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Abstract: The main purpose of this paper is threefold. One is to study the existence and convergence
problem of solutions for a class of generalized mixed quasi-variational hemivariational inequalities.
The second one is to study the existence of optimal control for such kind of generalized mixed
quasi-variational hemivariational inequalities under given control u ∈ U . The third one is to study
the relationship between the optimal control and the data for the underlying generalized mixed
quasi-variational inequality problems and a class of minimization problem. As an application, we
utilize our results to study the elastic frictional problem in a class of Hilbert spaces. The results
presented in the paper extend and improve upon some recent results.
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problems; convergence theory; contact problems; elastic frictional problems; Hausdorff-Lipschitz
continuity
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1. Introduction

Variational inequality theory is a very effective and powerful tool for studying a wide
range of problems that arise in differential equations, mechanics, contact problems in
elasticity, the optimization and control problem, as well as unilateral, obstacle and moving
problems (see, for example, [1–8]).

Hemivariational inequalities, which were first initiated by Panagiotopoulos [9], deal
with certain mechanical problems involving nonconvex and nonsmooth energy functions. If
the energy function is convex, then the hemivariational inequalities reduce to the variational
inequalities that have been previously considered by many authors. The hemivariational
inequalities have emerged as one of the most promising branches of pure, applied, and
industrial mathematics and have achieved a great achievement in the field of mathematical
analysis (see, for example, [10–22]).

The main purpose of this article is:
(1) To study the existence and convergence problem of solutions of the following

generalized mixed quasi-variational hemivariational inequality, i.e., to find x ∈ A (x) and
x? ∈ ℱ (x) such that

〈x? − f , y− x〉+ G◦(x̂; ŷ− x̂) + ϕ(y, x)− ϕ(x, x) ≥ 0, ∀ y ∈ A (x), (1)

where E is a real Banach space, and E? is its dual space. Ω is a nonempty closed convex
subset of E, and A : Ω → 2Ω is a mapping such that for every x ∈ Ω, the set A (x) is a
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nonempty closed convex subset of Ω. ℱ : E→ 2E
?

is a set-valued mapping, and its domain
and the graph are defined by

D(ℱ ) = {x ∈ E : ℱ (x) 6= ∅} and G(ℱ ) = {(x, x?) : x ∈ D(ℱ ), x? ∈ ℱ (x)},

respectively. T : E→ Lp(M;R`) is a linear continuous operator, where ` ≥ 1, 1 < p < ∞.
G◦(x; y) is the Clarkes generalized directional derivative of the locally Lipschitz mapping
G : Lp(M;R`) → R at the point x ∈ Lp(M;R`) with respect to direction y ∈ Lp(M;R`).
ϕ : Ω×Ω→ R∪ {+∞} is a functional, f ∈ E?, and x̂ = T x.

(2) To study the optimal control of (1), for given control u ∈ U , i.e., to find x ∈ A (x)
and x? ∈ ℱ (x) such that

〈x? − f , y− x〉+ G◦(x̂; ŷ− x̂) + ϕ(y, x)− ϕ(x, x) ≥ 〈ℬ(u), y− x〉, ∀y ∈ A (x), (2)

where V is the control space, U ⊂ V is the admissible controls (a nonempty closed convex
set), and ℬ : V → E? is a compact mapping.

(3) To study the relationship between the solution x(u) of (2), corresponding to the
control u, and the optimal control problem to seek an optimal pair (u, x(u)) ∈ U × E to
solve the following minimization problem:

min
u∈U

{(u, x(u)), (3)

where {(u, x(u)) is the cost function defined by

{(u, x(u)) = ‖k(x(u))−=‖2 + ε‖u‖2,

As an application, we utilize our results to study the elastic frictional problem in a
class of Hilbert spaces. The results presented in the paper extend and improve upon some
recent results.

2. Preliminaries

In this section, we present some basic concepts that will be used in proving our main
results.

In the sequel, we denote by→ the strong convergence and by ⇀ the weak convergence.

Definition 1 ([23]). The bifunction ϕ : Ω×Ω → R ∪ {+∞} is called skew-symmetric if and
only if

ϕ(x, x)− ϕ(x, y)− ϕ(y, x)− ϕ(y, y) ≥ 0, ∀ x, y ∈ Ω. (4)

Clearly, if the skew-symmetric (bifunction ϕ(·, ·)) is bilinear, then

ϕ(x, x)− ϕ(x, y)− ϕ(y, x) + ϕ(y, y) = ϕ(x− y, x− y) ≥ 0, ∀ x, y ∈ Ω. (5)

Lemma 1 ([24,25]). Let  : Ω→ R be locally Lipschitz of rank ℒx > 0 near x. Let ◦(x; y) be the
Clarkes generalized directional derivative of  : E→ R at the point x ∈ E in the direction y ∈ E,
that is

◦(x; y) = lim sup
λ→0+ ,ς→x

(ς + λy)− (ς)

λ
.

Let ∂(x) be the Clarkes subdifferential or generalized gradient of  at x ∈ E defined by

∂(x) = {x? ∈ E? : ◦(x; y) ≥ 〈x?, y〉E, ∀ y ∈ E}.

Then,
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(i) ◦(x; y) is an upper semicontinuous function of (x, y), and y 7→ ◦(x; y) is Lipschitz of rank
ℒx near x on E and satisfies ∣∣◦(x; y)

∣∣ ≤ ℒx‖y‖E;

(ii) The gradient ∂(x) is nonempty, convex and a weakly? compact subset of E?, which is bounded
by Lipschitz constant ℒx near x;

(iii) For every y ∈ E, we have

◦(x; y) = max{〈ω, y〉 | ω ∈ ∂(x)}.

In the sequel, we assume that Θ is a bounded open set in RN (N ≥ 1), and ∂Θ is its
boundary. Denote Θ or ∂Θ by M. We assume that ϑ :M ×R` → R is a function such that
the function

ϑ(·, ξ) :M→ R is measurable for every ξ ∈ R`. (6)

We assume that at least one of the following conditions holds: either there exists
κ ∈ Lq(M;R) such that

|ϑ(θ, ξ1)− ϑ(θ, ξ2)| ≤ κ(θ) |ξ1 − ξ2|, ∀ ξ1, ξ2 ∈ R`, θ ∈M, (7)

or the mapping
ϑ(θ, ·), ∀θ ∈M (8)

is locally Lipschitz continuous and there exists µ > 0 such that

|η| ≤ µ
(

1 + |ξ|p−1
)

, ∀ θ ∈M, η ∈ ∂ϑ(θ, ξ). (9)

Under the above conditions, we have the following result:

Lemma 2 ([24], Theorem 2.7.5). If

G(φ) =
∫
M

ϑ(θ, φ(θ))dθ, (10)

and ϑ satisfies the conditions (6) and (7) or (6), (8) and (9), then G is Lipschitz on bounded subsets
of Lp(M;R`), and one has

∂G(φ) ⊂
∫
M

∂ϑ(θ, φ(θ))dθ.

Furthermore, if ϑ is regular at (x, φ(x)), then G is regular at φ, and equality holds.

Definition 2. Let ℱ : Ω→ 2E
?

be a mapping. Then ℱ is said to be

(i) Monotone, if for each x, y ∈ Ω,

〈y? − x?, y− x〉 ≥ 0, ∀x? ∈ ℱ (x), y? ∈ ℱ (y);

(ii) Maximal monotone, if the graph of the monotone mapping ℱ is not included in the graph of
any other monotone map with the same domain;

(iii) Pseudomonotone, if

(a) For each x ∈ Ω, the set ℱ (x) is nonempty, bounded, closed and convex;
(b) The mapping ℱ is u.s.c. from each finite-dimensional subspace of E to E? endowed with

the weak topology;
(c) If {xn} ⊂ E with xn ⇀ x ∈ E, and x?n ∈ ℱ (xn) such that

lim sup
n→∞

〈x?n, xn − x〉 ≤ 0,
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then for every y ∈ E, there exists x?(y) ∈ ℱ (x) such that

〈x?(y), x− y〉 ≤ lim inf
n→∞

〈x?n, xn − y〉;

(iv) Generalized pseudomonotone, if for any sequence {xn} ⊂ E with xn ⇀ x ∈ E and
x?n ∈ ℱ (xn) with x?n ⇀ x? such that

lim sup
n→∞

〈x?n, xn − x〉 ≤ 0,

we have x? ∈ ℱ (x) and
〈x?n, xn〉 → 〈x?, x〉.

Definition 3. A mapping A : Ω→ 2Ω is called M-continuous, if the following conditions hold:

(M1) For any sequence {xn}n≥1 ⊂ Ω with xn ⇀ x, and for each y ∈ A (x), there exists {yn}n≥1
such that yn ∈ A (xn) and yn → y;

(M2) For yn ∈ A (xn) with xn ⇀ x and yn ⇀ y, we have y ∈ A (x).

3. Existence Theorems

This section is devoted to the existence theory of the generalized mixed quasi-
variational hemivariational inequality problems.

Lemma 3. Let E be a Banach space, Ω be a nonempty compact subset of E. Let ℱ : Ω→ 2E
?

be a
sequentially bounded (i.e., if xn → x, then

⋃
n≥1

ℱ (xn) is bounded in E?), pseudomonotone mapping.

Let T : E → Lp(M;R`) be a linear continuous operator and G : Lp(M;R`) → R be the locally
Lipschitz function defined by (10). Assume that ϕ : Ω×Ω → R ∪ {+∞} is skew-symmetric,
then for any f ∈ E?, the mapping L : Ω→ Ω defined by

L(x) =

y ∈ Ω inf
x?∈ℱ (x),
ω∈∂G(x̂)

〈x? +T ?ω− f , x− y〉+ ϕ(x, x)− ϕ(y, x) ≤ 0


has a closed graph in Ω×Ω.

Proof. Let {(xn, yn)} ∈ G(L), xn → x and yn → y. We prove that (x, y) ∈ G(L).
In fact, for each n ∈ N , we have

inf
x?n∈ℱ (xn),
ωn∈∂G(x̂n)

〈x?n +T ?ωn − f , xn − yn〉+ ϕ(xn, xn)− ϕ(yn, xn) ≤ 0.

Hence, there exist x̃?n ∈ ℱ (xn), ω̃n ∈ ∂G(x̂n) such that

〈x̃?n +T ?ω̃n − f , xn − yn〉+ ϕ(xn, xn)− ϕ(yn, xn) ≤
1
n

. (11)

Since ℱ is sequentially bounded, this implies that {x̃?n} is bounded. Therefore, we have

lim sup
n→∞

〈x̃?n, xn − x〉 = 0.

Again, since ℱ is pseudomonotone, there exists x?(y) ∈ ℱ (x) such that
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〈x?(y), x− y〉 ≤ lim inf
n→∞

〈x̃?n, xn − y〉

= lim inf
n→∞

(〈x̃?n, xn − yn〉+ 〈x̃?n, yn − y〉)

= lim inf
n→∞

(〈x̃?n, xn − yn〉.

It follows from Lemma 1 (ii) that {ω̃n} is bounded. By Proposition 2.1.5 of [24],
without loss of generality, we may assume the sequence {ω̃n} converges weakly to some
ω ∈ ∂G(x̃). Hence, we obtain

〈T ?ω− f , x− y〉+ ϕ(y, x)− ϕ(x, x) = lim
n→∞
〈T ?ω̃n − f , xn − y〉+ ϕ(y, x)− ϕ(xn, x).

Consequently, from (11), we have

〈x?(y) +T ?ω− f ,x− y〉+ ϕ(x, x)− ϕ(y, x)

≤ lim inf
n→∞

〈x̃?n +T ?ω̃n − f , xn − yn〉+ ϕ(xn, xn)− ϕ(yn, xn)

≤ 0,

which shows that (x, y) ∈ G(L). The proof is completed.

Theorem 1. Let E be a separable Banach space and Ω be a nonempty compact convex subset of E.
Suppose that ℱ : Ω→ 2E

?
is a sequentially bounded, pseudomonotone mapping and for any x ∈ Ω,

ℱ (x) is weakly? compact and convex. Let T : E→ Lp(M;R`) be a linear continuous operator and
G : Lp(M;R`)→ R be the locally Lipschitz function defined by (10). Let A : Ω→ 2Ω be an l.s.c.
mapping with a closed graph and nonempty convex values. Assume that ϕ : Ω×Ω→ R∪ {+∞}
is skew-symmetric, then for any f ∈ E?, (1) has at least one solution.

Proof. It follows from Lemma 1 (ii) that for every y ∈ Ω, ∂G(ŷ) is weakly? compact
and convex. Again, by the assumption that ℱ (y) is weakly? compact and convex, this
implies that

ℱ (y) + ∂G(ŷ)

is also compact and convex. By virtue of Lemma 2 of [26] and Lemma 3, there exist
x ∈ A (x), x? ∈ ℱ (x) and ω ∈ ∂G(x̂) such that

〈x? +T ?ω− f , y− x〉+ ϕ(y, x)− ϕ(x, x) ≥ 0 ∀ y ∈ A (x),

i.e.,
〈x? − f , y− x〉+ 〈T ?ω, y− x〉+ ϕ(y, x)− ϕ(x, x) ≥ 0, ∀ y ∈ A (x).

Therefore, we have

〈x? − f , y− x〉+ G◦(x̂; ŷ− x̂) + ϕ(y, x)− ϕ(x, x) ≥ 0, ∀ y ∈ A (x).

This completes the proof of Theorem 1.

Theorem 2. Let E and V be two real reflexive Banach space, and U be a nonempty closed convex
subset of V . LetW be a Banach space, = ∈ W and f ∈ E?. Assume further that

(i) A : E→ 2E is M-continuous;
(ii) ℱ : E → 2E

?
is bounded, pseudomonotone, and there is a bounded, closed and convex set

S ⊂ E such that
A (x) ∩ S = ∅, for every x ∈ E,

inf
x?∈ℱ (x)

〈x?, x− y〉
‖x‖ → ∞ as ‖x‖ → ∞ uniformly in y ∈ S, (12)
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(iii) G : Lp(M;R`)→ R is the Lipschitz function defined by (10);
(iv) T : E→ Lp(M;R`), k : E→W , ℬ : V → E? are compact;
(v) ϕ : Ω×Ω→ R∪ {+∞} is a functional.

If for every control u ∈ U , (2) has a solution, then the optimal control problem (3) has a
solution pair (u, x(u)) ∈ U ×E.

Proof. Let {(un, xn)} ⊂ U ×E be a minimizing sequence such that

lim
n→∞

{(un, xn) = min
{
{(v, x(v)) : v ∈ U

}
,

where un ∈ U , and xn is a solution of (2) that corresponds to the control un, that is,

xn = x(un).

Consequently,
xn ∈ A (xn) for some x?n ∈ ℱ (xn);

hence, we have

〈x?n − f , y− xn〉+ G◦(x̂n; ŷ− x̂n) + ϕ(y, xn)− ϕ(xn, xn) ≥ 〈ℬ(un), y− xn〉,
∀ y ∈ A (xn).

(13)

When n is large enough, we have

ε‖un‖2 ≤ ‖k(xn)−=‖2 + ε‖un‖2

≤ lim
n→∞

{(un, xn) + 1.

Hence, {un} is a bounded sequence in V . Since V is a reflexive space, there is a
subsequence of {un}, denoted by {un} again, such that

un ⇀ ū for some ū ∈ V .

Since U is closed convex from Theorem 1.33 of [27], we deduce that U is weakly closed,
and, hence, ū ∈ U .

Next, we choose a subsequence {xnj} of {xn} corresponding to the subsequence of
controls {unj}, which is a solutions of (2). Now, we prove that {xnj} remains bounded.

Suppose that, on the contrary, we assume that {xnj} is unbounded. Let {xni} be a
subsequence of{xnj} (for simplicity, we denote it by {xm}) such that

‖xm‖ → ∞ as m→ ∞.

We choose an arbitrary sm ∈ A (xm)∩ S. Since the set S is bounded, the sequence {sm}
remains bounded. By substituting y = sm in (13), we obtain

〈x?m − f , sm − xm〉+ G◦(x̂m; ˆsm − x̂m) + ϕ(sm, xm)− ϕ(xm, xm) ≥ 〈ℬ(um), sm − xm〉.

Since
|G◦(x̂m; ˆsm − x̂m)| ≤ ℒ‖T ‖‖sm − xm‖, for ℒ > 0,

we have
〈x?m, sm − xm〉
‖xm‖

≤ (‖ f ‖+ ‖ℬ(um)‖+ℒ‖T ‖)
(

1 +
‖sm‖
‖xm‖

)
.

As m → ∞, the above inequality is bounded, which is a contradiction to (12). This
shows the boundedness of {xnj}.
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Let {xn} be a subsequence converging weakly to x̄ ∈ E. We will prove that x̄ is a
solution of (2) that corresponds to ū, that is,

x̄ = x(ū).

Since A is M-continuous, we have

x̄ ∈ A (x̄).

Hence, for x̄ ∈ A (x̄), there exists {x′n} with x′n ∈ A (xn) and

x′n → x̄.

Therefore, by substituting y = x′n in (13), utilizing the boundedness of ℱ , the com-
pactness of ℬ, T , Lemma 1(i) and rearranging the terms, we obtain

lim sup
n→∞

〈x?n, xn − x̄〉 ≤ lim sup
n→∞

〈x?n, xn − x′n〉+ lim sup
n→∞

〈x?n, x′n − x̄〉

≤ lim sup
n→∞

[
〈 f +ℬ(un), xn − x′n〉+ G◦(x̂n; x̂′n − x̂n) + ϕ(xn, x̄)

− ϕ(x̄, x̄)
]

≤ lim sup
n→∞

〈 f +ℬ(un), xn − x̄〉+ lim sup
n→∞

〈 f +ℬ(un), x̄− x′n〉

+ lim sup
n→∞

G◦(x̂n; x̂′n − x̂n)− ϕ(x̄, x̄) + ϕ(xn, x̄)

≤ 0.

Since every pseudomonotone mapping is a generalized pseudomonotone, see [27],
we deduce that ℱ is generalized pseudomonotone. Thus, for a subsequence {x?n} such that

x?n ⇀ x̄?,

we have
x̄? ∈ ℱ (x̄)

and
lim

n→∞
〈x?n, xn〉 = 〈x̄?, x̄〉.

Let ȳ ∈ A (x̄) be arbitrary and {yn} be such that

yn ∈ A (xn) and yn → ȳ.

We have

〈x̄?, x̄− ȳ〉 = lim sup
n→∞

〈x?n, xn − yn〉

≤ lim sup
n→∞

[〈 f +ℬ(un), xn − yn〉+ G◦(x̂n; ŷn − x̂n)− ϕ(xn, xn) + ϕ(yn, xn)]

≤ 〈 f , x̄− ȳ〉+ 〈ℬ(ū), x̄− ȳ〉+ G◦( ˆ̄x; ˆ̄y− ˆ̄x) + ϕ(x̄, x̄)− ϕ(ȳ, x̄).

Since ȳ ∈ A (x̄) is arbitrary, we have

〈x̄? − f , ȳ− x̄〉+ G◦( ˆ̄x; ˆ̄y− ˆ̄x) + ϕ(ȳ, x̄)− ϕ(x̄, x̄) ≥ 〈ℬ(ū), ȳ− x̄〉, ∀ ȳ ∈ A (x̄).

Hence, x̄ is a solution of (2) that corresponds to the control ū, that is

x̄ = x(ū).
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Finally, we have

{(ū, x̄) = ‖k(x̄)−=‖2 + ε‖ū‖2

≤ lim inf
n→∞

‖k(xn)−=‖2 + lim inf
n→∞

ε‖un‖2

≤ lim inf
n→∞

{(un, xn)

= lim
n→∞

{(un, xn)

= inf{{(v, x(v)) : v ∈ U},

which shows that (ū, x̄) is an optimal pair and completes the proof.

Theorem 3. Let E, V , Ω, U , and W be the same as in Theorem 2. Let = ∈ W and f ∈ E?.
Assume further that

(i) A : Ω→ 2Ω is M-continuous;
(ii) ℱ : E→ 2E

?
is maximal monotone, Ω ⊂ int(D(ℱ )), and there exists x0 ∈

⋂
y∈Ω

A (y) such

that for every x ∈ Ω, x? ∈ ℱ (x),

〈x?, x− x0〉
‖x‖ → ∞ as ‖x‖ → ∞; (14)

(iii) G : Lp(M;R`)→ R is the uniformly Lipschitz function defined by (10);
(iv) T : E→ Lp(M;R`), k : E→W , ℬ : V → E? are compact;
(v) ϕ : Ω×Ω→ R̄ is a functional.

If for every control u ∈ U , (2) has a solution, then the optimal control problem (3) has a
solution (u, x(u)).

Proof. The proof follows from the corollary of [28] and Theorem 2.

4. Convergence Theory

Given an observation space W , a compact mapping kn : E → W (n ∈ N ), and a
target = ∈ W , we consider the following perturbed cost function:

{n(u, x(u)) = ‖kn(x(u))−=‖2 + ε‖u‖2,

where ε > 0, and x(u) is a solution of (2), which corresponds to the control u through
the following perturbed generalized mixed quasi-variational hemivariational inequality
problem for finding x ∈ An(x), x? ∈ ℱn(x). We have

〈x? − fn, y− x〉+ G◦n(x̂; ŷ− x̂) + ϕ(y, x)− ϕ(x, x) ≥ 〈ℬ(u), y− x〉, ∀ y ∈ An(x), (15)

where fn ∈ E?.

In this section, we are interested in the convergence behavior of the optimal con-
trol problem, which has an optimal pair (u, xn(u)) ∈ U × E that solves the following
minimization problem:

min
u∈U

{n(u, x(u)), (16)

where xn(u) is a solution of (15), which corresponds to u. In order to obtain the result of
this section, we need the following assumptions:

(HA ): For any xn, x ∈ Ω with xn ⇀ x, there exists a continuous function τ1 : R+ →
R+ such that

H(A (x),An(xn)) ≤ $n
1 τ1(‖x‖), (17)
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where

H(Q,S) = max

{
sup
y∈Q

d(y,S), sup
z∈S

d(z,S)

}
is the Hausdorff distance between the sets Q and S, and {$n

1} is a sequence of positive reals.

(Hℱ ) : For any x ∈ E, there exists a continuous function τ2 : R+ → R+ such that

H(ℱ (x),ℱn(x)) ≤ $n
2 τ2(‖x‖), (18)

where {$n
2} is a sequence of positive reals.

(HG) : For any x, y ∈ Lp(M;R`), there exists a continuous function τ3 : R+ → R+

such that
|G◦(x; y)− G◦n(x; y)| ≤ $n

3 τ3(‖y‖), (19)

where {$n
3} is a sequence of positive reals.

(H f ) : For every n ∈ N ,

‖ fn − f ‖ ≤ $n
4 , $n

4 ≥ 0,

where {$n
4} is a sequence of positive reals.

(H0) : For n→ ∞, the sequence is

$n
1 → 0, $n

2 → 0, $n
3 → 0, $n

4 → 0. (20)

We have the following theorem.

Theorem 4. Let Ω, U , E, V , and W be the same as in Theorem 3, = ∈ W and f , fn ∈ E? (n ∈
N ). Assume that

(i) A ,An : Ω→ 2Ω are M-continuous;
(ii) ℱ ,ℱn : E→ 2E

?
satisfies the assumptions of (ii) of Theorem 3;

(iii) G : Lp(M;R`)→ R is the Lipschitz function defined by (10) and Gn : Lp(M;R`)→ R (n ∈
N ) are uniformly Lipschitz defined by (10) corresponding to ϑn;

(iv) T : E→ Lp(M;R`), k : E→W , ℬ : V → E? are compact;
(v) ϕ : Ω×Ω→ R∪ {+∞} is a functional.

Suppose that for every control u ∈ U , (15) has a solution and (2) has a unique solution. If
(HA ), (HG), (Hℱ ), (H f ), (H0) are satisfied, then for every n ∈ N , (16) has a solution (un, xn),
and there exists a subsequence of {(un, xn)} that converges weakly to a solution of (3).

Proof. From Theorem 3, for every n ∈ N , (16) has a solution (un, xn). We first assume that
{un} is bounded. Therefore, we can extract a subsequence of {un}, denoted by {un} again,
that converges weakly to some ū ∈ U . Let {xn} be a sequence of solutions of (15), which
corresponds with the subsequence {un}. Therefore, xn ∈ An(xn), x?n ∈ ℱn(xn), we have

〈x?n − fn, y− xn〉+ G◦n(x̂n; ŷ− x̂n) + ϕ(y, xn)− ϕ(xn, xn) ≥ 〈ℬ(un), y− xn〉,
∀ y ∈ An(xn).

(21)

We prove that {xn} is bounded. Suppose, to the contrary, we assume that {xn} is
unbounded. Let {xn} be a subsequence ‖xn‖ → ∞ as n → ∞. By substituting y = x0
in (21), we obtain

〈x?n − fn, x0 − xn〉+ G◦n(x̂n; x̂0 − x̂n) + ϕ(x0, xn)− ϕ(xn, xn) ≥ 〈ℬ(un), x0 − xn〉.

After a rearrangement of terms, since

|G◦n(x̂n; ŝn − x̂n)| ≤ ℒ ′‖T ‖‖sn − xn‖, for ℒ ′ > 0,
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we have

〈x?n, x0 − xn〉
‖xn‖

≤ (‖ f ‖+ βn + ‖ℬ(un)‖+ℒ ′‖T ‖) +
(

1 +
‖x0‖
‖xn‖

)
.

Since the right-hand side of the above inequality is bounded as n→ ∞, we obtain a
contradiction to (14). This implies the boundedness of {xn}.

Therefore, from (HA ) and (H0), there exists a subsequence {xn}, which converges
weakly to some x̄ ∈ A (x̄), and the corresponding sequence of controls {un} such that for
x̃?n ∈ ℱn(xn), we have

〈x̃?n − fn, y− xn〉+ G◦n(x̂n; ŷ− x̂n) + ϕ(y, xn)− ϕ(xn, xn) ≥ 〈ℬ(un), y− xn〉, ∀ y ∈ An(xn). (22)

Let ȳ ∈ A (x̄) be arbitrary and {yn} be such that yn ∈ An(xn),

‖yn − ȳ‖ ≤ d(An(xn), ȳ) + εn

≤ sup
y∈A (x̄)

d(An(xn), y) + εn

≤ H(An(xn),A (x̄)) + εn

≤ $n
1 τ1(‖x̄‖) + εn, (23)

where εn ↓ 0, and we satisfy

〈x̃?n − fn, yn − xn〉+ G◦n(x̂n; ŷn − x̂n) + ϕ(yn, xn)− ϕ(xn, xn) ≥ 〈ℬ(un), yn − xn〉. (24)

We assume that {x̃?n} is bounded. Due to assumption (Hℱ ) and similar to (23), there
exists {x?n} with x?n ∈ ℱ (xn) satisfying

‖x̃?n − x?n‖ ≤ $n
2 τ2(‖xn‖) + εn. (25)

For any ȳ? ∈ ℱ (ȳ), since ℱ is monotone, we have

〈ȳ?, xn − ȳ〉 ≤ 〈ȳ?, xn − ȳ〉+ 〈x̃?n − fn, yn − xn〉+ G◦n(x̂n; ŷn − x̂n)− 〈ℬ(un), yn − xn〉
− ϕ(yn, xn) + ϕ(xn, xn)

= 〈x̃?n − x?n, yn − xn〉 − 〈 fn +ℬ(un), yn − xn〉+ 〈x?n, yn − ȳ〉
+ 〈x?n − ȳ?, ȳ− xn〉+ G◦n(x̂n; ŷn − x̂n)− ϕ(yn, xn) + ϕ(xn, xn)

≤ 〈x̃?n − x?n, yn − xn〉 − 〈 fn +ℬ(un), yn − xn〉+ 〈x?n, yn − ȳ〉
+ G◦n(x̂n; ŷn − x̂n)− G◦(x̂n; ŷn − x̂n) + G◦(x̂n; ŷn − x̂n)− G◦( ˆ̄x; ˆ̄y− ˆ̄x)

+ G◦( ˆ̄x; ˆ̄y− ˆ̄x)− ϕ(yn, xn) + ϕ(xn, xn)

≤ 〈x̃?n − x?n, yn − xn〉 − 〈 f , yn − xn〉+ 〈 f − fn, yn − xn〉 − 〈ℬ(un), yn − xn〉
+ 〈x?n, yn − ȳ〉+ G◦n(x̂n; ŷn − x̂n)− G◦(x̂n; ŷn − x̂n) + G◦(x̂n; ŷn − x̂n)

− G◦( ˆ̄x; ˆ̄y− ˆ̄x) + G◦( ˆ̄x; ˆ̄y− ˆ̄x)− ϕ(yn, xn) + ϕ(xn, xn)

Therefore,

〈ȳ?, x̄− ȳ〉 = lim sup
n→∞

〈ȳ?, xn − ȳ〉

≤ lim sup
n→∞

[
($n

2 τ2(‖xn‖) + $n
3‖T ‖τ3(‖x̄‖) + $n

4 )‖yn − xn‖+ ‖x?n‖‖yn − ȳ‖

+ 〈 f , xn − yn〉+ 〈ℬ(un), xn − yn〉+ G◦(x̂n; ŷn − x̂n)− G◦( ˆ̄x; ˆ̄y− ˆ̄x)
]

+ G◦( ˆ̄x; ˆ̄y− ˆ̄x)− ϕ(yn, xn) + ϕ(xn, xn)

≤ 〈 f , x̄− ȳ〉+ 〈ℬ(ū), x̄− ȳ〉+ G◦( ˆ̄x; ˆ̄y− ˆ̄x)− ϕ(ȳ, x̄) + ϕ(x̄, x̄).
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By virtue of the monotonicity of ℱ , the compactness of Ṫ , it follows from
Lemma 2(i), (19), (22)–(25), and the boundedness of {x̃?n}, we know that the sequence
{x?n} is bounded. This shows that for any ȳ ∈ A (x̄) and ȳ? ∈ ℱ (ȳ), we have

〈ȳ? − f , ȳ− x̄〉+ G◦( ˆ̄x; ˆ̄y− ˆ̄x) + ϕ(ȳ, x̄)− ϕ(x̄, x̄) ≥ 〈ℬ(ū), ȳ− x̄〉.

By using a Minty lemma analog, see [28,29], for some x̄? ∈ ℱ (x̄), we have

〈x̄? − f , ȳ− x̄〉+ G◦( ˆ̄x; ˆ̄y− ˆ̄x) + ϕ(ȳ, x̄)− ϕ(x̄, x̄) ≥ 〈ℬ(ū), ȳ− x̄〉, ∀ ȳ ∈ A (x̄).

From above, x̄ ∈ A (x̄) and that the solution of (2) is unique shows that x̄ is a solution
of (2) that corresponds to the control ū.

Now, we have to show that {x̃?n} is bounded. Let ȳ′ ∈ A (x̄) be arbitrary and {y′n} be
such that

y′n ∈ A (xn) and y′n → ȳ′.

From Lemma 2, for x?n ∈ ℱ (xn) satisfying (25), there are constants µ > 0 and r > 0,
such that

r‖x?n − f ‖ ≤ 〈x?n − f , xn − ȳ′〉+ µ(r + ‖xn − ȳ′‖) + ϕ(xn, ȳ′)− ϕ(ȳ′, ȳ′)

= 〈x̃?n − fn, xn − y′n〉+ 〈x?n − x̃?n, xn − y′n〉+ 〈 fn − f , xn − y′n〉
+ 〈x?n − f , y′n − ȳ〉+ µ(r + ‖xn − ȳ′‖) + ϕ(xn, ȳ′)− ϕ(ȳ′, ȳ′)

≤
[
$n

2 τ2(‖xn‖) + $n
4 + ‖ℬ(un)‖

]
‖xn − y′n‖+ |G◦(x̂n; ŷ′n − x̂n)|

+ ‖x?n − f ‖‖yn − ȳ‖+ µ(r + ‖xn − ȳ′‖) + ϕ(xn, ȳ′)− ϕ(ȳ′, ȳ′).

Since
lim

n→∞
‖yn − ȳ‖ = 0,

this implies that {‖x?n − f ‖} is bounded. It further confirms the boundedness of {x̃?n}.
Finally, we show that (ū, x̄) is a solution of (3). From Theorem 3, we know that (3) has

a solution. Let (u′, x(u′)) be a solution of (3). We suggest a sequence {x′n} such that x′n is a
solution of the following generalized mixed quasi-variational hemivariational inequality
problem that corresponds to the control u′ for finding x′n ∈ An(x′n) such that for some
x′?n ∈ ℱn(x′n), we have

〈x′?n − fn, y− x′n〉+ G◦n(x̂′n; ŷ− x̂′n) + ϕ(y, x′n)− ϕ(x′n, x′n) ≥ 〈ℬ(u′), y− x′n〉, ∀ y ∈ An(x′n).

By the same way as given above, we can also prove that {x′n} is bounded, and there
exists a subsequence that converges weakly to some x′ and that x′ is a solution of (2)
corresponds to u′.

Therefore, we have

{(ū, ū) = ‖k(x̄)−=‖2 + ε‖ū‖2

≤ lim inf
n→∞

‖k(xn)−=‖2 + lim inf
n→∞

ε‖un‖2

≤ lim inf
n→∞

(
‖k(xn)−=‖2 + ε‖un‖2

)
≤ lim inf

n→∞

(
‖k(x′n)−=‖2 + ε‖u′‖2

)
= ‖k(x′)−=‖2 + ε‖u′‖2,

which shows that {un} is bounded and (ū, x̄) is an optimal pair. This completes the
proof.



Symmetry 2021, 13, 1882 12 of 14

5. Applications

In this section, we will utilize our result presented in Section 4 to study the elastic
frictional problem in a class of Hilbert spaces.

Let the elastic body be an open bounded connected set Θ ⊂ Rd (d = 1, 2, 3). Assume
that the boundary k = ∂Θ is Lipschitz continuous. Assume that k consists of three sets
k̄D , k̄N and k̄C , with mutually disjoint relatively open sets kD , kN and kC , such that
(kD) > 0. The classical model for the process is to find a displacement field u : Θ → Rd

and a stress field σ : Θ→ Sd such that

Div σ + f0 = 0 in Θ, (26)

is an equilibrium equation, where Div is the divergence operator, and f0 is the density of
applied forces;

σ = Fε(u) in Θ (27)

is an elastic constitutive law, where F is the elasticity operator, and ε is the linearized
deformation operator;

u = 0 on kD (28)

and
σν = fN on kN (29)

denote the displacement and traction boundary conditions. Here fN is the density of
traction;

− σν ∈ ∂ν(uν − ϑ0) on kC (30)

is a contact condition;
− στ ∈ {τ(uν − ϑ0)∂τ(uτ) on kC (31)

denotes the friction law, and ϑ0 is the gap function, ν, τ , {τ are given functions, ν is the
outer normal, and

uν = u · ν, uτ = u− uν ν,

σν = (σ ν) · ν, στ = σ ν− σν ν.

We use the spaces

H = L2(Θ;Rd),

H = L2(Θ;Sd),

V = {v ∈ H1(Θ;Rd)
∣∣v = 0 on kD},

where Sd is the space of symmetric matrices of order d. Let f0 ∈ H, fN ∈ L2(kN ;Rd),
ϑ0 ∈ L∞(kC), ϑ0 ≥ 0 a.e. on kC . Combining (26)–(31), the elastic frictional problem can be
written as: to finding u ∈ V such that

〈Fε(u),ε(v)− ε(u)〉H

+
∫
kC

◦ν(uν − ϑ0; vν − uν) + {τ(uν − ϑ0) ◦τ(uτ − ϑ0; vτ − uτ)dk

≥ 〈 f , v− u〉V ∀ v ∈ V , (32)

where f ∈ V? is given by

〈 f , v− u〉V = 〈 f0, v− u〉H + 〈 fN , v− u〉L2(kN ;Rd) ∀ v ∈ V .

Now, we suggest the mapping ℱ : V → V? is given by

〈ℱ (u), v− u〉V = 〈Fε(u), ε(v)− ε(u)〉H ∀ u, v ∈ V .
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Then, the problem (32) turns to finding u ∈ A (u) such that

〈ℱ (u), v− u〉V + ϕ(v, u)− ϕ(u, u)

+
∫
kC
(◦ν(uν − ϑ0; vν − uν) + {τ(uν − ϑ0)◦τ(uτ − ϑ0; vτ − uτ))dk

≥ 〈 f , v− u〉V , ∀ v ∈ A (u). (33)

Let û = T u, where T : Hδ(Θ;Rd) → L2(kC ;Rd) (δ ∈ ( 1
2 , 1)) is the trace operator.

Define the operators  : kC ×Rd → R by

(x, û(x)) = ν(x, uν(x)− ϑ0(x)) + {τ(x, uν(x)− ϑ0(x))τ(x, uτ(x)− ϑ0(x))

for a.e. x ∈ kC , all u ∈ Hδ(Θ;Rd), and J : L2(kC ;Rd)→ R by

J(û) =
∫
kC

(x, û(x))dk for u ∈ Hδ(Θ;Rd).

We can prove that J satisfies the conditions of Lemma 2. Since for all z ∈ ∂J(û),

〈z, v̂− û〉 ≤ J◦(û; v̂− û) ≤
∫
kC

◦(û(x); v̂(x)− û(x))dk, ∀ v ∈ V ;

this implies that any solution of the following problem: to find u ∈ A (u) such that

〈ℱ u, v− u〉V + ϕ(v, u)− ϕ(u, u) + J◦(û; v̂− û) ≥ 〈 f , v− u〉V , ∀ v ∈ A (u)

is a solution of (33). Therefore, the existence of a solution for the elastic frictional problem
can be obtained from Theorem 4.

6. Conclusions

This paper is to initiate the optimal control of the generalized mixed variational-
hemivariational inequality problem involving set-valued mapping under the assumption
of monotonicity in real Banach space. As a simple innovative model problem, we have
discussed the existence results of the optimal control and convergence of the optimal control
under suitable conditions for generalized mixed variational-hemivariational inequality
problems.
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