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Abstract: The system identification of a ship dynamics model is crucial for the intelligent navigation
and design of the ship’s controller. The fluid dynamic effect and the complicated geometry of the
hull surface cause a nonlinear or asymmetrical behavior, and it is extremely difficult to establish a
ship dynamics model. A nonparametric model based on sparse Gaussian process regression with
similarity was proposed for the dynamic modeling of a ship. It solves the problem, wherein the
kernel method is difficult to apply to big data, using similarity to sparse large sample datasets. In
addition, the experimental data of the KVLCC2 ship are used to verify the validity of the proposed
method. The results show that sparse Gaussian process regression with similarity can be applied to
the learning of a large sample data, in order to obtain ship motion prediction with higher accuracy
than the parameterized model. Moreover, in the case of sensor signal loss, the identified model
continues to provide accurate ship speed and trajectory information in the future, and the maximum
prediction error of the motion trajectory within 100 s is only 0.59 m.

Keywords: gaussian processes; sparse; identification; similarity; ship dynamics

1. Introduction

With the development of autonomous ship technology, the safety of the autonomous
navigation of ships is particularly important. An accurate ship maneuvering model has
a high practical value for providing accurate motion predictions or designing a control
system. When the ship performs tasks that require high maneuverability, such as obstacle
avoidance or navigation in narrow waters, the ship dynamics model is used to foresee
the behavior or trajectory of the ship in the future, and judge whether the current control
strategy is safe or the planned path meets the dynamic constraints. Then, the model takes
the correct actions to avoid collisions.

The fluid dynamic effect and the complicated geometry of the hull surface cause
a nonlinear or asymmetrical behavior, since establishing an accurate dynamic model is
always a difficult problem in practical applications for ships. Currently, modeling of the
ship maneuvering motion is mainly divided into parametric modeling based on a priori
model and nonparametric modeling based on data. Both modeling methods have their
own advantages and disadvantages.

In parametric modeling, many models have been proposed to approximate the ship
dynamics. In particular, the quadratic Norrbin model [1] and cubic Abkowitz [2] model
are widely used in surface ships. Methods such as the least square [3], extended Kalman
filter (EKF) [4], and least squares support vector regression (LSSVR) [5,6] have been used
to identify the hydrodynamic coefficients in the model. However, due to the correlation
between the terms in the model, the parameter cancellation effect [7] makes some hydro-
dynamic coefficients very unstable. The optimal truncated singular value decomposition
(T-SVD) [8] and optimal truncated least squares support vector regression (T-LSSVR) [9–11]
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are proposed to reduce the uncertainty of the estimated parameters. However, this problem
is not yet completely solved. At the same time, since only a limited number of polynomi-
als are used to approximate the model, the model’s accuracy is not yet ideal, especially
in the surge velocity. The ‘true’ model structure of a ship is never known. The goal of
building a model is to obtain accurate predictions, and to not necessarily obtain the correct
model structure.

Nonparametric modeling requires almost no previous information of the model struc-
ture of the ship, which can also obtain accurate predictions. Machine learning techniques
provide an effective way for the modeling of ships [12]. Methods such as support vector
regression (SVR), locally weighted learning (LWL), and Gaussian process regression (GPR)
have been used in modeling of the ship maneuvering motion. Generalized ellipsoidal basis
function fuzzy neural networks [13] are used to model the movement of a large tanker.
However, the structure of the neural network is more difficult to determine. The ν-support
vector regression (ν-SVR) [14] is proposed to establish the maneuvering motion model and
is validated by KVLCC2 ship experimental data. Moreover, it is based on structural risk
minimization to overcome the shortcomings of neural networks that are easy to overfit.
However, the parameters are difficult to adjust. A novel nonparametric identification
modeling method based on locally weighted learning (LWL) [15] is used for ship dynamics
modeling. It can provide higher modeling accuracy, but has the disadvantage of high com-
putational complexity and long computational time. Kernel ridge regression (KRR) [16–18]
trains the models with several random tests, while KRR requires the performance of a grid
search for hyperparameter optimization. Gaussian process regression (GPR) can automati-
cally optimize hyperparameters by maximizing the marginal likelihood function, and it can
also overcome overfitting. It is widely used in the dynamic modeling of robotic arms [19]
and racing cars [20]. Recently, it has also been introduced in the dynamic modeling of
ships. Multi-output Gaussian processes are proposed to model a container ship [21]. A
noisy input Gaussian process is proposed for ship dynamics modeling using simulated
ship motion data with artificial noise [22].

In general, nonparametric modeling with the kernel function avoids the shortcomings
of parametric modeling that require a knowledge of the model structure. The nonpara-
metric model can obtain ship motion prediction with higher accuracy than the parametric
model. Insufficient information can affect the generalization ability of the model. Both the
parametric model and nonparametric model require a large sample of data to cover the
state space, in order to ensure the generalization of the model. However, it is difficult to
use nonparametric kernel methods for regression when the data sample is too large.

In this paper, a nonparametric model based on sparse Gaussian process regression
with similarity was used for the dynamic modeling of a ship without assumptions in
the mathematical model of the ship. It solves the problem, wherein the kernel method
is difficult to apply to big data, using similarity to sparse large sample datasets. The
experimental data of KVLCC2 ship are used to verify the validity of the proposed method.
In the case of sensor signal loss, the identified model continues to provide accurate ship
acceleration, speed, and trajectory information in the future. Moreover, the multi-step
prediction model is used to provide accurate ship speed and position information in the
future, and it provides important support for the autonomous navigation of ships.

The rest of the paper is organized as follows: Section 2 presents the ship parametric
model and nonparametric model, and reviews the Gaussian Process regression algorithm.
Section 3 describes the large sample sparse Gaussian process regression algorithm based on
similarity. In Section 4, identification modeling and a systematic evaluation are conducted
based on real data from KVLCC2 model tests. Finally, Section 5 presents the conclusions
and suggestions for future work.
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2. Models and Methods
2.1. Ship Parametric Dynamics Model and Nonparametric Dynamics Model

The goal of modeling ship maneuvering motion is to build mathematical models that,
given the ship’s state, thrust, and rudder angle as inputs, yields the best fit between the
measured response of the ship and the model predictions. The more accurate the mapping
between the input and output, the smaller the gap between the real world and the model.

The ship dynamics parametric model is extremely complex. In addition, the model
contains radiation-induced added mass, potential damping, and restoring forces. Many
parametric mathematical models describe the ship dynamics and most of the hydrodynamic
equations are approximated by polynomials [13].

(m− X .
u)

.
u = f1(u, v, r, δ) (1a)

(m−Y .
v)

.
v + (mxG −Y.

r)
.
r = f2(u, v, r, δ) (1b)

(mxG − N .
v)

.
v + (Iz − N.

r)
.
r = f3(u, v, r, δ) (1c)

where f1, f2, and f3 are the polynomials related to the state information, as shown in
Equation (2a)–(2c).

f1(u, v, r, δ) = Xu∆u + Xuu∆u2 + Xuuu∆u3 + Xvvv2 + Xrrr2 + Xrvrv + Xδδδ2 + Xuδδ∆uδ2 + Xvδvδ + Xuvδ∆uvδ (2a)

f2(u, v, r, δ) = Yvv + Yrr + Yvvvv3 + Yvvrv2r + Yvuv∆u + Yrur∆u + Yδδ + Yδδδδ3 + Yδuδ∆u + Yδuuδ∆u2 + Yδδvvδ2 + Yδvvδv2 (2b)

f3(u, v, r, δ) = Nvv + Nrr + Nvvvv3 + Nvvrv2r + Nvuv∆u + Nrur∆u + Nδδ + Nδδδδ3 + Nδuδ∆u + Nδuuδ∆u2 + Nδδvvδ2 + Nδvvδv2 (2c)

The relationship between the ship’s speed V = [u, v, r]T and position η = [x0, y0, ψ]T

is shown in Figure 1.
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Figure 1. Earth and ship-fixed coordinate systems.

According to the expression form of the parametric model, this research model pro-
poses a nonparametric model expression of the ship dynamics. Here, f is no longer
assumed to be a third-order Taylor expansion.

.
V = f (V, τ) (3)
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where τ is usually expressed by T, which is generated by the thruster and rudder δ. The
three DoF models can be represented as follows:

.
uk = fu(uk, vk, rk, Tk, δk) (4)

.
vk = fv(uk, vk, rk, Tk, δk) (5)

.
rk = fr(uk, vk, rk, Tk, δk) (6)

The purpose of traditional maneuvering motion prediction is for the verification of the
maneuvering capabilities of the ship. Given this, the model completes the zigzag tests and
turning circle tests in the simulation to obtain the maneuverability parameters (overshoot
angles, advance, and tactical diameter, etc.) of the ship. However, the rudder angle in
the simulation and the experiment is not always the same. Moreover, when planning a
route or controlling a ship to avoid obstacles, the operator would like to know whether
the predicted state response or trajectory of the ship is consistent with the actual situation
after executing a series of control commands. Therefore, it is necessary to ensure that
the control commands in the simulation and the test are the same at all times. The main
inputs of the model are: Initial conditions (u0, v0, r0) and the commanded variables in the
next k-steps (rudder angles (δ0, δ1, δ2, . . . δk−1). To simplify the model, the propellers speed
T can usually be regarded as a constant and not as an input variable. The outputs are
the ship’s acceleration

( .
u,

.
v,

.
r
)

in the next k-steps, and of course, the speed (û, v̂, r̂) and
position

[
x̂, ŷ, ψ̂

]
of the ship can be obtained through Euler integration. The inputs and the

outputs of the model are shown in Figure 2.
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2.2. Gaussian Process Regression

Here, {(xi, yi)|i = 1, · · · , n} are the inputs and outputs of the regression. The relation-
ship between them can be expressed by

yi = f (xi) + ε, ε ∼ N
(

0,σ2
n

)
(7)

In the Gaussian process regression [23], the joint distribution of y and f (x∗) is[
y

f (x∗)

]
∼ N

(
0,
[

K(X, X) + σn
2 I K(x∗, X)

K(X, x∗) K(x∗, x∗)

])
(8)

The prediction of f (x∗) is

f (x∗) = k(x∗, X)
(

K(X, X) + σn
2 In

)−1
y (9)
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Var[ f (x∗)] = k(x∗, x∗)− k(x∗, X)
(

K(X, X) + σn
2 In

)−1
k(X, x∗) (10)

The proposed model adopts the commonly used squared exponential covariance function:

k
(

xi, xj
)
= f (xi)

T f
(

xj
)
= σ f

2 exp(−1
2
(xi − xj)

TΛ
(
xi − xj

)
(11)

where σ f and Λ are the kernel’s hyperparameters. The hyperparameters on Gaussian
process regression are computed using the conjugate gradient (CG) or Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithms on the marginal likelihood function.

− log p(y|X, θ ) =
1
2

yT(K(X, X) + σn
2 In)

−1y +
1
2

log|(K(X, X) + σn
2 In)

−1|+ n
2

log2π (12)

Several other machine learning methods are used in ship dynamics modeling, such
as Kernel Ridge regression (KRR) and least squares support vector regression (LSSVR).
Compared with Gaussian process regression, they employ the same loss functions, while
KRR and LSSVR require the performance of a grid search for hyperparameter optimization.
The parameter selection in Gaussian process regression may be faster, as it does not suffer
an exponential scaling.

3. Large Sample Sparse Gaussian Process Regression Algorithm Based on Similarity

Nonparametric modeling based on kernel methods, such as the Gaussian process is
mainly suitable for interpolation prediction. When there are sample points near point x∗

that are required to be predicted, the prediction at x∗ will be more accurate. In order to
learn a ‘good’ model, the training dataset requires the state space to be covered as much
as possible.

Ship motion data are usually in the hundreds of thousands. Accurate modeling
requires as many samples as possible to provide rich data incentives. However, when all of
the sample points are used for regression prediction, it will cause the inverse matrix to be
uncalculated. The easiest way to reduce the calculation of the inverse matrix is to select
only a small part of the large sample data for modeling. The randomly selected data from
a large sample will make the sample spatial distribution uneven. In addition, there may
be no sample points in a local area that are close to point x∗ that require to be predicted,
resulting in inaccurate predictions.

A sparse algorithm based on similarity is proposed to the sparse large sample data.
Points with less similarity are equivalent to containing new incentives and are added to
the sparse set. Points with greater similarity are regarded as information redundancy and
are not added to the sparse set. A sparse set with a small uniform distribution in the shape
space is obtained, which replaces the overall sample for regression prediction.

Taking a two-dimensional input system as an example, the similarity between xi and
xj can be defined as

d
(
xi, xj

)
= exp(−

(xi1 − xj1)
2

l2
1

−
(xi2 − xj2)

2

l2
2

) (13)

The closer xi and xj are, the greater the similarity, and the similarity is 1 when they are
completely similar. Moreover, l1 and l2 represent the weight coefficient of each dimension.
Here, the larger the setting, the larger the interval between the data points selected for
this dimension. Furthermore, it can usually be set to the amplitude of each dimension to
balance the data points of each dimension.

Figure 3 shows the principle of updating sparse data based on similarity. The new
data point 3 has a high similarity to the existing points in the sparse set. It is regarded as
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data redundancy and is not added to the sparse set. Point 4 is farther from the sparse set
and is regarded as new information that is added to the sparse set.

y = x1 sin(x2) + x2 sin(x1) (14)
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Taking two-dimensional surface reconstruction as an example, the data points are
generated by the function in Equation (12). Both dimensions are sampled at 0.2 intervals
for a total of 3721 sample points. The flowchart of learning based on the sparse Gaussian
process is detailed in Table 1.

Table 1. The flowchart of learning based on the sparse Gaussian process.

Algorithm Sparse Gaussian Process

1 Set the similarity threshold dgen and the weight of each dimension l
2 Add the first data to the sparse set S. M = 1, S = {x1}
3 Determine whether the new data are similar to the sparse dataset f or i = 2 : N
4 Calculate the similarity d

(
xi, Sj

)
, j = 1 : M

5 If max
(

d
(

xi, Sj

))
< dgen

6 Add new data xi to the sparse set S. S = S ∪ {xi}, M = M + 1;end;end
7 Use sparse set S rather than all of the datasets for Gaussian process regression

Figure 4 shows the distribution of data after sparseness, and the sparse data points
are evenly distributed throughout the space. Table 2 shows the influence of sparse data
amount on model prediction accuracy and speed. It can be found that only 350 data points
can be selected to achieve a similar prediction accuracy to 3721 samples. In addition, the
training time is shortened from 54 to 0.6 s and the accuracy is satisfied. At the same time, it
greatly saves training time.
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Table 2. The influence of the number of sparse data on model prediction.
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4. Modeling of Ship Maneuvering Motion with Experimental Data
4.1. Experimental Ship Model and Dataset

A free-running test is a commonly used method for ship dynamics identification.
This method only requires the measurement of the status information, such as the ship’s
position and speed, and does not require the measurement of the force. In addition, it can
be applied to full-scale ships to avoid scale effects.

KVLCC2 is a large oil tanker, which has been used as the benchmark ship type for the
validation of maneuvering simulation methods in the world. The experimental data used
in this study come from the KVLCC2 model free-running test conducted at the Hamburg
water tank (HSVA) in Germany. The main parameters of the KVLCC2 model are detailed
in Table 3.

Table 3. Parameters and dimensions of the KVLCC2 model.

Parameters Values

Lpp (m) 7.0
B (m) 1.2688

Displacement (m3) 3.2724
Beam coefficient 0.8098

Nominal speed (m/s) 1.179
Rudder speed (

.
δ) 15.8 deg/s

A series of standard zigzag maneuvers were tested. All of the data were collected with
a sampling rate of 20 Hz. The experimental data used in this research are shown in Table 4.
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Table 4. Test data of the KVLCC2 model.

Maneuver Max Rudder Angle (◦) Heading Change (◦) Data Points

15/5◦ 15 5 3660
20/5◦ 20 5 3500
25/5◦ 25 5 3660
30/5◦ 30 5 3960
35/5◦ 35 5 4160

4.2. Modeling by Different Training Data

The dataset under different rudder angle ranges may contain different dynamic
characteristics. Only a dataset that can provide enough dynamic information allows the
identification of a reliable model. Models trained on different training sets will obtain
different accuracies for the same motion prediction. To analyze the impact of different
training sets on the model accuracy, different training sets are set to train the model and
the least square method is used to identify the model in Equation (2).

The root mean square deviation (RMSE) of speed in Table 5 is applied to evaluate the
preference of different models. The prediction results of different training sets are shown
in Figures 5–7. The results show that the prediction effect of the training set of a single
rudder angle is significantly worse than the multiple rudder angles. When using model 3
as the training set, the rudder angle completely covers the state space. The prediction result
almost coincides with the experimental data. However, there are still some errors in the
surge speed between the prediction and the experimental data, which show that a few
errors still remain in the approximation of the polynomial model of the surge.

Table 5. The RMSE of speed of different training sets.

Model Training Set Validation Set u (10−2 m/s) v (10−2 m/s) r (10−2 deg/s)

1 15/5◦ 25/5◦ 4.06 2.43 47.54
2 35/5◦ 25/5◦ 0.97 0.46 10.65

3 15/5◦, 20/5◦,
30/5◦, 35/5◦ 25/5◦ 0.58 0.39 7.65
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Figure 7. Prediction error of yaw rate at 25/5◦ under different training sets.

4.3. Modeling by Sparse Gaussian Process Regression with Similarity

There is a certain error in using the finite term polynomial approximation model,
especially when the surge model is not ideal. Therefore, the Gaussian process regression
uses the infinite-dimensional kernel function, which can obtain a higher-precision model.
Similar to the parametric model, in order to learn a ‘good’ model, the training data must
cover a large range of the model state space. Briefly, 15/5◦, 20/5◦, 30/5◦, and 35/5◦ zigzag
tests are used to train the model. The data almost cover the input space of the steering angle.
The training set data have a total of 15,280 data points. If Gaussian process regression is
used directly, the inverse matrix is almost impossible to calculate. According to the sparse
Gaussian process algorithm based on similarity in Table 1, the training set is sparsed. The
312 data points of the sparse dataset are evenly distributed in the state space, as shown
in Figure 8.
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The 15/5◦, 20/5◦, 30/5◦, and 35/5◦ zigzag tests are used in the training set. The 25/5◦

zigzag test is treated as the validation set, and it is the same dataset that compares the
prediction accuracy of the sparse Gaussian process model and the parameter model.

The prediction results of different training sets are shown in Figures 9–11. The RMSE
of speed in Table 6 is applied to evaluate the preference of different methods. From the
results, compared with the parametric model, the prediction of the sparse Gaussian process
method has significantly improved the accuracy of surge velocity. Moreover, the prediction
result almost coincides with the experimental data. There is a small difference between
the two methods in predicting the sway velocity and yaw rate, and it is almost consistent
with the experiment. It proves that the parametric model of surge velocity can still be
further improved.
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Figure 10. Prediction error of sway speed at 25/5◦ under different methods.
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Table 6. The RMSE of speed of different methods.

Methods u (10−2 m/s) v (10−2 m/s) r (10−2 deg/s)

Sparse Gaussian Process Model 0.25 0.35 7.25
Parametric Model 0.58 0.39 7.65

The trajectory
[
x̂, ŷ, ψ̂

]
of the ship can be obtained through Euler integration. Figure 12

shows the result of trajectory prediction. It can be found that in the short-term prediction,
the sparse Gaussian process prediction trajectory nearly coincides with the experimental
trajectory, and the accuracy is higher than the parameter model prediction. The maximum
prediction error of 100 s is only 0.59 m, and the maximum error of the parameter model
prediction reaches 3.21 m. With the increase in the number of prediction steps, the error
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will have a certain cumulative error. Nevertheless, the ship’s trajectory predicted by the
sparse Gaussian process continues to follow the experimental trajectory with a small error.
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5. Conclusions and Future Work

In this work, a data-driven nonparametric model based on sparse Gaussian process
regression with similarity was used for the dynamic modeling of a ship. The experimental
data of KVLCC2 are used to verify the validity of the proposed method. The case study
shows that the sparse Gaussian process regression with similarity can be applied to the
learning of large sample data and to obtain ship motion prediction with higher accuracy
than the parameterized model. In the case of sensor signal loss, the model can continue
to provide accurate ship state information in the future, and the maximum error of 100 s
trajectory prediction is 0.59 m. High-precision prediction can help controllers make safe
decisions on path planning and obstacle avoidance.

The advantages of the proposed model based on sparse Gaussian process regression
with similarity for ship dynamics modeling can be summarized as follows: First, unlike
parameter identification, the model based on Gaussian process regression is not required to
know the previous model structure of the ship dynamics. It obtains a more accurate motion
prediction than the parametric model. Second, the similarity-based sparse method solves
the defect, wherein the kernel method is difficult to apply to large sample data learning. It
only uses very little data to replace the large sample information. Therefore, the model can
be more generalized. Finally, the Gaussian process is the same as LSSVR and KRR in mean
prediction. The hyperparameters learned by the Gaussian process can be used in the two
aforementioned methods. In addition, the proposed sparse algorithm can be applied to the
two aforementioned algorithms.

However, the proposed method still requires further research. Since the information
contained in the dataset determines the essential performance of the model, it is difficult
to further improve the model performance without increasing the training data. For
parametric and nonparametric identification, the training data should cover the ship motion
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state space as much as possible. Moreover, further research is required to understand how
the least experimentation can be used to cover the state space.
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