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Technology in Szczecin, ul. Żołnierska 49, 71-210 Szczecin, Poland; andrii-shekhovtsov@zut.edu.pl (A.S.);
bartlomiej-kizielewicz@zut.edu.pl (B.K.)

3 Institute of Management, University of Szczecin, ul. Cukrowa 8, 71-004 Szczecin, Poland;
aleksandra.baczkiewicz@phd.usz.edu.pl

4 Doctoral School of University of Szczecin, ul. Mickiewicza 16, 70-383 Szczecin, Poland
* Correspondence: wojciech.salabun@zut.edu.pl; Tel.: +48-91-449-5580

Abstract: Decision support systems (DSS) are currently developing rapidly and are increasingly used
in various fields. More often, those systems are inseparable from information-based systems and
computer systems. Therefore, from a methodical point of view, the algorithms implemented in the
DSS play a critical role. In this aspect, multi-criteria decision support (MCDA) methods are widely
used. As research progresses, many MCDA methods and algorithms for the objective identification
of the significance of individual criteria of the MCDA models were developed. In this paper, an
analysis of available objective methods for criteria weighting is presented. Additionally, the authors
presented the implementation of the system that provides easy and accessible weight calculations
for any decision matrix with the possibility of comparing results of different weighting methods.
The results of weighting methods were compared using carefully selected similarity coefficients to
emphasise the correlation of the resulting weights. The performed research shows that every method
should provide distinctive weights considering input data, emphasising the importance of choosing
the correct method for a given multi-criteria decision support model and DSS.

Keywords: weighting methods; multi-criteria decision analysis; comparative analysis

1. Introduction

The continuous development of digitalization causes information-based systems to
become an integral part of many companies and provide helpful software for application
in various domains. Furthermore, the increasing amount of information increases the
importance of the decision-making factor. Nowadays, decision-making processes can
be supported by the application of decision support systems. The mentioned tools are
more and more prominently used among numerous fields, for instance, sustainable energy
development [1–4], business [5,6], scientific [7] or information processing [8].

Such decision support systems have been widely used for many years. However,
the DSSs that make up information management systems are constantly being improved
and developed [9]. Decision support systems were created for supply e-commerce [10],
chain improvement [11], new employee recruitment [12], human resources [13], accounting
support [14] or even for water resource management [15,16].

Complex decision problems considering many conflicting criteria require that the
decision support system work with suitable methods for such problems [17]. For example,
multi-criteria decision analysis (MCDA) methods are especially appropriate techniques
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in the context of compound decision problems. MCDA works based on predefined al-
ternatives and criteria that characterize them. The most popular MCDA methods, such
as TOPSIS, VIKOR and COPRAS require weights to determine the significance of the
considered criteria [18–20].

The determination of criteria preference in the multi-criteria problem being solved,
performed by determining weights, is one of the critical steps of MCDA methods because it
significantly affects the final results [21]. Currently, many methods for determining criteria
weights are available. The challenge is that no specific guidelines indicate which weighting
method is most appropriate for a given problem. The purpose of weighting techniques is
to reflect stakeholder preferences concerning the considered criteria. Weighting techniques
vary in their ease of use by the decision-maker. There are reports that people with higher
numerical ability prefer to use numerical techniques, while decision-makers with dominant
fluency favour non-numerical methods.

Criteria weighting techniques are divided into subjective and objective. Subjective
techniques require the participation of the decision-maker in the weighting procedure.
The values of the weights are then solely dependent on the opinion of the decision-
maker [22]. Subjective criteria weighting techniques include Analytic Hierarchy Processes
(AHP) [23,24], Simple Multi-Attribute Rating Techniques (SMART) [25], Simultaneous
Evaluation of Criteria and Alternatives (SECA) [26]. Subjective weighting techniques are
characterized by uncertainty due to varying interpretations of the decision problem by
different decision-makers [27].

The different weighting techniques have various degrees of compoundness. The pair-
wise comparison procedure executed in AHP (Analytic Hierarchy Process) is less com-
plicated than the SWING technique that considers a range of criteria values or the DCE
(Discrete Choice Experiment) that requires considering alternatives concerning multiple
criteria [28]. Despite its apparent simplicity, the AHP algorithm has high complexity due
to the necessity of performing many pairwise comparisons [29]. Furthermore, the AHP
method has some disadvantages such as the co-dependence of criteria, inconsistencies and
sensitivities to the ranking reversal phenomenon [30].

On the other hand, objective weighting methods determine criterion weights based
on mathematical formulas. They are readily and widely used because they do not require
expert knowledge of the problem being solved and allow for better automation and stream-
lining of DSS systems. However, in many real decision problems, as well as existing DSS
systems (e.g., economic studies [31] or company strategy assessments [32]), there is a need
to develop objective rankings [33]. The objective identification of the significance of the
decision model criteria plays a critical role in DSSs which are based on MCDA and consid-
erably affects the final results. Due to some limitations of subjective weighting techniques,
and the advantages and usefulness of objective methods identified above, the authors
decided to present a system including implementation of objective weighting techniques.
This paper aims to present and compare seven objective weighting methods using com-
prehensive analyses. The weighting techniques selected for the purpose of this analysis
are considered to be the most commonly used and most promising methods. Among the
techniques chosen by the authors are: standard deviation method, statistical variance
method, entropy method, mean method, CRITIC method [34,35], CILOS method [36,37]
and IDOCRIW method [38]. Each method provides a different approach to considering
data and calculating weights. They are unbiased methods, so the results depend solely on
the input data, its range, how it changes, or its differences among particular alternatives
considered in the decision problem.

Because of the large number of weighing techniques available, a reliable comparative
analysis requires establishing a special, suitable methodology for comparing the results.
For this purpose, four different approaches were chosen and presented by different equa-
tions that consider the data differently. The euclidean distance and three ranking coefficients
were chosen to check how each method prefers different criteria. Those coefficients are
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Pearson’s correlation coefficient, weighted Spearman’s rank correlation coefficient [39–41]
and WS rank correlation coefficient [42].

Furthermore, a computer system has been developed, which allows criteria weight
calculations for any decision matrix, together with the possibility of comparing the results
of different weighting methods for a given matrix. A market analysis was also carried
out to see if such a system had already been developed. The presented system allows
the user to easily apply the methods described in the article without much programming
knowledge, requiring only a basic knowledge of multi-criteria decision-making analysis.

The rest of the paper is organized as follows. In Section 2, the fundamentals and
assumptions of MCDA are given. This section also provides the following stages of
objective weighting methods considering customizing them to the specifics of the decision
problem. Section 3 introduces the basics and formulas of techniques applied for performing
a comparison. Section 4 presents the implemented system with the exact flow of the
application and a description of its main features. Section 5 provides the results of a
comparison of the discussed methods. Then the discussion about obtained results is
drawn. The last Section 6 summarizes this paper and provides conclusions and future
work directions.

2. Preliminaries

At first, this section introduces a general scheme of MCDA structure and execution,
necessary for its proper understanding. Further, the weighting methods are presented with
the particular stages required for appropriate performance.

2.1. Multi-Criteria Decision Analysis

The multi-criteria decision-making process performed using MCDA methods consists
of several sequential phases. These steps include determining the structure of the consid-
ered problem by creating a decision matrix with assessed m alternatives and n evaluation
criteria represented by (1), determining criteria preferences, and applying an algorithm
that provides a recommendation in the form of a ranking of alternatives [43].

X =


x11 x12 x13 · · · x1n
x21 x22 x13 · · · x2n

...
...

...
...

...
xm1 xm2 xm3 · · · xmn


m×n

(1)

Depending on the chosen method, differences in the procedure of solving the problem
might include various steps and a number of specifics of algorithm execution. The flow
of the typical procedure of MCDA is designed based on [43] as shown below in Figure 1.
The step of calculating criteria weights was highlighted, as this is the main focus of the
performed analysis.

Define
criteria and
alternatives

Define
criteria types

Create
decision
matrix

Calculate
criteria
weights

Choose 
multi-criteria

method

MCDA
method

computation

Figure 1. MCDA problem solving flowchart.

2.2. Standard Deviation Method

The standard deviation method focuses solely on the mathematical approach, which
describes a measure of the volatility of the given values. This method is highly similar to the
entropy method, as both assign smaller weights to an attribute with similar values across
different alternatives. However, standard deviation analyses process data, considering
a different aspect which ensures that results might differ depending on the provided
data [18]. The following steps of this method are provided below, based on [44].
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Step 1. First, we calculate the standard deviation of the given decision matrix according to
Equation (2).

σj =

√
∑m

i=1(Xij−Xj)2

m i ∈ {1, 2, . . . , m} j ∈ {1, 2, . . . , n} (2)

Step 2. The standard deviation values are used for the calculation of criteria weights as
shown in Equation (3).

wj =
σj

∑n
j=1 σj

(3)

2.3. Statistical Variance Method

The statistical variance procedure is a method in which objective weights are derived
using mathematical-statistical variance, which describes the spread of variables from
their mean value. This method was chosen because of its strict mathematical approach.
Statistical variance is often used to describe the spread of variables in a data set [45]. Since
this method is well-known, it is supposed to provide weights that are suitable for solving a
considered problem. The following steps of this procedure are given below, based on [46].

Step 1. Initially, the decision matrix needs to be normalized. Several methods are used
to normalize the input data provided in the form of a matrix; for example, the minimum-
maximum method and sum and vector methods [18]. The normalization procedure is
represented by Equation (4),

X∗ij = normalize(Xij) i ∈ {1, 2, . . . , m} j ∈ {1, 2, . . . , n} (4)

where normalize denotes an arbitrary normalization technique.
Step 2. The following step calculates the statistical variance of information, as shown in
Equation (5), based on the normalized matrix obtained in the previous stage.

Vj =

(
1
n

) n

∑
i=1

(
X∗ij − X∗ij

)2
(5)

Step 3. The result of the previous step allows one to calculate the weights of the criteria in
accordance with Equation (6).

wj =
Vj

∑m
i=1 Vj

(6)

2.4. Entropy Method

The main objective of the entropy method is to take into account the measure of
uncertainty in the information formulated using probability theory [47]. This method
was chosen for its vast popularity among decision-makers [48,49]. It is used in numerous
scientific articles even though it is not always appropriate. At first, the entropy method
was glorified in terms of provided information about data. That is why it is still one of the
most used for different problems, including weight determination. Subsequent steps of
this technique are given as follows, on the basis of [50].

Step 1. The first step of this technique includes normalization of the decision matrix to
eliminate differences related to units and scales. Normalization is performed using the
sum method, as displayed in Equation (7).

X∗ij =
Xij

∑m
i=1 Xij

i ∈ {1, 2, . . . , m} j ∈ {1, 2, . . . , n} (7)

where m is the number of alternatives and n represents the number of criteria.
Step 2. The second stage involves calculating the information entropy for every particular
criterion. Equation (8) demonstrates this procedure.
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ej = −
(

∑m
i=1 X∗ij ln

(
X∗ij
))

ln(m)
j ∈ {1, 2, . . . , n} (8)

Step 3. Finally, criteria weights are computed using information entropy according to
Equation (9).

wj =
1−ej

∑n
i=1(1−ej)

j ∈ {1, 2, . . . , n} (9)

2.5. Mean Weighting Method

This method provides equal weights for each criterion [18]. This weighting technique
is considered to be the simplest method. Therefore, its use is recommended for decision
problems in which all criteria are equally important to the decision-maker, and there
is a lack of statistical or empirical evidence to suggest another strategy. Due to its low
complication and easy adoption, this strategy has been applied to develop sustainability
indices, for example, the Human Development Index [51]. Despite the simplicity of this
method, its use has raised some controversy focused on the validity and transparency of
indexes applying this procedure [52].

The equation used to execute this method is provided in Equation (10).

wj =
1
n j ∈ {1, 2, . . . , n} (10)

where n is the number of considered criteria.

2.6. The CRITIC Method

The Criteria Importance Through Inter-criteria Correlation (CRITIC) method is es-
pecially interesting because its analytical approach enables us to utilize all information
included in the criteria under evaluation. Diakoulaki introduced this technique at the
National Technical University of Athens [34]. This method provides a broader view of
the decision matrix, because it takes other criteria into consideration, to provide more
distinctive weights for each of them. That is why, through years, it became popular among
many researchers [53–55]. The CRITIC method provides objective values of weights, taking
into account the intensity of contrast and conflict included in the decision problem. Thus,
the method is applicable in state-of-the-art procedures for measuring the effectiveness of
solutions. The weight values are obtained by quantifying the internal information for each
evaluation criterion. The standard deviations of the criteria and the correlations measured
between the criteria are used in this technique [55,56]. The following steps of this method
are provided as follows [25].

Step 1. At first, for every criterion of the decision matrix, a membership function is defined
that will map the values of the matrix to the interval [0, 1], in the normalization process
given in the following Equation (11), which represents minimum-maximum normalization
for benefit criteria. In this procedure, criteria are not split into profit and cost types:

rij =
xij−xmin

j

xmax
j −xmin

j
i ∈ {1, 2, . . . , m} j ∈ {1, 2, . . . , n} (11)

where m represents the number of evaluated alternatives and n expresses the number of
considered criteria.
Step 2. In the following stage, the correlation between particular criteria in the normalized
matrix is calculated. The result is a symmetric matrix Rjk, with size n× n. The Spearman’s
correlation coefficient is enabled to be used as a general measure. Next, the result vector is
received using the obtained matrix and the calculation of the standard deviation of every
criterion Cj. This step is performed as Equation (12) demonstrates.

Cj = σj

m

∑
k=1

(
1− Rjk

)
(12)
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where Cj is the information quantity included in the j-th criterion, σj means the standard
deviation of the j-th criterion and Rjk represents the correlation coefficient calculated for
j-th and k-th criteria.
Step 3. Finally, criteria weights are calculated using the sum normalization of a previously
computed vector according to Equation (13).

wj =
Cj

∑n
j=1 Cj

(13)

2.7. The CILOS Method

The Criterion Impact Loss Method is another promising objective weighting approach
first introduced by Mirkin in 1976, then further developed in other studies [36,38]. This
method considers each criterion’s significant (impact) loss when other criteria obtain the
optimal largest or smallest value. It was chosen because it showed promising results that
none of the other methods could provide because of its differing approach. The algorithm
of this method is provided below, based on [57].

Step 1. At the beginning, minimized (cost) criteria are transformed into maximizing (profit)
types like are presented in Equation (14).

X̄ij =
mini Xij

Xij
i ∈ {1, 2, . . . , m} j ∈ {1, 2, . . . , n} (14)

Step 2. Next, maximum values are found for each criterion. Based on that, a square matrix
A is formed. Each row of the new matrix corresponds to a row in which given criteria have
the highest value. It means that the maximum values of every criterion will be placed in
the matrix’s main diagonal. With the use of matrix A, the relative loss—P matrix needs to
be constructed, as Equation (15) shows.

Pij =
Aii−Aij

Aii
Pii = 0 i, j ∈ {1, 2, . . . , n} (15)

Step 3. Finally, the matrix F is created with the use of a matrix of the relative loss according
to Equation (16).

F =


−∑m

i=1 Pi1 P12 . . . P1m
P21 −∑m

i=1 Pi2 P2m
· · ·

Pm1 Pm2 · · · −∑m
i=1 Pim

 (16)

Step 4. The final stage includes calculation of weights that are normalized in Equation (17).

FwT = 0 (17)

where w is the weights vector.

2.8. Aggregate Objective Criteria Weights: The IDOCRIW Method

The IDOCRIW method aggregates weights acquired to the procedure of the CILOS
method and the entropy method. This novelty approach attempts to combine methods
with various objectives into new ones that provide a new direction in considering provided
data [38]. This technique allows the limitations of one method to be compensated for by
the advantages of another. Aggregated weights are generated according to Equation (18),
based on [58].

wj =
qjWj

∑m
j=1 qjWj

j ∈ {1, 2, . . . , n} (18)

where qj is result of CILOS and Wj represents Entropy weights.
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3. Methods for Comparative Analysis of Criteria Weighting Techniques

This section introduces the description of methods used for the comparative analysis
of weighting methods which is the main objective of this work. Two of the presented tech-
niques calculate the correlation of raw values, while the other two focus on ranking weights
and compare them in terms of criterion importance provided by the weighting method.

3.1. Pearson Correlation Coefficient

The term correlation refers to the relationship between phenomena, objects or values
defining a particular phenomenon that have a tendency to differ. Pearson’s correlation
coefficient is used to investigate whether there is a linear relationship between the data
for the two variables considered [59]. The Pearson correlation coefficient is used to imple-
ment various indicators in statistics in areas such as data analysis, classification methods,
clustering, decision support systems and the development of particle filters [60]. Pearson’s
correlation coefficient is based on the method of covariance, which means that it measures
the association of two continuous variables X and Y. It is used to determine the correlation
between two continuous variables [61]. It gives information about correlation, which in
this case, helps distinguish differences between weights calculated by different weighting
methods. Moreover, it provides information about the magnitude of association and the
direction of the relationship of given variables. This coefficient was chosen because of its
wide usage as in numerous scientific articles [39,62,63] as it is well known and recognizable
by many people. This coefficient is calculated according to Equation (19). In the equation
presented below, the covariance of X and Y is divided by the product of standard deviations
calculated for these variables [60].

rXY =
cov(X, Y)

σXσY
(19)

3.2. Euclidean Distance

Euclidean distance is a metric used to determine the distance between two points
by calculating the square root of the sum of squares of the differences. This metric is
applied in the distance-based MCDA method algorithm, which is TOPSIS. The calculated
distance is used to determine the preference values of the evaluated alternatives. This tech-
nique is used for calculating the distance between two points XA and XB as Equation (20)
demonstrates [64].

d =

√
n

∑
i=1

(
(xiA − xiB)

2
)

(20)

This method has been selected for comparative analysis performed in this study
as it provides the raw distance between two sets of variables. It helps distinguish the
differences between those sets and check how much the exact value differs from each
other. Euclidean distance has many applications in various fields. This metric is applied to
measure the similarity between data sets using quantum algorithms [65] for face detection
and recognition in combination with Viola-Jones, PCA-LDA [66] and clustering [67] and
for gene identification in combination with PCA (Principal Component Analysis) [68].
When the Euclidean distance between the vectors being compared is smaller, they are
more similar.

3.3. WS Rank Correlation Coefficient

This method is fairly new, as it was introduced in 2020 [42]. The main aim of this coeffi-
cient is to choose values that are closer to the top of the considered ranking. Thus, it ensures
a typical ranking scenario where the three first places are the most significant. Moreover,
it targets differences in the provided rankings depending on which positions changes
were noticed. This coefficient is used in many decision problems, such as evaluating the
convergence of the rankings provided by the MCDA methods, the sensitivity analysis of
the resulting rankings, and the compromise ranking procedure to obtain a reliable solution
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from the results provided by different MCDA methods [10,69]. The described coefficient is
calculated as shown in Equation (21).

WS = 1−
N

∑
i=1

(
2−Rxi ·

∣∣Rxi − Ryi
∣∣

max{|1− Rxi|, |N − Rxi|}

)
(21)

3.4. Weighted Spearman Rank Correlation Coefficient

The last measure selected for performing a comparative analysis of criteria weighting
methods in this study can be described as one of the most used rank correlation coefficients
used nowadays to target multi-criteria decision analysis problems [40,41]. Spearman’s
correlation coefficient was developed to provide a measure of the strength and direction of
correlation between two ranked variables R and Q [19,42]. Its weighted equivalent helps
to ensure that the ranks near the podium are more important than those at the bottom of
the ranking because it is most important in a typical ranking scenario. This coefficient is
computed according to Equation (22).

rw = 1− 6 ∑n
i=1(Ri −Qi)

2((n− Ri + 1) + (n−Qi + 1))
n4 + n3 − n2 − n

(22)

3.5. Methodology of Comparative Analysis of Weighting Methods

This section presents the author’s approach for conducting a comparative analysis
of the effects of the investigated weighting techniques. For the purpose of the analysis,
the authors conducted the experiment by generating new matrices for a varying number of
alternatives and a range of criteria. For each matrix, the criteria weights were calculated
using the seven weighting methods described above. The resulting weights were then
used in four different comparative methods that allow certain aspects of information to be
described through correlation coefficients. The complete analysis was performed in the
Python language. For this particular comparison, tests were carried out, and the results
were obtained according to the chosen specification:

• Number of tests for each size of matrix: 100;
• Number of alternatives: [3, 4, 5, 6, 7];
• Number of criteria: [3, 4, 5, 6, 7];
• Decision matrix size was drawn as a pair of numbers from the Cartesian product;
• Each matrix had randomized values with range (1, 300).

The analysis was performed in two ways. In each way, the results overlapped across
the different correlation methods, so the most representative results were chosen to present
them graphically in charts.

In the first approach, the coefficients were used to highlight the differences between the
weighting methods themselves. This approach ensured that the matrices being compared
were the same size. The values of each criterion were generated for each test, meaning that
there were 100 matrices of the same size but different inputs. The weights for each matrix
were calculated and then compared with other matrices whose number of criteria was the
same. This approach shows which weighting methods can calculate similar weights for the
same input data. A flow chart of this approach is shown in Figure 2.

Pick dimensions of
decision matrix

Generate data for
criteria

Calculate weights
for each criterion

Calculate correlation
coefficient for each pair
of weighting methods

Figure 2. First approach flowchart.

The second approach aimed to investigate how the criteria weights change depending
on the size of the decision matrix. The aim was to create hundreds of matrices of the same
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size, each time with different data. Then the comparison between two weighting methods
was conducted. Finally, the results were displayed in charts showing the correlation of
weights determined for different sizes of tested matrices for careful and insightful analysis.
The described approach is presented in Figure 3.

Generate data for
each size of decision

matrix

Calculate weights for
each decision matrix

Calculate correlation
between matrices

with the same data

Compare correlation
among different sizes

Figure 3. Second approach flowchart presenting steps taken to achieve results for changing alternative
and criteria numbers in different weighting methods.

4. Proposed Framework

The computer system that is the subject of this paper is developed to provide a tool
for easily determining the weights of criteria required in decision problems solved using
MCDA. Moreover, this application provides values of coefficients presented in this paper
and, at the same time, enables comparing results for specific decision matrices given by the
selected methods. Thus, the implemented system containing the described functionalities
completes the gap that was not filled by the applications introduced earlier.

4.1. Similar Systems

This section is devoted to presenting systems that converge to the application pre-
sented in this work. There are many similar systems available. The highest similarity is
that all the systems aim towards MCDA method computations, which leads to the point
that some of them provide criteria weights calculation, but often the implemented methods
are subjective. The systems that provide similar usage are inter alia:

• Diviz;
• Paramount Decisions;
• D-Sight.

A common feature of the systems presented above is that they are more focused on the
MCDA methods used to solve the problem rather than the criteria weighting techniques.
These systems typically provide the option for subjective determination of weights by
the user, who acts as the decision-maker. Thus, the system proposed in this paper, that
provides seven different objective weighting methods, has no significant competitor among
them. This system seems to be helpful and suitable for users attempting to solve a decision
problem with sufficient knowledge of the problem domain. The weights determined by
the objective techniques implemented in this system can be helpful to obtain a satisfactory
and reliable solution to problems in various fields.

4.2. System Development and Implementation

The presented system was implemented in Python language, in a Flask framework.
Its main goal was to develop a system that is easy to navigate and use without any special
knowledge. Complete implementation of the application is available for use at the GitLab
repository (https://vezrix.pythonanywhere.com/ (accessed on 1 August 2021)).

4.3. Flow of Application

The flow of the application is designed in a minimalist style, so it is easy to navigate
on the website. Every functionality provided by this system is reachable with the first look
at the page. In addition, a Stepper mechanism was implemented to show the user the
appropriate steps needed to reach expected results.

Step 1. First, Figure 4 presents an initial screen where the user needs to enter dimensions of
the decision matrix. If a user enters values that are not supported, an appropriate message
is displayed in real-time.

https://vezrix.pythonanywhere.com/
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Figure 4. Application initial screen, where user inserts decision matrix dimensions.

Step 2. Afterward, the page shown in Figure 5 is intended for entering decision matrix
values and the type of each criterion. The values can be entered by hand or imported
from an Excel or .csv file, but the type must be completed by hand. When a file is loaded
correctly, the appropriate message is displayed, which applies to possible errors.

Figure 5. Screen where decision matrix values are entered with related criteria type.

Step 3. Figure 6 presents the next screen, which is for selecting weighting methods. Users
can add them one by one and choose which one should be computed. There is a possibility
of showing results immediately for a given method, which shows the value for each
criterion. After that, an identical screen was designed for choosing comparison methods.
Similarly, the results are shown immediately.
Step 4. The last screen displayed in Figure 7 was created to merge the results of every step
executed by a user. The results are shown in tables on this screen, so it is easier to compare by
viewing them. Comparative methods were shown as correlation matrices to make the results
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easier to read. Users can easily go back to any previous stage using a stepper located in the top
section of the page to choose different methods or change the decision matrix.

Figure 6. Screen where weighting methods are chosen—with mean and CRITIC methods chosen
for example.

Figure 7. Final screen presenting results of weighting methods with weighted Spearman coefficient
chosen for comparison.
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5. Results and Discussion

This section focuses mainly on presenting the results obtained, from which specific
conclusions can then be drawn. In the first stage of analysis, a pairwise comparison of
the correlation between weights provided by different weighting techniques for selected
matrix sizes is presented. The results are displayed in separate box plots for the selected
matrix dimensions and correlation measures tested.

The results obtained by calculating the Euclidean distance shown in Figure 8 for
the size of five alternatives by five criteria show that most methods allow for obtaining
relatively different criterion weights. The comparisons of the entropy and statistical
variance methods, the CRITIC and mean methods, and the standard deviation and mean
methods seem most interesting. The comparisons of these particular methods show that
the results can be slightly correlated, but not in such a significant way that the methods
provide the same results. The most significant similarity is between the entropy method
and the statistical variance method. Even so, it cannot be said that these methods produce
the same weights. The remaining methods do not show sufficient correlation to conclude
even partial similarity.

Figure 8. First approach: Euclidean distance results—5 alternatives × 5 criteria, as example.

Similar to the previous method, Pearson’s coefficient results demonstrate the highest
similarity between the entropy method and the statistical variance method. This is pre-
sented in Figure 9 for the example of five alternatives and six criteria. All other weighting
methods with the usage of this coefficient provided less correlated results. This method
might present results similar to the Euclidean distance as both methods treat weights as
raw values.
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Figure 9. First approach: Pearson’s coefficient results—5 alternatives × 6 criteria, for example.

The results of the weighted Spearman correlation coefficient are shown in Figure 10 for
the size of seven alternatives by seven criteria. For this coefficient, the similarity between
the entropy method and the statistical variance method is less noticeable. This may be
due to the introduction of the weighted aspect of this correlation method. In considering
this observation, the methods may have similar values, but there may be a change in the
position of these values, which may be essential in the final MCDA method and should be
taken into account when choosing a method to solve the problem.

Finally, the WS correlation coefficient presented in Figure 11 presents results for
matrices of six alternatives by seven criteria.

Figure 10. First approach: weighted Spearman’s coefficient results—7 alternatives × 7 criteria,
for example.
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Figure 11. First approach: WS coefficient results—6 alternatives × 7 criteria, for example.

It shows that the entropy and the statistical variance methods are not as similar
as they seem. This method strictly focuses on the position of each value, considering
weights vectors as rankings. It exactly shows that even though those values are similar,
they correspond to different criteria. Given that, the result of the chosen MCDA method
might differ.

In the second approach, box plots show the correlations for the various matrix dimen-
sions studied, for which, weights were determined using selected weighting techniques.
The results were similar in most methods for each correlation coefficient, so only represen-
tative pairs were selected. The most interesting results of the performed analysis compared
with the Pearson coefficient are displayed and discussed below.

As a first case, a comparison of weights determined for different matrix dimensions
using entropy and the standard deviation is presented. The weighting techniques presented
were chosen because of their popularity and frequent use, to determine objective criteria
weights for MCDA methods [70–72]. The results are displayed in Figure 12. It can be
observed that the discrepancies between the two methods are not significant and do not
vary significantly between the matrix dimensions studied. This means that entropy and
standard deviation can be used interchangeably to determine objective criterion weights in
multi-criteria problems.

In the case of the comparison made for entropy and statistical variance, displayed in
Figure 13, a very high convergence of results can be observed; the correlation measures
being practically identical for all the matrix dimensions studied.

The following case, shown in Figure 14, compares the results of two weighting tech-
niques, which are statistical measures: standard deviation and statistical variance. The con-
vergence of the obtained results, in this case, is similar to the comparison of entropy and
standard deviation. Thus, the results obtained in the three experiments presented above
show a high similarity among the entropy, standard deviation and statistical variance
methods applied for criteria weighting for MCDA techniques.
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Figure 12. Second approach: Pearson results—entropy × standard deviation, for example.
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Figure 13. Second approach: Pearson results—entropy × statistical variance as example.

The subsequent three experiments, which demonstrate the comparison of selected
weighting techniques for different matrix dimensions, were performed using IDOCRIW,
CILOS and entropy methods. The motivation for their selection was that the CILOS
method is based on IDOCRIW and entropy. Thus, it is worth investigating which of the
base methods, namely IDOCRIW and entropy, with the results provided by CILOS, will be
more similar.
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Figure 14. Second approach: Pearson results—standard deviation × statistical variance as example.

Figure 15 displays the comparison results for CILOS and IDOCRIW, while Figure 16
shows the comparison of entropy and IDOCRIW. Much more convergent results can be
observed for entropy and IDOCRIW than for CILOS and IDOCRIW. This observation
confirms the significant contribution of entropy to the results provided by IDOCRIW.
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Figure 15. Second approach: Pearson results—CILOS × IDOCRIW, as example.
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Figure 16. Second approach: Pearson results—entropy × IDOCRIW, as example.

Finally, the experiment for entropy and CRITIC is presented. Figure 17 shows the
significant discrepancies between the weights provided by the compared methods. The re-
sults are much less correlated than was observed when comparing entropy with standard
deviation, statistical variance and IDOCRIW. Thus, it is to be expected that the criteria
weights provided by the CRITIC method will have outliers compared to the other weight-
ing techniques.
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Figure 17. Second approach: Pearson results—entropy × CRITIC, as example.

A Real-Life Example of the Application of the Presented Methodology

The final step of the research was to demonstrate the application of the proposed
approach using different weighting techniques on a real-world example. In this illustrative
case, the results of determining the weights of the electric scooter selection criteria using
the weighting techniques provided by the presented system were presented. The mean
weighting technique was excluded from this part of the study because, due to its nature,
it was obvious that the weights it provided would differ from those supplied by other



Symmetry 2021, 13, 1874 18 of 23

methods. The correlations between the weights provided by the different techniques
were then calculated using Pearson’s coefficient. Data including electric scooter parameter
values were obtained from paper [73], focused on evaluating electric scooters using COMET,
which is one of the MCDA methods. The alternatives names and values of the five criteria
for their assessment are provided in Table 1.

Table 1. Alternatives table A1–A17.

Ai Model Price Motor Speed Battery Weight

A1 ENERO Spark 649 150 15 2600 8.5
A2 Skymaster Monster Lemon Squeeze 1429 350 25 5200 8
A3 Kawasaki KX-FS6.5A 1281.40 250 25 4000 10.7
A4 Spokey Venom 1825 350 25 6000 10
A5 Xiaomi MiJia 365 Pro 2299 300 25 12,800 14.2
A6 Ninebot by Segway MAX G30 3499 350 30 15,300 19.1
A7 Blaupunkt ESC910 2499 350 25 10,000 15
A8 Fiat F500-80R 1149 250 25 6000 11
A9 Razor E200 1269 200 19 7000 17
A10 FRUGAL PERFECT 1373 250 25 4400 9.2
A11 ESC808 Blaupunkt 1999 350 25 5200 13.5
A12 SPOKEY FENIKS 1649 350 25 5200 12.5
A13 SPOKEY Ghost 1393.99 300 25 7800 13.5
A14 Motus Scooty 8.5’ 1199 250 25 7800 12.5
A15 FRUGAL PASSION 1869 250 25 7500 12.5
A16 KUGOO M2 PRO 1677 300 30 7500 8.5
A17 SNAKE A9 999 350 30 6000 10

Table 2 displays the values of the criteria weights determined using the compared
weighting techniques.

Table 2. Criteria C1–C5 weights determined with weighting techniques implemented in presented system.

Method C1 C2 C3 C4 C5

Std 0.170627 0.015823 0.000929 0.811829 7.922084 × 10−4

Stat variance 0.042290 0.000364 0.000001 0.957344 9.116287 × 10−7

Entropy 0.321605 0.102881 0.048386 0.391558 1.355704 × 10−1

CRITIC 0.135330 0.255140 0.205814 0.158256 2.454594 × 10−1

CILOS 0.151425 0.334873 0.257289 0.099709 1.567043 × 10−1

IDOCRIW 0.312400 0.221007 0.079861 0.250451 1.362815 × 10−1

The obtained vectors of weights were compared using the Pearson correlation coeffi-
cient. The results are displayed in Figure 18 as a correlation matrix. The highest correlation
was observed between the weights calculated by the statistical variance procedure and
standard deviation method (0.99). High convergences were noted for the entropy method
and the standard deviation method (0.84), IDOCRIW and entropy weighting (0.80) and en-
tropy weighting and statistical variance procedure (0.75). The standard deviation method,
statistical variance procedure and entropy method gave the most similar weight values.
In contrast, CRITIC and CILOS showed the lowest correlation compared to the other
methods. The values of criteria weights provided by these methods had the most out-
liers among the other methods. The results obtained for the real-life example confirm the
conclusions of the experiments performed previously, which showed a high convergence
of weights among entropy, standard deviation, statistical variance and outlier results of
CILOS and CRITIC.
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Std Stat variance Entropy CRITIC CILOS IDOCRIW
Methods

Std

Stat variance

Entropy

CRITIC

CILOS

IDOCRIW

1.00 0.99 0.84 -0.60 -0.66 0.47

0.99 1.00 0.75 -0.48 -0.61 0.34

0.84 0.75 1.00 -0.80 -0.79 0.80

-0.60 -0.48 -0.80 1.00 0.66 -0.61

-0.66 -0.61 -0.79 0.66 1.00 -0.34

0.47 0.34 0.80 -0.61 -0.34 1.00

Correlation: Pearson

Figure 18. Correlation results between the investigated criterion weighting techniques.

Figure 19 displays cumulative column plots showing the weight values for each electric
scooter selection criteria. It can be observed that the standard deviation, statistical variance
and entropy indicated C4 as the most critical criterion. CRITIC and CILOS assigned the
highest weight to C2 and IDOCRIW to C1. The results obtained confirm the diversity of
results of the different weighting techniques and the similarity between standard deviation
and statistical variance, as well as entropy, CRITIC and CILOS.
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Method
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Figure 19. Values of real-life example criteria weights determined using the weighting techniques investigated.

6. Conclusions

Information based systems play a significant role in simplifying many complex proce-
dures. MCDA is one tool that can provide answers to decision problems that may occur
with large amounts of different types of data. Given the growing popularity of using
MCDA methods, it would be helpful to attempt to make them easier to apply. In solving
decision-making problems, it is critical to select appropriate criteria and determine their
relevance. The methods presented in this paper can help prioritize criteria, making it easier
to perform MCDA methods, and obtain the results expected, by the decision-maker even
without expert knowledge of the problem being solved.
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Various weighting techniques differ in their algorithms, so their weights may show
differences for a given decision problem. Weight values for each criterion may vary
depending on the weighting technique used. In such a situation, consideration may be
given to using the information provided by all the weighting techniques used in the chosen
procedure for determining the compromise values. Such a technique may select the method
whose results are closest to the averaged results from all methods.

The performed research shows that this system may serve as a helpful tool in solving
multi-criteria decision-making problems using MCDA, ensuring that there is a need for
such a framework. Furthermore, providing different weighting methods, with the possibil-
ity to compare them for users without specialized knowledge, may increase interest in such
a system. The presented system is fully functional and delivers something not available in
any other framework.

Other methods, not only objective but also subjective or hybrid, can be used in future
directions. Furthermore, it would be good practice to compare the results of objective
methods with expert assessment. Additionally, more comparative methods could be
presented, providing an even broader spectrum of data analysis.
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3. Riaz, M.; Sałabun, W.; Athar Farid, H.M.; Ali, N.; Wątróbski, J. A robust q-rung orthopair fuzzy information aggregation using
Einstein operations with application to sustainable energy planning decision management. Energies 2020, 13, 2155. [CrossRef]
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