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Abstract: An expert may experience difficulties in decision making when evaluating alternatives
through a single assessment value in a hesitant environment. A fuzzy linear regression model (FLRM)
is used for decision-making purposes, but this model is entirely unreasonable in the presence of
hesitant fuzzy information. In order to overcome this issue, in this paper, we define a hesitant fuzzy
linear regression model (HFLRM) to account for multicriteria decision-making (MCDM) problems in
a hesitant environment. The HFLRM provides an alternative approach to statistical regression for
modelling situations where input–output variables are observed as hesitant fuzzy elements (HFEs).
The parameters of HFLRM are symmetric triangular fuzzy numbers (STFNs) estimated through
solving the linear programming (LP) model. An application example is presented to measure the
effectiveness and significance of our proposed methodology by solving a MCDM problem. Moreover,
the results obtained employing HFLRM are compared with the MCDM tool called technique for
order preference by similarity to ideal solution (TOPSIS). Finally, Spearman’s rank correlation test is
used to measure the significance for two sets of ranking.

Keywords: Peters’ model; FLRM; HFS; HFLRM; MCDM

1. Introduction

The fuzzy set theory introduced by Zadeh [1] provides an excellent base to work in
uncertain and ambiguous situations with incomplete information. The fuzzy set theory
has been applied in different research areas to handle uncertainty, such as medical and
life sciences [2,3], management sciences [4,5], social sciences [6], engineering [7], statistics,
artificial intelligence [8], robotics, computer networks, and decision making [8–12]. As an
important extension of fuzzy set theory, Torra [13] introduced a hesitant fuzzy set (HFS)
which allows a set of possible values and takes the degrees of membership it can express
the hesitant information more comprehensively. HFS attracted many researchers in a short
period because of its frequent usage in hesitant situations in real-world problems. Recently,
many researchers have shown great attention to work with the decision-making problems
in the framework of hesitant fuzzy information [14]. For example, Mardani et al. [15]
proposed an extended approach under HFSs for assessing the key challenges of digital
health intervention adoption during the COVID-19 pandemic, Narayanamoorthy et al. [16]
suggested an approach for the site selection of underground hydrogen storage based on
normal wiggly dual HFSs, Dong and Ma [17] developed an enhanced fuzzy time series
model based on hesitant differential fuzzy sets and error learning, and so on.

It is a tedious process to seek out the most straightforward alternative among the
available choices. An outsized number of techniques are being used to facilitate the decision
makers (DMs) for ranking alternatives in decision-making problems. Since 1960, MCDM
has been an active research area, and there are several methods that DMs frequently use
for decision making such as TOPSIS [18], Best Worth Method [19] (and its extension [20]),
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Evaluation based on Distance from the Average Solution [21], and so on. In the current
era, several professionals have employed MCDM methods and strategies to deal with the
problems of the modern age. For example, Wang et al. [22] proposed a three-way decision
method for MCDM problems based on hesitant fuzzy information, and Farhadinia and
Herrera-Viedma [23] proposed several new forms of distance and similarity measures and
an extended TOPSIS method for dealing with MCDM problems in the context of dual HFS.

For several years, regression analysis has been used to determine the relationship
between the output variable (dependent variable) and one or more than one input variable
(independent variables). Traditionally, regression modelling examined crisp data and
relationships; however, we can assume a fuzzy relationship between an output variable
and input variables is more practical if the phenomenon under study is imprecise. Initially,
a possibilistic approach for fuzzy regression analysis was proposed by Tanaka et al. [24].
They introduced a linear system for solving the FLRM. Further, Tanaka [25] improved
the possibilistic approach and introduced fuzzy interval analysis in which possibilistic
linear models were proposed with non-fuzzy inputs and fuzzy outputs. These approaches
were criticized due to having non-interactive possibilistic parameters by Celmins [26]
who described the fuzzy least square method as a fuzzy vector and also illustrated the
least square fitting for fuzzy models when data are available in n-component vectors.
Diamond [27] introduced fuzzy least square models as well as normal equations that are
similar to classical least squares. Tanaka and Watada [28] developed linear programming
using possibilistic measures and estimated the parameters of the FLRM.

To answer the criticism about non-interactive possibilistic parameters, Tanaka and
Ishibuchi [29] presented an identification method for the interactive fuzzy parameters in
which they used quadratic membership functions in the possibilistic linear systems. Sakawa
and Yano [30] developed a group of FLRMs that use indices about the equality of two
fuzzy numbers. Peters [31] elaborated a general form of Tanaka’s approach [24] into fuzzy
intervals with fuzzy linear programming. Kim and Chen [32] presented comprehensive
research between non-parametric linear regression and FLRMs. Yen et al. [33] improved
the fuzzy regression model with symmetric triangular parameters. This approach helped
in reducing inflexibility, which was present in the earlier developed models. Chen [34]
presented a study to handle the outliers in a case when data are available in the form
of non-fuzzy input and fuzzy output with some more constraints so that the effect of
outliers can be reduced. Kocadagli [35] addressed the problem of the h-cut level with a
constrained non-linear programming method and developed effective solutions for fuzzy
regression. Choi and Buckley [36] proposed a fuzzy least absolute approach to estimate
the fuzzy parameters and to examine the performance of fuzzy regression models with
the help of specific error measures. Recently, Cerny and Rada [37] derived a possibilistic
generalization technique for the linear regression model using censored/rounded data.
In decision making for robot selection, Karsak et al. [38] used a FLRM for alternatives
ranking in the robot selection. Several issues concerning fuzzy regression analysis have
been discussed in recent years. For example, Icen and Dermirhan [39] used a Monte
Carlo simulation to the error measurements in the FLRM, Choi et al. [40] determined an
algorithm to address the problem of multicollinearity by combining the approaches of
ridge regression and fuzzy regression model, Chakravarty et al. [41] proposed robust fuzzy
regression functions based on fuzzy k-means clusters against the outliers, Wang et al. [42]
helped in the approximation Bayesian computation of FLRM and used a likelihood-free
function for generating samples from the posterior distribution, Hesamian and Akbari [43]
proposed a fuzzy additive regression model using kernel smoothing for estimating a fuzzy
smooth function, and Boukezzoula and Coquin [44] redefined interval-valued type-1 and
type-2 fuzzy regression models in terms of philosophy and methodology.

From the above literature review, we can see the work performed in the field of fuzzy
regression analysis over the last few decades and how gradually this field has evolved and
is still evolving. We found from the research examined that most of the work has been
performed using FLRM. However, the FLRM does not address the situations where input
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variables and output variables are observed in a hesitant environment. This paper thus
extends the work [31] in a hesitant environment and observes input–output variables as
HFEs. We introduce the concept of HFLRM such that the coefficients of the model are
STFNs. Practically, we have used this model to facilitate an organization in generating
revenue, and several variables (goods and services) are taken into account when calculating
revenue generation. A large organization contains many experts and wishes to utilize
their expertise in their respective fields to come to a more plausible decision. Therefore,
experts may advise different values (between 0 and 1) when analyzing certain variables.
For example, one expert may suggest 0.2, the second may suggest 0.4, and the third 0.5,
which can be represented by an HFE such as 0.2, 0.4, 0.5, which is the basic form of the HFS.
Thus, motivated by HFS, the HFLRM incorporates these HFEs into the regression analysis
and estimates the HFLRM parameters using the LP model. Furthermore, the alternatives
are ranked using the residual values of the proposed HFLRM. To validate the proposed
method, the HFLRM findings are compared to those of the most widely used MCDM
technique, TOPSIS.

This paper is organized as follows: Section 2 defines some preliminary concepts related
to the research work. Section 3 presents the idea of HFLRM and then proposes a decision-
making algorithm with HFLRM in the framework of a hesitant environment. In Section 4,
we present the TOPSIS method and Spearman rank correlation test and some popular
similarity coefficients. An application example using the proposed HFLRM is presented in
Section 5. Results and discussions are provided in Section 6. Finally, concluding remarks
are given in Section 7.

2. Preliminaries

This section introduces the basic knowledge that is necessary to understand the
proposed study.

Torra [13] defined HFS in terms of a function that returns a set of membership values
for each element in the domain as follows:

Definition 1 ([45]). Let Z be a reference set, a HFS A on Z in terms of a function h(z) that
when applied to Z returns a finite subset of [0, 1], which can be represented as the following
mathematical symbol:

A = {〈z, h(z)(z)〉 | z ∈ Z}

where h(z) is a set of some values in [0, 1], denoting the hesitant membership degrees of the element
z ∈ Z to the set A. For convenience, h(z) or simply h, is called a hesitant fuzzy element (HFE).

Example 1. If Z = {z1, z2, z3} is the reference set, h(z1) = {0.4, 0.5, 0.6}, h(z2) = {0.1, 0.2, 0.3}
and h(z3) = {0.7, 0.8} are the possible membership degrees of zi(i = 1, 2, 3) to a set A, respectively.
Then the HFS A can be represented as follows:

A = {〈z1, {0.4, 0.5, 0.6}〉, 〈z2, {0.1, 0.2, 0.3}〉, 〈z3, {0.7, 0.8}〉}.

Definition 2 ([46]). Let h be a HFE as mentioned above. The score function of h can be defined as:

Sc(h) =
1

#(h) ∑
γ∈h

γ

For two HFEs h1 and h2, if Sc(h1) > Sc(h2), then h2 ≺ h1, if Sc(h1) = Sc(h2), then
h1 ≈ h2.
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Definition 3 ([47]). Let h, h1, and h2 be three HFEs, then the following operational laws always
hold for λ > 0.

1. hλ = ∪γ∈h
{

γλ
}

;
2. λh = ∪γ∈h

{
1− (1− γ)λ

}
;

3. h1 ⊗ h2 = ∪γ1∈h1 ,γ2∈h2
{γ1 γ2};

4. h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2{γ1 + γ2 − γ1 γ2}.

Definition 4 ([48]). The membership function for a fuzzy number, Fn is as follows:

µFn
(z) =

 Lt
(

m−z
cLt

)
, z ≤ m, cLt ≥ 0

Rt
(

z−m
cRt

)
, z ≥ m, cRt ≥ 0

where z ∈ R, Lt and Rt are left and right reference functions of the membership function,
respectively. The cLt and cRt are the left and right spreads, respectively, and m is the mode of the
fuzzy number. The distance from the left end-point to the mode and the distance from mode to the
right end-point is represented by cLt and cRt, respectively. A special form of Lt and Rt type fuzzy
number is known as the triangular fuzzy number (TFN) when its membership function has the
following form.

Definition 5 ([48]). The TFN denoted by (a, m, b) can be defined as:

µt(z; a, m, b) =


1− m−z

m−a , a ≤ z ≤ m,
1− z−m

b−m , m < z ≤ b,
0, elsewhere.

Moreover, if cLt = cRt then the TFN is known as a symmetrical triangular fuzzy
number (STFN). Some particular fuzzy arithmetic that is used in this study is described
as follows:

Definition 6 ([48]). Suppose, Fn1 = (a1, m1, b1) and Fn2 = (a2, m2, b2) are two TFNs; addition,
subtraction, and scalar multiplication of TFNs are defined as:

Fn1 + Fn2 = (a1 + a2, m1 + m2, b1 + b2)

Fn1 − Fn2 = (a1 − a2, m1 −m2, b1 − b2)

sFn1 = (sa1, sm1, sb1), s ≥ 0

3. Decision Making Based on Hesitant Fuzzy Linear Regression Model

In this section, we define the concept of HFLRM from the statistical point of view on
the basis of hesitant fuzzy information. However, before this, it is necessary to provide a
brief review of existing regression models which are available in the literature.

3.1. Linear Regression Model

A multiple linear regression model with output variable Yi(i = 1, 2, 3, . . . , M) and the
input variables X1 , . . . , XN is defined as

Yi = A0 + A1Xi1 + A2Xi2 + A3Xi3 + .................. + AN XiN + εi,

where parameters A0, A1, . . . , AN are crisp numbers, and εi is the random error of the
model. In the linear regression model, errors are assumed normally distributed with zero
mean and constant variance.
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3.2. Fuzzy Linear Regression Model

Tanaka et al. [24] proposed FLRM, which measures the relationship between the
variables where the relationship among the variables is vague and regression residuals (the
difference between observed and predicted values) are assumed to be due to the imprecise
nature of the system. The FLRM model is defined as:

Ŷi = Ã0 + Ã1Xi1 + Ã2Xi2 + Ã3Xi3 + .................. + ÃN XiN ,

where fuzzy parameters Ãj = (αj, cj) are STFNs, and αj and cj represent center and spread
of STFNs, respectively. The FLRM addresses the problem of the determination of fuzzy
parameter estimates Ãj such that the membership value of Yi to its fuzzy estimate Ŷi is
at least H, where H ∈ [0, 1), also known as a measure of the goodness-of-fit, is provided
by the decision maker [49]. The objective of the FLRM is to minimize the uncertainty
by minimizing the spreads of the fuzzy numbers. This problem leads to following LP
model [28]:

min
N

∑
j=0

(
cj

M

∑
i=0

∣∣xij
∣∣)

subject to the constraints

N
∑

j=0
αjxij +

∣∣L−1(H)
∣∣ N

∑
j=0

cj
∣∣xij
∣∣ ≥ yi,

N
∑

j=0
αjxij −

∣∣L−1(H)
∣∣ N

∑
j=0

cj
∣∣xij
∣∣ ≤ yi,

xi0 = 1, cj ≥ 0

where L is the membership function of a standardized fuzzy parameter [38].
Peters [31] modified Tanak’s model by compensating good and bad data (outliers)

within estimated intervals as it was not able to handle bad data. Peters [31] introduced a
new variable λ (a membership degree which conforms to a set of good solutions) and used
arithmetic mean [50] as the aggregation operator. It is defined as:

max λ =
1
M

M

∑
i=1

λi

subject to the constraints

(
1− λ

)
p0 −

M
∑

i=0

N
∑

j=0
cj
∣∣xij
∣∣ ≥ −d0,

(1− λi)pi +
N
∑

j=0
αjxij +

N
∑

j=0
cj
∣∣xij
∣∣ ≥ yi,

(1− λi)pi −
N
∑

j=0
αjxij +

N
∑

j=0
cj
∣∣xij
∣∣ ≥ −yi,∣∣L−1(H)

∣∣ = 1, 0 ≤ λi ≤ 1, xi0 = 1, cj ≥ 0,

The width of the estimated interval depends on the selection of the parameters
d0, p0 , pi which are chosen according to the nature of problem. The parameter pi represents
the width of the tolerance interval of the output variable. A permissive condition for spread
minimization leads in a wide interval, i.e., a large value of p0 and a small value of pi . On
the other hand, strict conditions for minimizing the spread results in a small interval, i.e.,
a small p0 and a large pi . The parameter d0 represents the desired value of an objective
function. Since the purpose of FLRM is to minimize the total spread, it is suggested that
parameter d0 is selected as 0 (Peters [31]).
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3.3. Hesitant Fuzzy Linear Regression Model

Motivated by Peters’ model [31], we propose the concept of HFLRM which can be
used further in solving the decision-making problems. We will take the output variable
Yi (i = 1, 2, . . . , M) and the input variables Xj (j = 0, 1, 2, . . . , N) as HFEs. The HFLRM is
defined as:

Yi = β̃0 � X0 ⊕ β̃1 � X1 ⊕ β̃2 � X2 ⊕ β̃3 � X3 ⊕ ..................⊕ β̃N � XN

where, Yi = {yk
i |1 < i < M, 1 < k < P} and Xj = {xk

ij|1 < i < M, 0 < j < N, 1 < k < P}.

The parameters β̃ j =
(

αk
j , ck

j

)
, 0 < j < N and 1 < k < P are STFNs which are estimated

with the help of the following LP model:

max λk =
1
M

M

∑
i=1

λk
i

subject to the constraints(
1− λk

)
p0 +

M
∑

i=1

N
∑

j=0
ck

j

∣∣∣xk
ij

∣∣∣ ≥ −d0,(
1− λk

i

)
pi +

N
∑

j=0
αk

j xk
ij +

N
∑

j=0
ck

j

∣∣∣xk
ij

∣∣∣ ≥ yk
i ,(

1− λk
i

)
pi −

N
∑

j=0
αk

j xk
ij +

N
∑

j=0
ck

j

∣∣∣xk
ij

∣∣∣ ≥ −yk
i ,

λk
i ≤ 1, xk

i0 = 1, ck
j ≥ 0.

where k determines several values assigned by P DMs for the output variable Yi and input
variables Xj.

3.4. Decision-Making Algorithm Based on HFLRM

Assume that A = {A1, A2, . . . , AM} is a set of alternatives and D = {dl , 1 < l < P}
is a set of DMs who provide their evaluations in the form of HFEs about alternatives Ai
under some input variables Xj (j = 0, 1, 2, . . . , N) and output variable Yi (i = 1, 2, . . . , M).
Let H1 = [Xij]M×N be an input variable decision matrix, and H2 = [Yi]M×1 be an output
variable decision matrix, where Xij = {xk

ij, k = 1, 2, . . . , #(Xij)} and Yi = {yk
i , k =

1, 2, . . . , #(Yi)} are HFEs.

Step 1. Let H = [Zij]M×(N+1) be a connected input–output variable decision matrix pro-
vided by the DMs, where Zij = {zk

ij, k = 1, 2, ..., #(Zij)} are HFEs.

Step 2. For two finite HFEs, h1 and h2, there are two opposite principles for normalization.
The first one is α-normalization in which we remove some elements of h1 and h2
which have more elements than the others. The second one is β-normalization
in which we add some elements to h1 and h2 which have fewer elements than
the other. In this paper, we use the principle of β-normalization [51] to make all
HFEs equal in the matrix H. Let H̄ = [Z̄ij]M×(N+1) be the normalized matrix where
Z̄ij = {z̄k

ij, k = 1, 2, . . . , P} are HFEs.

Step 3. Again normalize the matrix H̄ by using the following equation:

Ẑij =
z̄k

ij −min(Z̄ij)

max(Z̄ij)−min(Z̄ij)

Let Ĥ = [Ẑij]M×(N+1) be a normalized decision matrix where Ẑij = {ẑk
ij, k =

1, 2, . . . , P} are HFEs.
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Step 4. By estimating the parameters with the help of a linear programming model, the
HFLRM is obtained using the normalized decision matrix Ĥ.

Step 5. Rank the alternatives using residual values obtained from the score values of
Yi(i = 1, 2, . . . , M) and Y∗i (i = 1, 2, . . . , M), i.e., ei = Sc(Yi)− Sc(Y∗i ), where Y∗i are
predicted values which are calculated by using Definitions 2, 3 and 6.

Step 6. Finally, the alternatives are ranked according to the values of ei(i = 1, 2, . . . , M).
The alternative with the least residual is identified as the best choice.

A multiple linear regression model (Section 3.1) is a very effective and reliable tech-
nique for determining the effect of one or more input variables on an output variable.
It is the most extensively used statistical technique and has a wide variety of practical
applications. It is based on precise data and a precise relationship between the output vari-
ables and input variables. However, despite the widespread use of the model (Section 3.1)
in everyday activities, there exists uncertainty in variables. In real life, there are several
situations in which data are not provided as a precise quantity but rather as incomplete,
ambiguous, linguistically imperfect, and imprecise. The FLRM (Section 3.2) was introduced
to deal with such uncertainty and ambiguity. Recently, many researchers have presented
statistical regression analysis in the framework of fuzzy set theory. The HFS is an extension
of fuzzy set theory that has drawn the attention of many researchers in a short period
because we can observe hesitation in a variety of real-world scenarios, and this novel tech-
nique helps us deal with the ambiguity caused by hesitation. This is why we have extended
the idea of FLRM (Section 3.2) to HFLRM (Section 3.3) where input–output variables are
observed as HFEs, which is a basic form of HFS.

4. The TOPSIS Method under Hesitant Environment

Hwang and Yoon [18] developed an MCDM technique, TOPSIS, which is based on
the belief that the alternative solution that is selected (solution) should have the shortest
distance to the ideal solution (alternative) and the farthest distance from the negative ideal
solution for all the available alternatives [52]. When criteria values are HFEs then the
mathematical formulation of the TOPSIS method will be as follows:

Step 1. Take the decision matrices H and H̄, the same as mentioned in Steps 1 and 2 of
Section 3.4.

Step 2. Normalize the decision matrix H̄ with the help of the following formula:

Ẑij =
z̄k

ij

∑

(
z̄k

ij

)2

Let Ĥ = [Ẑij]M×(N+1) be the normalized decision matrix where, Ẑij = {ẑk
ij, k =

1, 2, . . . , P} are HFEs.
Step 3. Weighted normalized decision matrix is calculated by multiplying the normalized

decision matrix with its associated weights, i.e., Vij = Ẑij ×Wj.
Step 4. Determine the positive ideal solution A+ and negative ideal solution A−

A+ = {(max
i

Vij|j ∈ Jb), (min
i

Vij|j ∈ Jc|i = 1, 2, . . . , N)}

= {A+
1 , A+

2 , . . . , A+
J , . . . , A(N+1)}

A− = {(max
i

Vij|j ∈ Jb), (min
i

Vij|j ∈ Jc|i = 1, 2, . . . , N)}

= {A−1 , A−2 , . . . , A−J , . . . , A−
(N+1)−

}

where Jb and Jc represent the set of benefit and cost criteria, respectively.
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Step 5. Calculate the Euclidean distance of each alternative Ai from the positive ideal
solution A+ and negative ideal solution A− , respectively.

D+
i =

√√√√N+1

∑
j=1

(
Vij − A+

j

)2

D−i =

√√√√N+1

∑
j=1

(
Vij − A−j

)2
where i = 1, 2, . . . , M .

Step 6. Calculate the relative closeness Pi of each alternative to the ideal solution where

Pi =
D−i

D−i + D+
i

, i = 1, 2, . . . , M.

Step 7. Rank the alternatives Ai(i = 1, 2, . . . , M) according to relative closeness values Pi
in the descending order.

Spearman’s Rank Correlation Coefficient

Spearman’s rank correlation is a method for analyzing the relationship between
ordinal measurement level variables. It is high when observations have a similar rank and
low when observations have a different rank between the two sets of values. Spearman’s
rank correlation coefficient, rs, is defined as follows:

rs = 1− 6 ∑ d2

M2(M− 1)

where di = Ri1 − Ri2 is the ranking difference while Ri1and Ri2 indicate the two sets of
ranking. The rank correlation coefficient ranges from +1 to −1.The rs = ±1 indicates a
perfect positive (rs = +1) and perfect negative (rs = −1) relationship between the two
sets of ranking.

We often want to know whether or not a significant relationship exists between two
sets of ranking. Therefore, we state the null hypothesis (H0) and alternative hypothesis
(H1) as:

H0 : There is no significant relationship between the two sets of ranking.
H1 : There is a significant relationship between the two sets of ranking.
The null hypothesis is evaluated using the following test statistic provided that the

sample size is not too small, i.e., M > 10.

Zc = rs
√

M− 1

If the Zc statistic value exceeds the critical value Zα(usually, α = 0.05), then the null
hypothesis is rejected, and we conclude that there is a significant relationship between the
two sets of ranking.

5. An Application Example

Revenue is essential for nearly every structure of organization. Any organization
must generate revenue in order to cover the gross and net operating costs. The owner of
a well-known business chain wants to determine which outlet made the most revenue
throughout the month of holy Ramadan. The revenue generated by a store is determined
by the sale of goods (X1), production expenditures (X2), operational costs (X3), and the
profit margin (Y). In this study, 20 store outlets Ai (i = 1, 2, . . . , 20) are given in the form of
alternatives. These alternatives are evaluated by the output variable Yi (i = 1, 2, . . . , 20) and
input variables Xj+1 (j = 0, 1, 2). Three experts/DMs from senior management have made
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their judgements on the input and output variables. The solution to the given problem
comprises the following steps:

Step 1. The connected input–output variable decision matrix provided by the DMs by
using HFEs is shown in Table 1.

Step 2. To make all HFEs equal in the decision matrix H, we use the principle of β-
normalization and obtained matrix H̄ which can be seen in Table 2.

Table 1. Decision matrix H.

Ai Y X1 X2 X3

A1 {15, 15.5, 16} {85, 86, 87} {63, 63.5, 64} {18, 18.5, 19}
A2 {16, 16.5, 17} {90, 91, 92} {62, 62.5, 63} {17, 17.5, 18}
A3 {18, 18.5} {94, 95, 96} {61, 61.5} {16, 16.5, 17}
A4 {16, 16.5} {90, 91} {62, 62.5, 63} {17, 17.5, 18}
A5 {17, 17.5, 18} {91, 92, 93} {61, 61.5, 62} {16, 16.5, 17}
A6 {18, 18.5, 19} {96, 97} {61, 61.5, 62} {15, 15.5, 16}
A7 {16, 16.5, 17} {88, 89, 90} {62, 62.5, 63} {16, 16.5, 17.0}
A8 {17, 17.5, 18} {92, 93, 94} {62, 62.5, 63} {16, 16.5, 17}
A9 {18, 18.5, 19} {97, 98, 98} {60, 60.5, 61} {16, 16.5, 17}
A10 {15, 15.5, 16} {86, 87, 88} {63, 63.5, 64} {18, 18, 18.5}
A11 {18, 18} {95, 96} {61, 61.5, 62} {16, 16.5, 16.5}
A12 {15, 15.5, 16} {85, 86} {63, 63.5, 64} {18, 18.5, 19}
A13 {17, 17.5, 18} {93, 94, 95} {60, 61.5, 62} {16, 16.5, 17}
A14 {16, 16.5, 17} {90, 91, 92} {62, 62.5, 63} {17, 17.5, 18}
A15 {18, 18.5, 19} {97, 97, 98} {60, 60.5, 61} {15, 15.5, 16}
A16 {15, 15.5, 16} {87, 88, 89} {63, 63.5, 64} {18, 18.5, 19}
A17 {17, 17.5, 18} {92, 93, 94} {61, 61.5, 62} {17}
A18 {18, 18.5, 19} {96, 97} {60, 61.5, 62} {16, 16.5, 17}
A19 {15, 15.5, 16} {86, 87, 88} {63, 63.5, 64} {18, 18.5, 19}
A20 {15, 15.5, 16} {88, 89, 90} {63} {18, 18.5, 19}

Table 2. Decision matrix H̄ after β-normalization.

Ai Y X1 X2 X3

A1 {15, 15.5, 16} {85, 86, 87} {63, 63.5, 64} {18, 18.5, 19}
A2 {16, 16.5, 17} {90, 91, 92} {62, 62.5, 63} {17, 17.5, 18}
A3 {18, 18.5, 18.5} {94, 95, 96} {61, 61.5, 61.5} {16, 16.5, 17}
A4 {16, 16.5, 16.5} {90, 91, 91} {62, 62.5, 63} {17, 17.5, 18}
A5 {17, 17.5, 18} {91, 92, 93} {61, 61.5, 62} {16, 16.5, 17}
A6 {18, 18.5, 19} {96, 97, 97} {61, 61.5, 62} {15, 15.5, 16}
A7 {16, 16.5, 17} {88, 89, 90} {62, 62.5, 63} {16, 16.5, 17.0}
A8 {17, 17.5, 18} {92, 93, 94} {62, 62.5, 63} {16, 16.5, 17}
A9 {18, 18.5, 19} {97, 98, 98} {60, 60.5, 61} {16, 16.5, 17}
A10 {15, 15.5, 16} {86, 87, 88} {63, 63.5, 64} {18, 18, 18.5}
A11 {18, 18, 18.5} {95, 96, 96} {61, 61.5, 62} {16, 16.5, 16.5}
A12 {15, 15.5, 16} {85, 86, 86} {63, 63.5, 64} {18, 18.5, 19}
A13 {17, 17.5, 18} {93, 94, 95} {60, 61.5, 62} {16, 16.5, 17}
A14 {16, 16.5, 17} {90, 91, 92} {62, 62.5, 63} {17, 17.5, 18}
A15 {18, 18.5, 19} {97, 97, 98} {60, 60.5, 61} {15, 15.5, 16}
A16 {15, 15.5, 16} {87, 88, 89} {63, 63.5, 64} {18, 18.5, 19}
A17 {17, 17.5, 18} {92, 93, 94} {61, 61.5, 62} {17, 17, 17}
A18 {18, 18.5, 19} {96, 97, 97} {60, 61.5, 62} {16, 16.5, 17}
A19 {15, 15.5, 16} {86, 87, 88} {63, 63.5, 64} {18, 18.5, 19}
A20 {15, 15.5, 16} {88, 89, 90} {63, 63, 63} {18, 18.5, 19}
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Step 3. We further normalize the data of matrix H̄ to make all of its elements lie between 0
and 1 for a common scale. The normalized decision matrix Ĥ is shown in Table 3.

Step 4. Now, we estimate the parameters using the LP model by taking d0 = 0, p0 = 1000
and pi = 1, which is formulated as follows:
For k = 1

Maxλ1 =

M
∑

i=1
λ1

i

M
Subject to the constraints(

λ1
1 + λ1

2 + ........... + λ1
20

)
+

20
1000

(
20c1

0 + 18.2893c1
1 + 11.2411c1

2 + 0.409c1
3

)
≤ 20

and
λ1

1 −
(
α1

0 + 0.8434α1
1 + 0.5783α1

2 + 0.0361α1
3
)
−(

c1
0 + 0.8434c1

1 + 0.5783c1
2 + 0.0361c1

3
)
≤ 0

λ1
2 −

(
α1

0 + 0.9036α1
1 + 0.5663α1

2 + 0.0241α1
3
)
−(

c1
0 + 0.9036c1

1 + 0.5663c1
2 + 0.0241c1

3
)
≤ 0.988

λ1
3 −

(
α1

0 + 0.9518α1
1 + 0.5542α1

2 + 0.0120α1
3
)
−(

c1
0 + 0.9518c1

1 + 0.5542c1
2 + 0.0120c1

3
)
≤ 0.9639

...
λ1

20 −
(
α1

0 + 0.8795α1
1 + 0.5783α1

2 + 0.0361α1
3
)
−(

c1
0 + 0.8795c1

1 + 0.5783c1
2 + 0.0361c1

3
)
≤ 0

λ1
1 +

(
α1

0 + 0.8434α1
1 + 0.5783α1

2 + 0.0361α1
3
)
−
(
c1

0 + 0.8434c1
1 + 0.5783c1

2 + 0.0361c1
3
)
≤ 1

λ1
2 +

(
α1

0 + 0.9036α1
1 + 0.5663α1

2 + 0.0241α1
3
)
−
(
c1

0 + 0.9036c1
1 + 0.5663c1

2 + 0.0241c1
3
)
≤ 1.012

λ1
3 +

(
α1

0 + 0.9518α1
1 + 0.5542α1

2 + 0.0120α1
3
)
−
(
c1

0 + 0.9518c1
1 + 0.5542c1

2 + 0.0120c1
3
)
≤ 1.0361

...
λ1

20 +
(
α1

0 + 0.8795α1
1 + 0.5783α1

2 + 0.0361α1
3
)
−
(
c1

0 + 0.8795c1
1 + 0.5783c1

2 + 0.0361c1
3
)
≤ 1

Table 3. Normalized decision matrix Ĥ.

Ai Y X1 X2 X3

A1 {0.0000, 0.0060, 0.0120} {0.8434, 0.8554, 0.8675} {0.5783, 0.5843, 0.5904} {0.0361, 0.0422, 0.0482}
A2 {0.0120, 0.0181, 0.0241} {0.9036, 0.9157, 0.9277} {0.5663, 0.5723, 0.5783} {0.0241, 0.0301, 0.0361}
A3 {0.0361, 0.0422, 0.0422} {0.9518, 0.9639, 0.9759} {0.5542, 0.5602, 0.5602} {0.0120, 0.0181, 0.0241}
A4 {0.0120, 0.0181, 0.0181} {0.9036, 0.9036, 0.9157} {0.5663, 0.5723, 0.5783} {0.0241, 0.0301, 0.0361}
A5 {0.0241, 0.0301, 0.0361} {0.9157, 0.9277, 0.9398} {0.5542, 0.5602, 0.5663} {0.0120, 0.0181, 0.0241}
A6 {0.0361, 0.0422, 0.0482} {0.9759, 0.9880, 0.9880} {0.5542, 0.5602, 0.5663} {0.0000, 0.0060, 0.0120}
A7 {0.0120, 0.0181, 0.0241} {0.8795, 0.8916, 0.9036} {0.5663, 0.5723, 0.5783} {0.0120, 0.0181, 0.0241}
A8 {0.0241, 0.0301, 0.0361} {0.9277, 0.9398, 0.9518} {0.5663, 0.5723, 0.5783} {0.0120, 0.0181, 0.0241}
A9 {0.0361, 0.0422, 0.0482} {0.9880, 1.0000, 1.0000} {0.5422, 0.5482, 0.5542} {0.0120, 0.0181, 0.0241}
A10 {0.0000, 0.0060, 0.0120} {0.8554, 0.8675, 0.8795} {0.5783, 0.5843, 0.5904} {0.0361, 0.0361, 0.0422}
A11 {0.0361, 0.0361, 0.0422} {0.9639, 0.9759, 0.9759} {0.5542, 0.5602, 0.5663} {0.0120, 0.0181, 0.0181}
A12 {0.0000, 0.0060, 0.0120} {0.8434, 0.8554, 0.8554} {0.5783, 0.5843, 0.5904} {0.0361, 0.0422, 0.0482}
A13 {0.0241, 0.0301, 0.0361} {0.9398, 0.9518, 0.9639} {0.5422, 0.5602, 0.5663} {0.0120, 0.0181, 0.0241}
A14 {0.0120, 0.0181, 0.0241} {0.9036, 0.9157, 0.9277} {0.5663, 0.5723, 0.5783} {0.0241, 0.0301, 0.0361}
A15 {0.0361, 0.0422, 0.0482} {0.9880, 0.9880, 1.0000} {0.5422, 0.5482, 0.5542} {0.0000, 0.0060, 0.0120}
A16 {0.0000, 0.0060, 0.0120} {0.8675, 0.8795, 0.8916} {0.5783, 0.5843, 0.5904} {0.0361, 0.0422, 0.0482}
A17 {0.0241, 0.0301, 0.0361} {0.9277, 0.9398, 0.9518} {0.5542, 0.5602, 0.5663} {0.0241, 0.0241, 0.0241}
A18 {0.0361, 0.0422, 0.0482} {0.9759, 0.9880, 0.9880} {0.5422, 0.5602, 0.5663} {0.0120, 0.0181, 0.0241}
A19 {0.0000, 0.0060, 0.0120} {0.8554, 0.8675, 0.8795} {0.5783, 0.5843, 0.5904} {0.0361, 0.0422, 0.0482}
A20 {0.0000, 0.0060, 0.0120} {0.87950.89160.9036} {0.5783, 0.5783, 0.5783} {0.0361, 0.0422, 0.0482}
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After solving the LP model as mentioned above, we get the values of λ1
i (i = 1, 2, . . . , 20),

α1
j (j = 1, 2, 3, 4), and c1

j (j = 1, 2, 3, 4) for k = 1, which are shown in Table 4. In the same
way, we can also obtain the results for k = 2 and k = 3 which are given in the same table.

Table 4. Results of HFLRM.

k = 1 k = 2 k = 3

λ1
1 = 1.0000 λ2

1 = 1.0000 λ3
1 = 1.0000

λ1
2 = 1.0000 λ2

2 = 1.0000 λ3
2 = 1.0000

λ1
3 = 0.9981 λ2

3 = 0.9985 λ3
3 = 0.9975

λ1
4 = 1.0000 λ2

4 = 1.0000 λ3
4 = 1.0000

λ1
5 = 1.0000 λ2

5 = 1.0000 λ2
5 = 1.0000

λ1
6 = 1.0000 λ2

6 = 1.0000 λ2
6 = 1.0000

λ1
7 = 1.0000 λ2

7 = 1.0000 λ2
7 = 1.0000

λ1
8 = 0.9997 λ2

8 = 0.9999 λ3
8 = 1.0000

λ1
9 = 1.0000 λ2

9 = 1.0000 λ3
9 = 1.0000

λ1
10 = 1.0000 λ2

10 = 1.0000 λ3
10 = 1.0000

λ1
11 = 1.0000 λ2

11 = 1.0000 λ3
11 = 1.0000

λ1
12 = 1.0000 λ2

12 = 1.0000 λ3
12 = 1.0000

λ1
13 = 1.0000 λ2

13 = 1.0000 λ3
13 = 1.0000

λ1
14 = 1.0000 λ2

14 = 1.0000 λ3
14 = 1.0000

λ1
15 = 1.0000 λ2

15 = 1.0000 λ3
15 = 1.0000

λ1
16 = 1.0000 λ2

16 = 1.0000 λ3
16 = 1.0000

λ1
17 = 1.0000 λ2

17 = 1.0000 λ3
17 = 1.0000

λ1
18 = 1.0000 λ2

18 = 0.9964 λ3
18 = 0.9957

λ1
19 = 1.0000 λ2

19 = 1.0000 λ3
19 = 1.0000

λ1
20 = 1.0000 λ2

20 = 1.0000 λ3
20 = 1.0000

α1
0 = −0.05474 α2

0 = −0.35570 α3
0 = −0.2978

α1
1 = 0.1548 α2

1 = 0.2530 α3
1 = 0.2301

α1
2 = −0.1049 α2

2 = 0.28330 α3
2 = 0.2282

α1
3 = −0.4456 α2

3 = −0.5682 α3
3 = −0.6463

c1
0 = 0.0000 c2

0 = 0.0000 c3
0 = 0.0006209

c1
1 = 0.005296 c2

1 = 0.004056 c3
1 = 0.0000

c1
2 = 0.0000 c2

2 = 0.0000 c3
2 = 0.0000

c1
3 = 0.108200 c2

3 = 0.004408 c3
3 = 0.1822

We can see in Table 4 that the estimated values λk
i obtained through solving a LP

model are either equal to 1 or very close to 1. It indicates that there is no outlier present in
the given data. Now, the fuzzy linear regression models for k = 1, 2, 3 are given as follows:

y1 = (−0.05474, 0) + (0.1548, 0.005296)x1
1 + (−0.1049, 0)x1

2 + (−0.4456, 0.108200)x1
3

y2 = (−0.35570, 0) + (0.2530, 0.004056)x2
1 + (0.001166, 0)x2

2 + (−0.5682, 0.004408)x2
3

y3 = (−0.2978, 0.0006209) + (0.2301, 0)x3
1 + (0.2282, 2.5294e−12)x3

2 + (−0.6463, 0.1822)x3
3

Finally, the resultant estimated HFLRM in this case is given as

Y∗ = (−0.2360, 0.0002070)⊕ (0.2126, 0.003117)� X1 ⊕ (0.1355, 8.4316e−13)� X2

⊕ (−0.5534, 0.09827)� X3.

Step 5 and 6. Now, we will find the estimated values of all the alternatives in the form of
HFEs with the help of HFLRM Y∗. For the sake of paper length, we omit
the calculation of the estimated values of all alternatives and keep ourselves
fixed to calculate the estimated value of the first alternative A1 only. By
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using Definitions 3 and 6, the HFE Y∗1 corresponding to first alternative A1 is
computed as follows:
Y∗1 = {0.2437, 0.2564, 0.2701, 0.2452, 0.2579, 0.2715, 0.2467, 0.2594, 0.2730,

0.2412, 0.2539, 0.2677, 0.2427, 0.2554, 0.2691, 0.2442, 0.2569, 0.2705, 0.2387,
0.2515, 0.2652, 0.2401, 0.2529, 0.2667, 0.2417, 0.2544, 0.2681}
The score value of Y∗1 is then calculated by using Definition 2 which is

Sc(Y∗1 ) = 0.2557. Similarly, we can find the score values of all Y∗i (i = 2, . . . , 20)
which can be seen in Table 5. Finally, the alternatives are ranked with
the help of residual values ei = Sc(Yi) − Sc(Y∗i ), i = 1, 2, . . . , 20, where
Sc(Yi)(i = 1, 2, . . . , 20) are score values of HFEs corresponding to all alterna-
tives in Table 1. The final ranking order of alternatives is shown in Table 5.
We can see outlet 9 has the smallest residual value, i.e., e9 = −0.8119 while
outlet 12 has the largest residual value, i.e., e12 = −0.2452. Therefore, A9 is
considered the best alternative and the worst alternative is A12.

Table 5. Ranking with HFLRM (RHFLR).

Ai Sc(Yi) Sc(Y∗
i ) ei RHFLR

A1 0.00600 0.2557 −0.2497 19
A2 0.01807 0.3386 −0.3206 11
A3 0.04017 0.4519 −0.4117 6
A4 0.01397 0.3252 −0.3112 13
A5 0.03010 0.3621 −0.3320 10
A6 0.04217 0.5426 −0.5005 3
A7 0.01807 0.3066 −0.2886 15
A8 0.03010 0.3891 −0.3589 8
A9 0.04217 0.8541 −0.8119 1
A10 0.00600 0.2710 −0.2650 17
A11 0.04013 0.4796 −0.4395 5
A12 0.00600 0.2512 −0.2452 20
A13 0.03010 0.4153 −0.3852 7
A14 0.01807 0.3387 −0.3205 12
A15 0.04217 0.7101 −0.6679 2
A16 0.00600 0.2841 −0.2781 16
A17 0.03010 0.3847 −0.3546 9
A18 0.04217 0.5400 −0.4978 4
A19 0.00600 0.2694 −0.2634 18
A20 0.00600 0.2987 −0.2927 14

6. Results and Discussion

To check the validity and feasibility of our proposed approach, a MCDM tool called
the TOPSIS method is applied to solve the same problem and we compare the results of
the proposed approach with the results obtained in the TOPSIS method. Among the four
criteria, we take the sale of goods (X1) and the profit margin (Y) as benefit criteria, while
production expenditures (X2) and operational costs (X3) are considered cost criteria. After
normalizing the matrix H̄ according to step 2 of the TOPSIS algorithm, the PIS (A+) and
NIS (A−) are as follows:

A+ = {{0.243288, 0.24311, 0.243275}, {0.238388, 0.238494, 0.236583},
{0.217587, 0.217382, 0.217604}, {0.200482, 0.201767, 0.202947}}

A− = {{0.20274, 0.20369, 0.204863}, {0.208896, 0.209291, 0.207614},
{0.228466, 0.228161, 0.228306}, {0.240578, 0.240819, 0.240999}}

Now we calculate the Euclidean distances D+
i and D−i of each alternative Ai from A+

and A− along with its relative closeness Pi to the ideal solution by using Step 5 and Step 6
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of Section 4. The values of D+
i , D−i , Pi and the ranking of alternatives (RTopsis) can be seen

in Table 6.

Table 6. Ranking using the TOPSIS approach (RTopsis).

Ai D+
i D−

i Pi RTopsis

A1 0.10960 0.00241 0.02153 19
A2 0.07117 0.03969 0.35804 12
A3 0.02665 0.08941 0.77038 6
A4 0.07481 0.03654 0.32588 14
A5 0.04054 0.07059 0.63524 9
A6 0.00752 0.10752 0.93462 2
A7 0.06390 0.05286 0.45275 11
A8 0.03969 0.07149 0.64298 8
A9 0.02256 0.09808 0.81300 3
A10 0.10360 0.01085 0.09488 16
A11 0.02413 0.08988 0.78835 5
A12 0.11029 0.00000 0.000002 20
A13 0.03602 0.07464 0.67448 7
A14 0.07116 0.03970 0.35808 13
A15 0.00243 0.10967 0.97829 1
A16 0.10617 0.01001 0.08619 17
A17 0.04698 0.06629 0.58525 10
A18 0.02350 0.09530 0.80217 4
A19 0.10786 0.00593 0.05218 18
A20 0.10414 0.01472 0.12388 15

In Table 6, we can see alternative 15, with the largest value of Pi, is the best alternative,
while alternative 12, with the smallest value of Pi, is generating the lowest revenue among
the stores. Additionally, we have compared the two sets of ranking RHFLR and RTopsis
through a bar chart given in Figure 1.
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Figure 1. Ranking with HFLRM and TOPSIS.

Figure 1 illustrates a visual representation of the alternative ranking approach using
the HFLRM and TOPSIS methods. We can see outlet number 9 is at the top of the list for
generating the most revenue employing HFLRM during the holy month of Ramadan, and
it is also the third best earning outlet according to the TOPSIS technique. Similarly, store
15 generates the second highest revenue when HFLRM is used and the highest revenue
when TOPSIS is used. Likewise, all other outlets have the same ranking or very similar
ranking for both HFLRM and TOPSIS.

Whereas the graphical representation provides a quick summary of the performance
of two ranking sets RHFLR and RTopsis, it is not conclusive. As a result, the Spearman rank
correlation coefficient is calculated to determine the statistical significance of the two sets
of ranking, as shown in Table 7.



Symmetry 2021, 13, 1846 14 of 17

Table 7. Spearman’s rank correlation.

Ai RHFLR RTopsis d d2

A1 19 19 0 0
A2 11 12 −1 1
A3 6 6 0 0
A4 13 14 −1 1
A5 10 9 1 1
A6 3 2 1 1
A7 15 11 4 16
A8 8 8 0 0
A9 1 3 −2 4
A10 17 16 1 1
A11 5 5 0 0
A12 20 20 0 0
A13 7 7 0 0
A14 12 13 −1 1
A15 2 1 1 1
A16 16 17 −1 1
A17 9 10 −1 1
A18 4 4 0 0
A19 18 18 0 0
A20 14 15 −1 1

The Spearman rank correlation coefficient is calculated as rs = 1− 6(30)
7600 = 0.98.

The coefficient rs = 0.98 is close to +1 in Table 8, indicating that there is a very
strong positive correlation between two sets of ranking, RHFLR and RTopsis. In order to
evaluate whether the result is meaningful or merely down to chance, we performed a
test of the null hypothesis that there is no very strong positive relationship between
two sets of ranking, versus the alternative that there is a very strong positive relation-
ship between two sets of ranking at a 5% level of significance. The value of test statistics,
Zc = rs

√
M− 1 = 0.97

√
20− 1 = 4.22 falls within the critical region, Z0.05 = 1.645 (derived

from the statistical table of cumulative normal distribution); therefore, our null hypothesis
would be rejected. We conclude that there is a very strong positive correlation between the
two sets of ranking. In addition, we determined the values of the similarity coefficients of
the two final rankings using rw and WS, which are described more extensively in [53,54].
The value of the weighted Spearman coefficient was 0.9781, and for the weighted similarity,
the value was 0.9258. Thus, both coefficients determine a very strong relationship between
the two final rankings. In addition, the proposed approach has the following advantages
over the TOPSIS method:

1. The HFLRM can identify outliers (i.e., λi) that may be included in the data set; if
these are not identified, it may result in an inaccurate solution. However, the data
presented in the application example of this paper have no outlier.

2. The HFLRM provides results by solving a simple LP model to obtain the ranking for
the decision-making problem which provides results quickly with less computational
time as compared to TOPSIS.

3. In comparison with TOPSIS, the complexity of the proposed methodology does not
increase by inserting more criteria and alternatives to the given MCDM problem.
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Table 8. Interpretation of rs ([55]).

Range (rs) Degree of Association

0.8–1.00 Very strong positive
0.6–0.79 Strong positive
0.4–0.59 Moderate positive
0.2–0.39 Weak positive
0–0.19 Very weak positive

0–(−0.19) Very weak positive
(−0.20)–(−0.39) Weak negative
(−0.40)–(−0.59) Moderate negative
(−0.60)–(−0.79) Strong negative
(−0.80)–(−1.00) Very strong negative

7. Conclusions

This paper provides a multi-criteria decision-making approach for fuzzy linear regres-
sion models that incorporates hesitant information. This concept has not been explored
previously and is a novel alternative to statistical regression in resolving MCDM challenges.
We have implemented our proposed methodology to choose the best store outlet for the
most revenue in a certain month. We have evaluated 20 alternative store outlets nationwide
in the context of four criteria that have a major impact on the revenue generation for a chain
of stores. Similarly, we may include more criteria and alternatives, but computing becomes
more complicated as the number of alternatives or criteria examined increases. Finally,
the suggested methodology’s outcomes are compared to those of a widely used decision-
making technique, TOPSIS. In the future, we will further investigate the applications of
HFLRM in decision making with hesitant fuzzy linguistic term sets and the probabilistic
hesitant fuzzy linguistic sets.
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