP = P ′
(Corollary 3). To summarize, we obtained that the condition (P ⊗ IR)Φ = (P ′ ⊗ IR)Φ
implies P = P ′. Hence, the state Φ is dynamically faithful for processes of type A → B.
Since this construction works for arbitrary A and B, we conclude that the theory satisfies
Dynamically Faithful States.

Notably, Universal Extension implies the existence of a state Φ ∈ DetSt(A⊗ B) which
is dynamically faithful for processes of type A → B, with arbitrary output system B. In
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other words, the choice dynamically faithful state depends only on the input of the tested
process and not on its output.

3.5.2. Conclusive Teleportation

Quantum teleportation [66] is a protocol for transferring the state of a quantum system
from a sender to a receiver using only classical communication and previously established
quantum correlations. The most basic version of quantum teleportation is probabilistic:
the sender performs a joint measurement on the system to be teleported and on part of a
bipartite state, shared with the receiver. If the measurement yields a specific outcome, then
the state of the system is transferred to the receiver without any alteration. Probabilistic
teleportation is often called conclusive. The analogue of conclusive teleportation in general
theories was studied by Abramsky and Coecke in [49] in the context of categorical quantum
mechanics, by Barnum, Barrett, Leifer, and Wilce [23] in the context of general probabilistic
theories, and by Chiribella, D’Ariano, and Perinotti [24,27] in the context of theories
satisfying Purification.

In a general physical theory, conclusive teleportation means that, for every system A
there exists a system R, a deterministic state Φ ∈ DetSt(A⊗ R), an effect E ∈ Eff(R⊗A),
and a cancellative scalar pA such that:

A

Φ R

EA

= pA
A IA

A . (48)

The existence of conclusive teleportation is a valuable operational feature, and may be
put forward as a desideratum for general physical theories:

Principle 4 (Conclusive Teleportation). For every physical system A, there exists a conclusive
teleportation protocol as in Equation (48).

Modulo a few technical differences, Conclusive Teleportation coincides with the main
axiom for compact closed categories in categorical quantum mechanics [49–53]. In this
context, it is known that the teleportation state Φ induces a one-to-one correspondence
between processes and bipartite states. In other words, Φ is dynamically faithful for
processes of type A→ B, with arbitrary B. Here we show a stronger result, namely that the
state Φ is the universal extension of a complete state:

Proposition 2 (A4). Let Φ ∈ DetSt(A⊗ R) be a teleportation state for system A. Then, Φ is the
universal extension of a complete state.

The proof is provided in Appendix F, where we also observe that, in general, a theory
with conclusive teleportation may not have universal extensions for arbitrary states.

A simple consequence of Proposition 2 is the following:

Corollary 4 (A4). Conclusive Teleportation implies Universal Extension.

Summarizing, we proved the chain of implications:

Conclusive Teleportation =⇒ Universal Extension

=⇒ Dynamically Faithful States

=⇒ Dynamically Faithful Systems.

In short, the possibility of conclusive teleportation guarantees the feasibility of process
tomography, even in theories that violate Local Tomography.
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3.5.3. Purification

A purification of a given state is an extension of that state to a pure state of a composite
system [24,27,42,46,58]. In the standard scenario where the state space of physical systems
is a convex set, pure states are defined as the extreme points of the convex set. A diagram-
matic definition of pure state, valid also for theories where the scalars are not real numbers,
was provided in Ref. [67]. The second definition is equivalent to the first in every theory
satisfying Causality [24,26–28,42,46,53,55,56], the requirement that it should be impossible
to “send signals from the future to the past” (see below for a more precise mathematical
statement) and Local Tomography, or Local Tomography on Pure States, a weakening of
Local Tomography satisfied by quantum theory on real vector spaces. Specifically, Local
Tomography on Pure States is the requirement that Equation (16) implies Equation (17)
when at least one of the two states ρ and ρ′ is an extreme point of the state space.

In the following, we will not commit to a specific definition of pure state. Instead, we
will simply assume that for every system A there exists a set of states PurSt(A), called pure,
satisfying the condition

α ∈ PurSt(A) , β ∈ PurSt(B) =⇒ α⊗ β ∈ PurSt(A⊗ B) . (49)

We call the above condition Pure Product States. Pure Product States is automatically
satisfied by the diagrammatic definition of pure state in [67]. It is also satisfied by the usual
definition of pure states as extreme points, when it coincides with the diagrammatic definition.

Let us now review the notion of purification. In its basic form, purification is formu-
lated in theories satisfying Causality. An equivalent condition for Causality is the existence
of a unique deterministic effect:

Proposition 3 ([24]). A theory satisfies Causality if and only if for every system A there exists a
unique deterministic effect uA ∈ DetEff(A).

Theories satisfying Causality are often called causal theories. In a causal theory, a state
Γ ∈ St(A⊗ E) is an extension of another state ρ ∈ St(A) if the condition

Γ
A = ρ A

E uE
(50)

is satisfied.
We are now ready to state the Purification principle in its basic form:

Principle 5 (Purification). For a theory satisfying Causality and Pure Product States, we require
that

1. every state has a purification: for every system A ∈ Sys and every deterministic state
ρ ∈ DetSt(A) there exists a system R and a deterministic pure state Ψ ∈ PurSt(A⊗ R)
such that

Ψ
A = ρ A

R uR
(51)

2. every two purifications with the same purifying system are interconvertible via a local symme-
try transformation: for every system R, and every pair of deterministic pure states Ψ and Ψ′

in PurSt(A⊗ R), the condition:

Ψ′
A

R uR
= Ψ

A

R uR
(52)
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implies that there exists a reversible transformation U : R→ R such that

Ψ′
A

R
= Ψ

A

R U R
(53)

Remarkably, the symmetry property of purifications implies that every purification is
a universal extension:

Proposition 4. Let ρ ∈ DetSt(A) be an arbitrary state of an arbitrary system A, and let Γ ∈
DetSt(A⊗ E) be an arbitrary extension of ρ. If the theory satisfies Causality, Pure Product States,
and Purification, then the state Γ can be generated as

Γ
A

E
= Ψ

A

R T E
, (54)

where Ψ ∈ PurSt(A⊗ R) is an arbitrary purification of ρ and T ∈ DetTransf(R → E) is a
deterministic transformation.

The proof is provided in Appendix G. The obvious consequence of Proposition 4 is
the following

Corollary 5 (A1, A3, A4). If a theory satisfies Causality, Pure Product States, and Purification,
then it satisfies Universal Extension, and, in particular, Dynamically Faithful States.

Proof. Proposition 4 shows that every purification of a given state ρ is a universal ex-
tension, in the sense of Definition 13. In particular, every complete state has a universal
extension (complete states exist by Assumption 4). Hence, Universal Extension holds.
Then, Theorem 2 guarantees that Dynamically Faithful States holds.

Summarizing, we proved the chain of implications:

Causality, Pure Product States, Purification =⇒ Universal Extension

=⇒ Dynamically Faithful States

=⇒ Dynamically Faithful Systems.

Note that this is the same chain of implications as in the previous subsection, except
that “Conclusive Teleportation” is now replaced by “Causality + Pure Product States +
Purification.” A natural question is whether there are relations between Purification and
Conclusive Teleportation. When the scalars are real numbers in the interval [0, 1], it is
known that Purification implies Conclusive Teleportation [24,27,28,42]. More generally, it
is also possible to show that Purification implies Conclusive Teleportation in every theory
that satisfies two additional axioms of Pure Sharpness and Purity Preservation [58,68,69].

4. Conclusions

In this paper, we analyzed the task of process tomography in general physical theories,
exploring the requirement that physical processes should be identifiable by their action
on a finite set of auxiliary systems/a finite set of input states. Most of the paper focussed
on the requirement that physical processes can be identified by their action on a single
state, called dynamically faithful. The existence of dynamically faithful states is a broader
condition than the usual principle of Local Tomography, and is satisfied in a number
of variants of quantum theory, including quantum theory on real Hilbert spaces and a
Fermionic version of quantum theory [70,71]. It is natural to conjecture that dynamically
faithful states also exist in a recent extension of standard quantum theory that includes
complex, real, and quaternionic Hilbert spaces in a single theory [72]. A formal proof of this
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statement, however, is currently missing and remains an interesting direction for future
research.

One of our main results is that the existence of dynamically faithful states can be
guaranteed by a simple physical condition, namely that complete states have a universal
extension from which all the other extensions can be generated with non-zero probability.
Example of physical theories with this property are the set of theories where conclusive
teleportation is possible, and the set of theories satisfying the Causality, Pure Product
States, and Purification. For every theory satisfying Causality, Pure Product States, and
Purification, process tomography can be achieved using a single bipartite state: specifically,
the purification of any complete state of a given system A can be used to characterize all
the processes with input system A and arbitrary output system B.

An important observation is that the existence of dynamically faithful states is inde-
pendent of the Causality axiom, that is, the requirement that the outcome probabilities of
present experiments are independent of the choice of future experiments. This observation
suggests that the possibility of characterizing physical processes may have a more primitive
role than considerations of causality, and that one could adopt Dynamically Faithful States
as a foundational principle for general physical theories where causality is emergent.
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Appendix A. A Converse of Proposition 1

Bipartite states from which other states can be probabilistically generated were intro-
duced in the early work by D’Ariano [15–18], where they were called preparationally faithful.
Originally [15,16], the term referred to states of a bipartite system A⊗ B with the property
that every state of A can be probabilistically generated by a physical transformation on B.
In later works [17,18], the term was used for states with the property that every joint state
of A⊗ B can be probabilistically generated by a physical transformation on B. Here we
adopt the second definition and extend it to (1) transformations with different inputs and
outputs, and (2) theories where the scalars are not necessarily real numbers:

Definition A1. A state Φ ∈ St(A⊗ S) is preparationally faithful from S to B if every state
ρ ∈ St(A⊗ B) can be probabilistically obtained as

p
A

ρ
B

=

A

Φ
S S B ,

(A1)
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where p ∈ Transf(I→ I) is a cancellative scalar and S is a transformation of type S→ B.

Using the above definition, we introduce a notion of doubly preparationally faithful
theories:

Definition A2. A theory is doubly preparationally faithful if for every pair of systems A and B
there exists a system S and a state Φ ∈ St(A⊗ S) that is preparationally faithful from A to A and
from S to B.

Concrete examples of doubly preparationally faithful theories are finite-dimensional
classical probability theory and quantum theory, both on complex and on real vector
spaces. In quantum theory, the maximally entangled state |Φ〉 = ∑dA

k=1 |k〉 ⊗ |k〉/
√

d
of system A ⊗ S, with S ' A, is preparationally faithful from S to B with arbitrary B.
Indeed, every pure state |Ψ〉 = ∑dA

k=1 ∑dB
l=1 ckl |k〉 ⊗ |l〉 of the composite system A⊗ B can

be probabilistically obtained from the maximally entangled state as |Ψ〉 ∝ (IA ⊗ K)|Φ〉,
where K = ∑k,l ckl |l〉〈k|/

√
‖c†c‖ is a suitable Kraus operator, c is the matrix with matrix

elements ckl , and ‖c†c‖ is the maximum eigenvalue of c†c. Since every pure state can be
generated probabilistically from |Φ〉, the same holds for mixed states (in finite dimensions).
This shows that |Φ〉 is preparationally faithful from S to B, with arbitrary B. A similar
argument shows that |Φ〉 is preparationally faithful from A to A.

More generally, every process theory where the processes form a compact closed
category [49–52] is doubly preparationally faithful. Physically, these are the theories where
every system A comes with a dual system S, such that there exists a state of A⊗ S that
allows for conclusive teleportation of states of A, as well as conclusive teleportation of
states of S.

With the above definitions, we have the following proposition:

Proposition A1 (A3). For a doubly preparationally faithful theory, the following are equivalent:

1. Local Tomography holds
2. standard process tomography completely identifies physical processes, that is, Equation (18)

implies Equation (20).

Proof. Since the implication 1 =⇒ 2 was already proved by Proposition 1, we only need to
prove the implication 2 =⇒ 1.

Let A and B be two generic systems, and let ρ and ρ′ be two generic states of the
composite system A⊗ B. Our goal is to show that then the condition

ρ
A a

B b
= ρ′

A a ∀a ∈ Eff(A)

B b ∀b ∈ Eff(B)
(A2)

implies ρ = ρ′.
Let us assume that Equation (A2) holds. Since the theory is doubly preparationally

faithful, there exists a system S and a state Φ ∈ St(A⊗ S) that is preparationally faithful
from A to A and from S to B. Since Φ is preparationally faithful from S to B, there exist two
cancellative scalars p and p′, and two transformations S and S ′, of type S→ B, such that

p
A

ρ
B

=

A

Φ
S S B ,

(A3)

and

p′
A

ρ′ B
=

A

Φ
S S ′ B .

(A4)
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Since the state Φ is preparationally faithful from A to A, for every state Σ ∈ St(A⊗ S)
there exists a cancellative scalar q and transformation T of type A→ A such that

q
A

Σ S
=

A T A

Φ
S .

(A5)

Inserting this relation into Equations (A3) and (A4), we obtain

p
A T A

ρ
B

= q
A

Σ
S S B ,

(A6)

and

p′
A T A

ρ′
B

= q
A

Σ
S S ′ B ,

(A7)

Now, note that p′ S and p S ′ are physical transformations, due to the Randomizations
Assumption 3. For these two transformations, we have the relation

q

A a′
Σ

S p′ S B b
= p p′

A T A a′
ρ

B b

= p p′
A T A a′

ρ′
B b

= q

A a′ ∀a′ ∈ Eff(A)
Σ

S p S ′ B b ∀b ∈ Eff(B) ,
(A8)

where the second equality follows from Equation (A2), applied to

A a := A T A a′ . (A9)

Recall that Σ is a generic state of system A⊗ S. In particular, we can choose Σ to be of
the product form Σ = α⊗ σ. With this choice, Equation (A8) becomes

q
α A a′

σ S p′ S B b
= q

α A a′ ∀a′ ∈ Eff(A)

σ S p S ′ B b ∀b ∈ Eff(B) .
(A10)

Choosing α to be a deterministic state and a′ to be a deterministic effect, we then
obtain

q σ S p′ S B b = q σ S p S ′ B b ∀b ∈ Eff(B) . (A11)

Since q is cancellative for every α and σ, we then obtain

σ S p′ S B b = σ S p S ′ B b ∀b ∈ Eff(B) . (A12)

To conclude, recall that σ is an arbitrary state, and therefore the above equation implies
that the processes p S ′ and p′ S give rise to the same outcome probability in every setup of
standard process tomography. Since by hypothesis standard process tomography successfully
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identifies physical processes, we conclude that the equality p S ′ = p′ S must hold. Using this
fact and Equations (A3) and (A4),we obtain

p p′
A

ρ
B

=

A

Φ
S p′ S B

=

A

Φ
S p S ′ B

= p p′
A

ρ′ B
.

Since p and p′ are both cancellative, we conclude that the equality ρ = ρ′must hold.

Appendix B. Properties of the Relations ≡ρ and =ρ

We start by showing that the relation ≡ρ is stronger than the relation =ρ.

Proof of Lemma 2. Let ρ = (ρx)x∈X be a source with average state ρ. The Display
Assumption 1 guarantees that the states in ρ can be prepared as

ρx A =
Γ

A ∀x ∈ X

E ex
(A13)

for some system E, some deterministic state Γ, and some measurement e = (ex)x∈X. Now,
the state Γ is an extension of ρ: indeed, one has

ρ A = ∑
x∈X

ρx A

= ∑
x∈X

Γ
A

E ex

= Γ
A

E e
, (A14)

where e is the deterministic effect e := ∑x∈X ex (the last equality follows from Equation (9)).
Now, suppose that the condition

Γ
A P B

E
= Γ

A P ′ B

E
(A15)

holds. Applying the effect ex on both sides, one then obtains

Γ
A P B

E ex
= Γ

A P ′ B

E ex
(A16)

and, using Equation (A13),
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ρx A P B = ρx A P ′ B ∀x ∈ X . (A17)

We now show that the two relations ≡ρ and =ρ are equivalent in theories satisfying
Causality and Local Tomography. We recall that Causality is equivalent to the existence of
a unique deterministic effect uA for every system A [24,42,46,55,56].

We can then prove the following proposition:

Proposition A2 (A1). Suppose that a theory satisfies Causality and Local Tomography. Then, for
every system A, every deterministic state ρ ∈ DetSt(A), and every pair of processes P and P ′, of
type A→ B, one has the condition

P ≡ρ P ′ ⇐⇒ P =ρ P ′ . (A18)

Proof. We know from Corollary 1 that the condition P ≡ρ P ′ implies the condition
P =ρ P ′. To prove the equivalence, we only need to show the converse implication.
Suppose that the condition P =ρ P ′ holds. Then, let Γ be a generic extension of ρ on
system E, namely

ρ A = Γ
A

E uE
. (A19)

Here we used the Causality Axiom, which guarantees that there exists only one
deterministic effect for system E.

At this point, we need to prove the relation

Γ
A P B

E
= Γ

A P B

E
. (A20)

To this purpose, pick an arbitrary measurement e = (ex)x∈X and define the prepara-
tion test ρ = (ρx)x∈X as

ρx A := Γ
A

E ex
. (A21)

Note that the preparation test ρ has average state ρ: indeed, one has

∑
x∈X

ρx A = Γ
A

E uE

= ρ A , (A22)

having used Equation (A19) and the fact that uA is the only deterministic effect on system A.
Since the preparation test ρ averages to ρ, the condition P =ρ P ′ implies

ρx A P B = ρx A P ′ B ∀x ∈ X (A23)

and, using the definition of ρx in Equation (A21),

Γ
A P B

E ex
= Γ

A P B

E ex ∀x ∈ X .
(A24)
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To conclude, note that for a generic measurement b = (by)y∈Y one has

Γ

A P B by

E ex

= Γ

A P B by

E ex

(A25)

for every x ∈ X and for every y ∈ Y. Since the two measurements b and e are generic,
Local Tomography implies Equation (A20). Since Γ is a generic extension of ρ, we conclude
that P ≡ρ P ′.

Appendix C. Proof of Lemma 3

The direction⇒ is immediate. To prove the direction⇐, let us assume the condition
P ≡ρ P ′ for every deterministic state ρ. Recall that two processes P and P ′ are equal if
and only if

Γ
A P B

E
= Γ

A P ′ B

E
(A26)

for every system E and for every (possibly non-deterministic) state Γ ∈ St(A⊗ E).
Let us pick a generic E and a generic Γ. Since every state can be prepared in some

test (by the Displays Assumption 1), there must exist a test ∆ = (∆x)x∈X and an outcome
x0 ∈ X such that

∆x0 = Γ . (A27)

Now, let us define the deterministic states

∆ := ∑
x∈X

∆x (A28)

and

ρ A :=
∆

A

E e
(A29)

where e is a fixed, but otherwise arbitrary, deterministic effect on system E. By construction,
∆ is an extension of ρ. Hence, every extension of ∆ is also an extension of ρ. As a
consequence, one has the implication

P ≡ρ P ′ =⇒ P ⊗ IE ≡∆ P ′ ⊗ IE . (A30)

Moreover, one has the implications

P ⊗ IE ≡∆ P ′ ⊗ IE =⇒ P ⊗ IE =∆ P ′ ⊗ IE (A31)

(by Corollary 1) and

P ⊗ IE =∆ P ′ ⊗ IE =⇒ (P ⊗ IE)∆x = (P ′ ⊗ IE)∆x , (A32)

for every outcome x (by definition of equality upon input of ∆). Choosing x = x0 and
using Equation (A27), we finally obtain Equation (A26). Since the system E and the state Γ
are generic, the equality P = P ′ follows.
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Appendix D. Proof of Lemma 5

Suppose that ρ is a mixture of σ and τ with probabilities (p0, p1), namely

ρ A = p0 σ A + p1 τ A (A33)

where p0 is a cancellative scalar.
Let Σ be an extension of σ on system E, so that

Σ
A = σ A

E e
(A34)

for some deterministic effect e. Let η be a deterministic state of system E and let Θ be the
extension of τ defined by Θ := τ ⊗ η, so that

Θ
A = τ A

E e
(A35)

Then, define the randomized preparation test ∆ := (∆1, ∆2), with ∆1 = p0 Σ and ∆2 =
p1 Θ (the randomized preparation ∆ is a valid test due to the Randomization Assumption 3).
The Displays Assumption 1 guarantees that the states ∆1 and ∆2 can be generated as

∆i

A

E
= Γ

A

E

F fi ∀i ∈ {1, 2}

(A36)

for some system F, some deterministic state Γ, and some measurement f = ( f1, f2). By
construction, Γ is an extension of ρ: indeed, defining the deterministic effect f := f1 + f2,
one has

Γ

A

E e

F f

= ∑
i=1,2

Γ

A

E e

F fi

= ∑
i=1,2

∆i

A

E e

= p0 Σ
A

E e

+ p1 Θ
A

E e
= p0 σ A + p1 τ A

= ρ A . (A37)

Now, suppose that P and P are two processes of type A→ B and suppose that the
relation

Γ

A P B

E

F

= Γ

A P ′ B

E

F

(A38)
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holds. Applying the effect f1 on both sides, we then obtain

Γ

A P B

E

F f1

= Γ

A P ′ B

E

F f1

, (A39)

and therefore

p0 Σ
A P B

E
= p0 Σ

A P ′ B

E
. (A40)

Since p0 is cancellative, the two processes P and P ′ must coincide on Σ (cf. Lemma 1).
Hence, one has Γ �A→B Σ.

Appendix E. Proof of Theorem 1

Proof of 2 =⇒ 1. Suppose that there exists a complete state, call it ω ∈ DetSt(A),
such that the set of all extensions of ω has a maximum with respect to the tomographic
ordering �A→B. Let Φ ∈ Ext(ω, R) be such maximum, for some auxiliary system R,
and let P and P ′ be two arbitrary processes of type A → B. By definition, the condi-
tion (P ⊗ IR)Φ = (P ′ ⊗ IR)Φ implies the equivalence P ≡ω P ′. In turn, the condi-
tion P ≡ω P ′ implies P = P ′ (Corollary 3). Hence, we obtained that the condition
(P ⊗ IR)Φ = (P ′ ⊗ IR)Φ implies P = P ′, meaning that Φ is dynamically faithful for
processes of type A→ B.

Proof of 1 =⇒ 2. Let Φ ∈ St(A⊗ R) be a dynamically faithful state for processes
of type A → B. Without loss of generality, the state Φ can be taken to be deterministic
(Lemma 4). Then, let us pick a deterministic effect on system R, say r ∈ DetEff(R), and
define the state

φ A :=
Φ

A

R r .
(A41)

By construction, Φ is an extension of φ. If φ is a complete state, this concludes the
proof: the complete state φ has an extension Φ that is a (global) maximum with respect to
the tomographic ordering �A→B.

If φ is not complete, we can pick a complete state σ ∈ DetSt(A), an arbitrary de-
terministic state ψ ∈ DetSt(R), and, using the Randomizations Assumption 3, we can
define the source ρ = (ρ0, ρ1) with ρ0 := p0 Φ and ρ1 := p1 σ ⊗ ψ, where (p0, p1) is a
probability distribution such that p0 and p1 are both cancellative (the existence of such
probability distribution is guaranteed by the Coins Assumption 2). Note that the con-
dition (P ⊗ IR) ∼ρ (P ′ ⊗ IR) implies p0 (P ⊗ IR)Φ = p0 (P ′ ⊗ IR)Φ, which in turn
implies (P ⊗ IR)Φ = (P ′ ⊗ IR)Φ (because p0 is cancellative) and P = P ′ (because
Φ is dynamically faithful). Now, let us denote the average state of the source ρ by
ρ := ρ0 + ρ1 = p0 Φ + p1 σ⊗ ψ. Note that one has

ρ
A

R r
= p0 Φ

A

R r
+ p1

σ A

ψ R r

= p0 φ A + p1 σ A

=: ω A , (A42)
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where the state ω := p0 φ + p1 σ is complete (because ω contains σ, and σ is complete).
Then, Lemma 2 guarantees that there exists a deterministic state Γ ∈ Ext(ρ, E) such that
the condition (P ⊗ IR ⊗ IE)Γ = (P ′ ⊗ IR ⊗ IE)Γ implies (P ⊗ IR) ∼ρ (P ′ ⊗ IR), and
therefore P = P ′. Hence, the deterministic state Γ is dynamically faithful. Note that Γ is an
extension of ρ, which in turn is an extension of the complete state ω (by Equation (A42)).
Summarizing, Γ is an extension of a complete state and is a (global) maximum with respect
to the tomographic ordering �A→B.

Appendix F. Relations between Conclusive Teleportation and Universal Extension

Let us start by proving Proposition 2, which states that every teleportation state is the
universal extension of a complete state.

Proof of Proposition 2. Let (E, F) be a binary measurement satisfying the teleportation
Equation (48). Let ω be a complete state of system A (the existence of such state is
guaranteed by Assumption 4). Let us define the state

χ A :=

A

Φ R

T
ω A

, (A43)

where T := E + F is the deterministic effect obtained by coarse-graning over the binary
measurement (E, F). By construction, Φ is an extension of χ. Moreover, χ is complete.
To prove it, we pick an arbitrary deterministic state ρ and write ω as ω = p0 ρ + p1 τ
for some state τ and for some binary probability distribution (p0, p1) such that p0 is
cancellative. Inserting this expression in Equation (A43), we obtain

χ A = p0

A

Φ
R

T
ρ A

+ p1

A

Φ R

T
τ A

= p0

A

Φ
R

E
ρ A

+ p0

A

Φ
R

F
ρ A

+ p1

A

Φ R

T
τ A

= p0 pA ρ A + p0

A

Φ
R

F
ρ A

+ p1

A

Φ R

T
τ A

. (A44)
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Since p0 and pA are both cancellative, p0 pA is cancellative, and therefore χ contains ρ.
Since ρ is arbitrary, we conclude that χ is complete.

It remains to prove that Φ is a universal extension of χ. This is easily done using the
teleportation Equation (48). Suppose that Γ ∈ Ext(χ, E) is another extension of χ. Then,
one has

pA

A

Γ E
=

A

Φ R

E

Γ
A

E

=

A

Φ
R T E

, (A45)

with

R T E :=

R

E

Γ
A

E

(A46)

In summary, the extension Γ is probabilistically obtained from the teleportation state
Φ. Since Γ is arbitrary, Φ is a universal extension.

It is worth observing that the proof of Proposition 2 also implies a stronger result: in
fact, every bipartite state of the composite A⊗ E, with arbitrary E, can be probabilistically
generated from the teleportation state Φ by means of a physical transformation. In other
words, the state Φ is preparationally faithful from system R to system E, in the sense of
Definition A1.

It is also worth noting that Conclusive Teleportation does not imply, in general,
that every state has a universal extension. A condition that would imply the existence
of universal extensions for a generic state ρ is the existence of conclusive teleportation
protocols of the form

A

Ψ R

FA

≡ρ pρ
A IA

A , (A47)

where Ψ is an extension of ρ, F is a suitable effect, and pρ is a cancellative scalar.

Proposition A3. If Equation (A47) is satisfied, then the state Ψ is a universal extension of ρ.

Proof. Suppose that Γ ∈ Ext(ρ, E) is another extension of ρ. Then, Equation (A47) implies
the relation

pρ

A

Γ E
=

A

Ψ R

F

Γ
A

E

=

A

Ψ
R T E

, (A48)
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with

R T E :=

R

F

Γ
A

E

(A49)

In summary, the extension Γ is probabilistically obtained from the teleportation state
Ψ. Since Γ is arbitrary, Ψ is a universal extension.

However, Equation (A47) does not appear as a particularly compelling requirement
for general physical theories, and therefore we did not include it in our formulation of
Conclusive Teleportation.

Appendix G. Proof of Proposition 4

Let Φ ∈ PurSt(A⊗ E⊗ F) be a purification of the state Γ, with purifying system E.
Since Γ is an extension of ρ, Φ is also a purification of ρ, with purifying system E⊗ F. Now,
pick an arbitrary deterministic pure state of R, say ϕ ∈ PurSt(R), and an arbitrary determin-
istic pure state of E⊗ F, say ψ ∈ PurSt(E⊗ F). Then, Pure Product States guarantees that
the two states Φ⊗ ϕ and Ψ⊗ ψ are both pure. By construction, both states are purifications
of ρ. Hence, the symmetry property of purifications implies that there exists a reversible
process U : R⊗ E⊗ F→ E⊗ F⊗ R such that

Φ

A

Ψ
A

E = R

U

E

F

ψ

E F

ϕ R F R

(A50)

Applying the deterministic effect to system F⊗ R we then obtain the condition

Γ
A =

Φ

A

E E

F uF

ϕ R urR

=
Ψ

A

R

U

E

ψ
E F uF

F R uR

=
Ψ

A

R T E
, (A51)

having defined
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R T E := R

U

E

ψ

E F uF

F R uR .

(A52)
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