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Abstract: Classifying fine-grained categories (e.g., bird species, car, and aircraft types) is a crucial
problem in image understanding and is difficult due to intra-class and inter-class variance. Most
of the existing fine-grained approaches individually utilize various parts and local information
of objects to improve the classification accuracy but neglect the mechanism of the feature fusion
between the object (global) and object’s parts (local) to reinforce fine-grained features. In this paper,
we present a novel framework, namely object–part registration–fusion Net (OR-Net), which considers
the mechanism of registration and fusion between an object (global) and its parts’ (local) features
for fine-grained classification. Our model learns the fine-grained features from the object of global
and local regions and fuses these features with the registration mechanism to reinforce each region’s
characteristics in the feature maps. Precisely, OR-Net consists of: (1) a multi-stream feature extraction
net, which generates features with global and various local regions of objects; (2) a registration–fusion
feature module calculates the dimension and location relationships between global (object) regions
and local (parts) regions to generate the registration information and fuses the local features into
the global features with registration information to generate the fine-grained feature. Experiments
execute symmetric GPU devices with symmetric mini-batch to verify that OR-Net surpasses the
state-of-the-art approaches on CUB-200-2011 (Birds), Stanford-Cars, and Stanford-Aircraft datasets.

Keywords: fine-grained classification; convolutional neural network; registration

1. Introduction

Fine-grained classification is the branch of image classification that focuses on dis-
tinguishing objects in subordinate classes with subtle differences from the base classes. It
has high similarity in the inter-class (such as shape, size, and color) and is diverse in the
intra-class (such as posture, age, sampling angle), making the task difficult.

The deep convolutional neural network (DCNN) is a rising and powerful technique,
which compares to the previously mentioned method; it can automatically extract features
and has promising performance in various areas, such as image classification, speech
recognition, object detection, and driverless cars. DCNN performs well in image clas-
sification but still has to overcome the issue of variance in intra-class and inter-class in
the topic of fine-grained image classification. Therefore, some studies design variants
of the DCNN-based fine-grained classification approaches in various research areas and
fields, such as the plants’ types, the architectures’ styles, and the rainfall intensity. In more
detail, studies have taken interest in fine-grained recognition of trees [1,2], flowers [3,4],
and fruits [5,6] in plants, taking various devices to capture optical and multispectral images
on the ground as well as using aerial filming as the resources and designed various variant
CNNs to recognize targets with a single leaf and a cluster plant. In architecture-style
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analyzation, studies collect the images with the optical digital single-lens reflex camera to
capture the entire appearance and design the DCNN for fine-grained classification [7,8].
Some scholars collect the optical image with a surveillance camera to recognize the rainfall
intensity [9,10], and parts use the satellite image to classify and predict [11,12]. According
to their CNN structures, we classify these studies into three categories: the multi-stream
and attention-location/part-location approaches.

The multi-stream approaches aim to utilize CNNs or develop robust CNNs to rep-
resent the features with the global region and make the feature discriminative, namely
to better preserve the fine-grained information. These approaches depend on the power-
ful convolutional neural network and develop various variants. In these variants, some
studies generate the multi-stream, such as three-stream, convolutional neural networks,
take the same backbone for each stream, and consider one-factor variation, such as the
optical images, for each stream to generate the classification model [13]. In addition, two-
stream architecture, which is also the popular network, incorporates two-factor variations,
which can consist of various resources to generate the discriminative features, also called
CNN features. The CNN features associate with SVM or take the classification model’s
end-to-end training [14,15]. The multi-stream frameworks consider one or more factor
variations with various streams for fine-grained image classification, and that has been
divided into two variations of frameworks: attention-location/part-location and pose-
alignment approaches.

The object comprises various parts; for example, the bird is composed of head, trunk,
and body. Therefore, some studies take the parts (local) images to form the convolutional
neural network with multi-stream for fine-grained categories [16,17]. Studies take the
handmade part annotations to provide the parts information in the fine-grained image
classification and utilize the multi-stream network to extract the feature of each part (local
features) from various streams. Moreover, the attention mechanism is another approach
to provide the part annotations and is widely used to highlight the attractive region
automatically [17–20].

The previous works design various convolutional neural networks associated with dif-
ferent factor variations, such as multi-stream framework and part information to generate
the discriminative feature descriptors for the fine-grained image classification. However,
the consideration of fusing the global and local features into the generation of the feature
representation of these studies is still a challenge.

This study focuses on fusing an object’s global and local features by using the pro-
posed registration–fusion feature module with concept of registration mechanism. We
demonstrate several examples to present the efficiency of the feature registration fusion in
the network, as shown in Figure 1. In Figure 1, we demonstrate three types of instances,
including bird, car, and aircraft, and present the heatmaps, which are translated from
the features, of these instances with/without fusing the global and local features with
the registration mechanism. In Figure 1, the regions with darker red color mean they
have high feature value and have great attention. When using the registration–fusion
feature module, the attention is more focused on the interesting object than the results
generated without using registration–fusion feature modules. In this paper, we consider
the technique of registration and fusing features between the global and local features of an
object and generate the discriminative features for fine-grained image classification. Our
main contributions can be summarized as three-fold:

• A multi-stream fine-grained features network, which considers the global (object) and
local (parts) features, is designed to generate fine-grained features of objects.

• A mechanism of registration–fusion features calculates the dimension and location
relationships between global (object) regions and local (parts) regions to generate
the registration information and fuses the local features into the global features with
registration information to generate the fine-grained feature.
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• The proposed method surpasses the state-of-the-art methods on the three popular
datasets, including CUB200-2011, Stanford Cars, and FGVC-Aircraft datasets in both
quantitative and qualitative evaluation.

The rest of this article is organized as follows. In Section 2, we introduce the pro-
posed network, including the mechanism of registration–fusion features and the overall
framework with the forward and backward propagations, for the fine-grained classifica-
tion. Section 3 provides an evaluation of our OR-Net method against its state-of-the-art
counterparts on three popular datasets. In Section 4, we present our conclusions.

(a) Original image (b) w/o registration–fusion features (c) w/ registration–fusion features

Figure 1. The examples of using registration–fusion feature modules on different objects. The first
column represents the original images of a bird, a car, and an aircraft; the second column shows the
heatmaps of the first column, which is without consideration of registration–fusion features; the third
column demonstrates the heatmaps of the first column, which considers registration–fusion features.

2. Methodology

Object–part registration–fusion Net (OR-Net) comprises three streams, including
overall stream, whole-body stream, and parts stream, and one registration–fusion feature
module, as shown in Figure 2. In Figure 2, the overall and whole-body streams address
the global information with different percentages of background, which are indicated as
light blue and deep blue feature maps, respectively; they apply the registration–fusion
feature module to obtain the fine-grained features. The parts streams handle the local
information, which grabs from various object localization and provides the local feature for
the registration–fusion module. The local information (feature maps), shown in Figure 2,
from the part streams are indicated as gray and brown to present the parts information
of torso and head. OR-Net extracts global and local features of the object from different
CNN-streams and generates the feature maps by registering and fusing the global and
local features generated from various CNN-streams on the overall stream and whole-body
stream. Moreover, we consider the effects of various levels of streams to conduct the final
classification. In the following sections, we first introduce the procedure of the registration–
fusion feature module. Next, we present the architecture of OR-Net with forwarding and



Symmetry 2021, 13, 1838 4 of 19

backward propagation. Finally, we present the algorithm of the proposed OR-Net to state
the scientific methods and steps to achieve the presented results.

Figure 2. Architecture of the proposed convolutional neural network.

2.1. Feature Registration–Fusion Module

We take a bird as an example to explain the operation process of the proposed feature
registration fusion module, which efficiently fuses the feature map from various resources,
as shown in Figure 3. To execute the feature registration module procedure, we separate a
bird into various components, including the bird’s head, the bird’s torso, the bird’s whole
body, and the overall image. Then, we use benchmarked CNN with multi-stream to extract
the feature maps, including the feature maps of the head, torso, the whole body, and overall
and are indicated as gray, blue, navy blue, and light blue. Next, we consider the overall
and the whole-body features as the registering targets and integrate the feature of each
part into the overall and whole-body streams.

Figure 3. Procedure of registering and fusing feature maps from various levels of sub-features.
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There are two main phases to complete the feature registration fusion module: (1) to
calculate the ratio of size between the original image and its feature map, (2) to compute
the registering location of each registered feature.

In the following description, we take the feature maps of the original stream as the
registering target and the feature maps of the whole-body and parts stream as the registered
features to describe the registration–fusion module’s procedure.

Firstly, we calculate the size’s ratio original image I, and its feature map fγ={os}, to be
expressed as,

[rwγ={os} , rhγ={os} ] = [
w fγ={os}

wI
,

h fγ={os}

hI
] (1)

where w and h are the width and height of the image or the feature map, rw and rh are the
ratio of width and height between original image (I) and its feature map ( fγ={os}). Next,
we resize the feature maps of each stream and express the equation definition as follows,

f ′γ = R( fγ, w′ fγ
, h′ fγ

), γ = {ws, ps} (2)

where f ′γ is the resized feature map, R(.) is the resize function, w′ fγ
and h′ fγ

are the width
and height of f ′γ, and γ = {ws, ps}. In this study, we take bilinear interpolation as the
resize function. Then, we calculate the width (w′ fγ

) and height (h′ fγ
) of the resized feature

map with the following equation,

[w′ fγ
, h′ fγ

] = [dwIγ × rwe, dhIγ × rhe], γ = {ws, ps} (3)

where wIγ and hIγ are the width and height of sub-images which are cropped from the
original image. We operate the ceiling operation to calculate the height and width of the
resized feature map to avoid the problem of the width and height becoming 0 after resizing.

Moreover, coordinate information of the resized feature is needed to register the
resized features f ′γ=ws,ps into the feature map of the registering target, which are generated
from the original stream fγ=os. Therefore, we re-calculate the coordinates of each resized
feature map according to their original coordinates in the original image I, which can be
expressed as,

[C
′
xγ

, C
′
yγ
] = [bCxγ × rwc, bCyγ × rhc], γ = {ws, ps} (4)

where C
′
xγ

and C
′
yγ

are the new coordinates of x and y axes after resize, and Cxγ and Cyγ

are the coordinates of x and y axes of sub-images in the original image. We operate the
floor operation to calculate the new coordinates of the x and y axes to avoid the problem
where the position coordinate value exceeds the range of the original image.

Finally, we add the resized features ( f ′γ=ws,ps) into the target’s feature map, which are
generated from the original stream ( fγ=os) according to the new coordinate.

2.2. Network Architecture

Information fusion, which integrates the characteristics from various resources, plays a
significant function in various computer vision topics. To effectively integrate the features,
we designed the OR-Net, which contains multiple CNN streams and one registration–
fusion features module, as shown in Figure 2. In Figure 2, each stream has several convolu-
tion blocks in which the registration–fusion features module is embedded in the original
stream and whole-body stream, and each convolution block has several convolution opera-
tions. Specifically, we took the original image (overall image) as the input of the original
stream, the whole-body image of the bird as the input of the whole-body stream, and the
bird’s head and the bird’s torso are the inputs of two parts-streams. The first convolution
blocks of each stream can be expressed as follows:

Om=1
γ = { f n1

γ }
= F ?(sγ, Wn1

γ , bn1
γ ), γ = {os, ws, ps}, n1 ∈ N

(5)
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where Om=1
γ , γ = {os, ws, ps} is the output of the first convolution block of each stream and

is taken as the input for the registration–fusion features module and the next convolution
block of each stream; m is the number of convolution blocks in the network; f n1

γ ∈ Om=1
γ are

the feature maps after operating first convolution block and n1 ∈ N is the number of feature
maps; F ? is convolution operation which is used to extract features by using convolution
operator; sγ, γ = {os, ws, ps} are the sub-images of the original image including the bird’s
overall image, bird’s whole-body image, and the bird’s parts (head and torso); and Wn1

γ

and bn1
γ are the weight kernel and the bias of F ?(.), respectively. Next, the registration–

fusion features module, which is embedded on the original stream and whole-body stream,
receives the features from the first convolution blocks of each stream and generates the
registration–fusion feature maps for the second convolution block. The output of the
second convolution block on the overall stream and the whole-body stream is expressed as
follows:

Om=2
γ={os,ws} = { f n2

γ={os,ws}} = F
?(fr, Wn2

γ={os,ws}, bn2
γ={os,ws}), n2 ∈ N (6)

where Om=2
γ={os,ws} is the output of the second convolution block using the registered and

fused feature maps from the registration–fusion feature module on the original stream and
the whole-body stream; f n2

γ={os,ws} ∈ Om=2
γ={os,ws} are the feature maps, which are generated

from registration–fusion feature maps, and n2 ∈ N is the number of the feature maps on
the second convolution block; Wn2

γ={os,ws}, bn2
γ={os,ws} are the weight kernel and the bias of

F ?(.), respectively, and can be operated on the registered feature maps; fr is the set of the
registration–fusion feature maps and is expressed as,

fr = F( f i
γ, I i

γ) |γ∈{os,ws,ps} (7)

where F(.) is the registration–fusion feature function that is used to generate the registration–
fusion feature map. I i

γ is the information set of the ith feature map, which includes the size
of inputs and feature map, the size of parts images, and the coordinates of parts in the full
image. f i

γ is the ith feature map of the original stream, the whole-body stream, and parts
streams. Next, we take Om=1

γ=ps as the input into the second convolution block of the parts
stream. The output is described as follows:

Om=2
γ = { f n2

γ }
= F ?(Ψ1, Wn2

γ , bn2
γ )

(8)

where Om=2
γ , γ = {ps} is the output of the second convolution block of the parts stream

and are taken as the input for next convolution block; f n2
γ ∈ Om=2

γ is the feature maps and
n2 ∈ N is the number of feature maps; Ψ = {Om=1

γ=ps} is the input of the second convolution
block for the parts-stream; and Wn2

γ and bn2
γ are the weight kernel and the bias of F ?(.),

respectively. Then, we take Om=2
γ , γ = {os, ws, ps} as the input for the next convolution

block of the respective stream. The output is described as follows:

Om=3
γ = { f n3

γ }
= F ?(Ψ2, Wn3

γ , bn3
γ )

(9)

where Om=3
γ , γ = {os, ws, ps} is the output of the third convolution block of the original,

the whole-body, and parts streams and are taken as the input for next convolution block
of the respective stream; f n3

γ ∈ Om=3
γ are the feature maps and n3 ∈ N is the number of

feature maps; Ψ2 = {Om=2
γ=osOm=2

γ=ws, Om=2
γ=ps} are the inputs of the third convolution block for

registering-stream, object-stream, and parts-stream, respectively; and Wn3
γ and bn3

γ are the
weight kernel and the bias of F ?(.), respectively. Next, we take Om=3

γ , γ = {os, ws, ps} as
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the input for the last convolution block of the respective stream. The output is described
as follows:

Om=4
γ = { f n4

γ }
= F ?(Ψ3, Wn4

γ , bn4
γ )

(10)

where Om=4
γ , γ = {os, ws, ps} is the output of the fourth convolution block of the original,

the whole-body, and parts streams and are taken as the input for the fully connected
layers; f n4

γ ∈ Om=4
γ are the feature maps and n4 ∈ N is the number of feature maps; Ψ3 =

{Om=3
γ=os, Om=3

γ=ws, Om=3
γ=ps} are the inputs of the third convolution block for original stream,

the whole-body stream, and parts stream, respectively; and Wn4
γ and bn4

γ are the weight
kernel and the bias of F ?(.), respectively. Finally, we applied the fully connected layers for
each stream and used that output to fine-grain identification, represented as follows:

O f c
γ = F f c

γ (Ψ f c, W f c
γ , b f c

γ ), γ = {os, ws, ps} (11)

Cγ = Fs(O
f c
γ ), γ = {os, ws, ps} (12)

where O f c
γ , γ = {os, ws, ps} is the output of the original, the whole-body, and parts streams

after operating the fully connected operation (F f c); F f c is the operation with three fully
connected layers; Ψ f c = {ψγ}, γ = {os, ws, ps} in which ψγ=os = C f c

γ=os, ψγ=ws = Om=4
γ=ws,

and ψγ=ps = Om=4
γ=ps; C

f c
γ=os is the operation of concatenation in the original stream and

corresponds to C f c
γ=os = [Om=4

γ=os, Om=4
γ=ws, Om=4

γ=ps]; W f c
γ and b f c

γ are the weight kernel and
the bias of F f c(.), respectively. Cγ=os, Cγ=ws, Cγ=ps are the probability vector of the fine-
grained classification result of the original, the whole-body, and parts streams, respectively,
after executing the softmax operation (Fs). Then, we take the result of the original stream
as the finial classification result.

The networking procedure of each stream is summarized in the following series
of formulas.

O f c
γ = Ψ f cW f c

γ + b f c
γ

= (Om=3
γ W4

γ + b4
γ)W

f c
γ + b f c

γ

= ((Om=2
γ W3

γ + b3
γ)W

4
γ + b4

γ)W
f c

γ + b f c
γ

= (((Om=1
γ W2

γ + b2
γ)W

3
γ + b3

γ)W
4
γ + b4

γ)W
f c

γ + b f c
γ

(13)

We take the equation of cross-entropy to calculate the loss between the ground truth
and the classification results as expressed as follows:

Lγ = −
M

∑
i=1

N

∑
j=1

Ti,j · log(Ci,j
γ ), γ = {os, ws, ps} (14)

where T is the ground truth of a one-hot vector; Ti,j is the ground truth of the ith class at the
jth image; Lγ=os, Lγ=ws, Lγ=ps are the total loss of the original, the whole-body, and parts
streams, respectively; N is the number of classes; and M is the number of testing images.
The total loss is expressed as follows,

Ltotal = −
M(γ)

∑
i=1

Lγ, γ = {os, ws, ps} (15)

where Ltotal is the total loss and is the summation of Lγ=os, Lγ=ws, and Lγ=ps; and M(γ) is
the number of loss. Then, we adjust the framework of the network using the loss value to
update the weights of the network in the procedure of the backpropagation, which can be
described as follows:

mt = βmt−1 +
Ltotal
Wγ

lr (16)
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where m is the momentum, β is the decay coefficient of the momentum, t is the number
of the current iteration, t + 1 is the number of the next iteration, and Wγ is the weight of
the γ ∈ {os, ws, ps} component. Next, we elaborate on the backpropagation procedure
of the second convolution block, which considers the information for feature registration,
to explain its function from the mathematical model. The forward propagation formula of
the original stream at the second block can be rewritten as follows:

Om=2
γ=os = Wn1

γ=osfr + bn=2
γ=os (17)

where fr corresponds to the registration–fusion feature maps which is the summation by
adding feature maps of the whole-body and parts streams into the original stream and can
be rewritten as:

Om=2
γ=os = Wn1

γ=os( fγ=os + fγ=ws + fγ=ps) + bn=2
γ=os (18)

Its backward propagation for updating the weights can be expressed as follows:

∂Ltotal
∂Wn=2

γ=os
=

∂Ltotal
∂fr

× ∂fr

∂Wn=2
γ=os

=
∂Ltotal

∂fr
× fγ=os +

∂Ltotal
∂fr

× ( fγ=ws + fγ=ps) (19)

In Equation (19), the weight adjustment of the overall stream not only considers the
information of overall images but the information of the whole-body and parts streams.
The forward and backward propagation in the whole-body stream is similar to the overall
stream but only takes features from the parts steam into the registration–fusion feature module.

2.3. Procedure of the Proposed OR-Net

We demonstrate the procedure of the proposed object–part registration–fusion Net
(OR-Net) in Algorithm 1 to state the scientific methods and steps which are used to achieve
the presented results. In Algorithm 1, we take three materials as the input in the process of
OR-Net: (1) the resource images, (2) the coordinates of parts in the original image, (3) the
number of iterations. Specifically, we resize the original image I, the parts’ images Iγ={ws,ps}
into 224× 224 and take as the input images into overall, whole-body and parts streams.
Moreover, we also need the information of each part’s coordinates, Cxγ ,yγ and γ = {ws, ps},
in the original image and the size of the original image [wI, hI] to complete the procedure
of generating the registration–fusion features. In addition, we set the iteration number as
N when training. The output of the OR-Net is the birds’ categories Y.

In the forward training procedure, for each iteration, we first resize each input image
into 224× 224 and extract the feaures from each CNN stream after the first convolution
block, f bi,1

γ=os,we,ps, where bi,1 is the 1st convolution block with i number of feature maps.
Next, we generate the registration–fusion features using fr function in overall and whole-
body streams. Then, we execute the rest of the convolution blocks in the CNN to generate
the final feature maps Oγ={os,ws,ps} and operate the fully connected operation to generate

the features O f c
γ=os for classification. Finally, we obtain the predicted results Y by operating

softmax operation for O f c
γ=os.

In the backward training procedure, we separately calculate the Lossγ={os,ws,ps} for
each stream and summarize each loss to generate the total loss, Losstotal , for adjusting
the network.
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Algorithm 1: An algorithm of the proposed object–part registration–fusion Net
(OR-Net).

Input: The original image I, the parts’ images Iγ={ws,ps}, the coordinates of each
part in the orignial image Cxγ ,yγ , γ = {ws, ps}, the size of the original
image [wI, hI], the maximum number of iteration N.

Output: Birds’ categories Y.
1 for n← 1 to N do
2 To resize images, I and Iγ={ws,ps}, into 224× 224 ;

3 To extract the feature maps of each stream, f
b1,j
γ=os,we,ps, using CNN, which are

generated after first conv. block ;
4 for m← 1 to M do
5 // To calculate the feature maps with registration–fusion

feature function
6 fr = F( f m

γ , Im
γ ) |γ∈{os,ws,ps}, m is the number of feature maps

7 for b← 1 to B do
8 for γ← 1 to Γ do
9 // Executing the rest of the conv. blocks in the CNN to

generate the final feature maps

10 Oγ = F ?(Ψb = { f
bi,j
γ }, W

bi,j
γ , b

bi,j
γ ), γ ∈ {os, ws, ps}

11 To generate the predicted result Y = softmax(O f c
γ=os) ;

12 To calculate the loss for backpropogation
Losstotal = ∑Γ

γ Lossγ, γ = {os, ws, ps}.

3. Experiment

In this section, we first present the datasets and their benchmarks used in the perfor-
mance evaluation. Next, we examine the diagnostic and ablation experiments to demon-
strate the effectiveness of the proposed framework. Finally, we compare our algorithm with
state-of-the-art approaches with the quantitative and qualitative evaluation to demonstrate
the performance.

3.1. Experimental Datasets and Implementation Details

In this work, we take three challenging fine-grained image classification datasets,
including Caltech-UCSD Birds (CUB-200-2011) [21], Stanford Cars [22], and FGVC Air-
craft [23], which are widely used for fine-grained image classification, to evaluate the
performance of our algorithm. CUB-200-2011 contains 200 categories and has 11,788 im-
ages (5994/5794 images for training/testing), Stanford Cars has 196 types of cars and
contains 16,185 images (8144/8041 images for training/testing), and FGVC Aircraft owns
100 classes with 10,000 images (6667/3333 images for training/testing). These datasets
collect a large number of images with various targets. They provide the label of each image
and the bounding box of the target in each image, but the bounding boxes of each part
of the object are lost. Therefore, we add the parts’ bounding boxes of each object for the
following experiments. All part rectangles of birds, aircraft, and cars are manually located
and cropped except the part rectangles of birds on the CUB200-2011 dataset. We use the
part annotations (key points) of the bird to identify and cut each part with rectangles [24].

In the implementation details, we generate the classifier using two NVIDIA GTX1080Ti
(11G) GPU and symmetrically operating the algorithm with mini-batch = 8 for each GPU on
the Ubuntu16.04 system with TensorFlow 1.12. We take Momentum SGD as the optimizer
with an initial learning rate 1e−2 and use the cosine decay function to decay the learning
rate when training. Moreover, we use Relu and cross-entropy as the active and loss
functions, respectively, and set 100 epochs in the training process. In addition, we take
densenet-121 as the backbone, which is pre-trained on ImageNet [25], and size the image
into 224× 224 for each stream.
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3.2. Diagnostic and Ablation Experiments

In this subsection, we execute diagnostic and ablation experiments to present the
feasibility and effectiveness of the proposed network on the CUB200-2011 dataset.

3.2.1. Diagnostic Experiments

In the diagnostic experiments, we design significance testing to prove the significance
of the proposed registration–fusion feature strategy.

Significance testing: The feature registration and fusion function are the keys of the
proposed object–parts registration–fusion Net (OR-Net). Therefore, we execute the paired-
samples T-test as the significance testing to verify the prominence of the feature-registration
module with two testing plans (I and II) on these three datasets. The plan I is the scenario
with four streams, including the overall stream, the whole-body stream, and two parts
streams, and plan II is with two streams, including the overall and the whole-body streams.
In the significance testing, we take densenet121 as the backbones to experiment with 5-fold
cross-validation and use SPSS statistics software in executing the paired-samples T-test to
realize the significance level for each plan, as shown in Table 1.

In Table 1, the varibles of X, Y, “Sig. ( 2-tailed)”, and ∆ refer to the proposed net-
work (with the registration–fusion feature module), the standard network (without the
registration–fusion feature module), the P-value of the two-sided significance (significance),
and the difference between X and Y for each fold cross-validation. In Table 1, the proposed
framework (X) accuracies are higher than the standard network (Y) in every fold exper-
iment, either in plan I or plan II on three datasets. Moreover, their significant p-values
(Sig.) are all less than 0.05 in the plan I and II on all three datasets. The paired-samples
T-test shows that the model with the registration–fusion feature module has significant
performance, proving the proposed module can efficiently increase the accuracy.

Table 1. Results of 5-fold cross-validation with two plans on widely used datasets.

Dataset CUB200-2011 Stanford Cars FGVC Aircraft

Plans I II I II I II

#Fold
Sample X(%) Y(%) ∆(%) X(%) Y(%) ∆(%) X(%) Y(%) ∆(%) X(%) Y(%) ∆(%) X(%) Y(%) ∆(%) X(%) Y(%) ∆(%)

1 89.63 89.45 0.18 86.78 86.57 0.21 95.82 95.73 0.09 94.40 94.14 0.26 93.75 93.45 0.30 91.50 90.70 0.80

2 89.63 89.32 0.31 87.34 86.91 0.43 95.16 95.06 0.10 94.52 94.08 0.44 93.95 93.25 0.70 91.20 91.00 0.20

3 89.20 88.72 0.48 86.35 86.22 0.13 95.50 95.47 0.03 94.40 94.37 0.03 94.05 93.10 0.95 90.80 90.65 0.15

4 89.32 89.24 0.08 86.44 86.10 0.34 95.57 95.35 0.22 95.09 94.71 0.38 94.00 93.65 0.35 91.05 90.65 0.40

5 90.40 90.27 0.13 87.56 87.26 0.30 95.47 95.25 0.22 94.71 94.21 0.50 94.75 94.20 0.55 91.90 91.10 0.80

Sig.
(2-tailed) 0.031 0.006 0.025 0.018 0.009 0.029

3.2.2. Ablation Experiments

In this subsection, we design two ablation experiments to demonstrate the perfor-
mance of the proposed OR-Net: (1) registering objectives and (2) registering position.

Registering objectives: We design four scenarios with Top-1 accuracy: (I) non-
registering (none), (II) overall stream (OS), (III) whole-body stream (WS), and (IV)
overall + whole-body streams (OS + WS) to demonstrate the effects of using various reg-
istering objectives, as shown in Table 2. The basic framework of each scenario is OR-Net
without the registration–fusion feature module. Scenario I does not have the registration–
fusion feature model; scenario II considers the registration–fusion feature model into the
overall stream (OS); scenario III takes the registration–fusion feature model into the whole-
body stream (WS); scenario IV considers the registration–fusion feature model into the
overall stream (OS) and whole-body stream(WS). In Table 2, the scenario I has the lowest
accuracy and is 87.2%. Scenario II and III consider the registration–fusion feature module,
and both achieve 87.5%, which is 0.3% higher than the scenario I. In Scenario IV, we simulta-
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neously utilize the registration–fusion feature module into overall + whole-body streams; it
has the highest accuracy and achieves 87.7%, and is 0.5% higher than the network without
using the registration–fusion feature module.

Table 2. Comparison of the proposed net with the different number of registering objectives
on CUB200-2011.

Registering Stream None OS WS OS + WS

Accuracy (Top-1, %) 87.2 87.5 87.5 87.7

The analysis of the registering objectives proves that the multi-parts feature-registration
module is helpful to improve the classification accuracy, and the best combination is to
execute the feature-registration module on the overall and whole-body stream.

Registering position: We operated the feature-registration module at various posi-
tions in the network to find out the best position in the network, and the analysis results
are shown in Table 3. Conv.-1 refers to the registration–fusion feature module operated
after the first convolution operation, which is on the backbone (Densenet-121); DB-1, DB-2,
DB-3, and DB-4 refer to the operation of feature registering which occurred after operating
the dense block 1, 2, 3, and 4, respectively. In Table 3, the best Top-1 accuracy occurs at
DB-1, which has the 56× 56 size of feature maps. The features obtained after operating
dense block 1 have shallow features, and the size is suitable for registering and fusing.

Table 3. Comparison of OR-Net with various registering positions on the CUB200-2011 dataset.

Registering
Position Conv.-1 DB-1 DB-2 DB-3 DB-4

Size of
feature map 112 × 112 56 × 56 28 × 28 14 × 14 7 × 7

Accuracy
(Top-1, %) 86.8 87.7 87.2 87.4 86.9

3.3. Experimential Analysis on the Popular Datasets

To illustrate the performance of the proposed framework, we examine the proposed al-
gorithm with the state-of-the-art methods on the popular datasets, including CUB200-2011,
Stanford Cars, and FGVC Aircraft datasets. Moreover, we demonstrate the comparison
results with the quantitative and qualitative forms to present the robustness of the pro-
posed network.

3.3.1. Quantitative Evaluation

In each quantitative result, we present the compared methods with information on the
source, year, training phase, testing phase, model, dimension, size, and accuracy. Source
refers to the publication information of the article in which [C] and [J] refer to conference
and journal articles. Year refers to the published year of the articles. The model refers
to the type of convolutional network (backbone) used in those articles; dimension is the
size of the fully connected layer of each method; size is the input size of each method;
and accuracy presents the classification results of each method. The symbol “-” presents
the lost information, which cannot be found in the manuscript, and the released code of
the method.

We quantitatively compare the proposed approach with the 27 popular methods,
which are published in the famous international conferences or international journals from
2014 to 2020, on the CUB200-2011, Stanford Cars, and FGVC Aircraft datasets as shown
in Table 4. In Table 4, we divide the table into two parts with a thick solid line: the upper
part is the comparison object whose input image size is nearly 224, and the bottom half is
the comparison object whose input image size is approximately 448, and demonstrate our
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results in the last row of the table. Moreover, we indicate the accuracy with red color when
the method has the highest accuracy with size 224× 224, indicating the accuracy with bold
when the method has the highest accuracy with size 448× 448, and indicating the accuracy
with bold red color when the method has the highest accuracy with both sizes 224× 224
and 448× 448.

Table 4. Quantitative comparison results on the popular datasets.

Method Year Source Dimension Size
Accuracy

CUB200-2011 Stanford Cars FGVC-Aircraft

PB R-CNN [26] 2014 ECCV[C] 12,288 224 × 224 82.0% - -
Pose Normalized CNNs [13] 2014 CVPR[C] 13,512 - 85.4% - -

Deep-LAC [27] 2015 CVPR[C] 12,288 227 × 227 80.3% - -
MG-CNN [28] 2015 ICCV[C] 12,288 224 × 224 83.0% - 86.6%

Two-level Attention [29] 2015 CVPR[C] - 224 × 224 77.9% - -
VGG-BGLm [30] 2016 CVPR[C] 4096 224 × 224 80.4% 90.5% -

Weakly Supervised FG [31] 2016 TIP[J] - 224 × 224 79.3% - -
NTS [32] 2018 ECCV[C] 10,240 224 × 224 87.5% 93.9% 91.4%
PC [33] 2018 ECCV[C] - 224 × 224 86.9% 92.9% 89.2%

TASN [34] 2019 CVPR[C] 2048 224 × 224 87.0% 93.8% -
Interp [35] 2020 CVPR[C] 2048 256 × 256 87.3% - -

ST-CNN [36] 2015 NIPS[C] 4096 448 × 448 84.1% - -
Bilinear CNN [14] 2015 ICCV[C] 262,144 448 × 448 85.1% 91.3% 84.1%

FCAN [37] 2016 CVPR[C] 1,536 448 × 448 84.3% 91.3% -

Part-Stacked CNN [38] 2016 CVPR[C] 4096 454 × 454 +
227 × 227 76.6% - -

Boost-CNN [39] 2016 BMVC[C] 262,144 448 × 448 86.2% 92.1% 88.5%
MDTP [40] 2016 CVPR[C] 4096 500 × 500 - 92.5% 88.4%

DT-RAM [41] 2017 ICCV[C] 2048 448 × 448 86% 93.1% -

RA-CNN [42] 2017 CVPR[C] 4096 448 × 448 +
224 × 224 85.3% 92.5% -

HIHCA [43] 2017 ICCV[C] - 448 × 448 85.3% 91.7% 88.3%
Mask-CNN [24] 2018 PR[J] 12,288 448 × 448 87.3% - -

DFL [44] 2018 CVPR[C] 2048 448 × 448 87.4% - -
iSQRT-COV [45] 2018 CVPR[C] 32,896 448 × 448 88.7% 93.3% 91.4%

RP-CNN [46] 2019 ICIP[C] 4096 448 × 448 +
224 × 224 84.5% 93.0% 89.9%

DCL [47] 2019 CVPR[C] 2048 448 × 448 87.8% 94.5% 93.0%
ACNet [48] 2020 CVPR[C] 8192 448 × 448 87.6% 93.5% 90.4%

GSFL-Net [49] 2020 BMVC[C] 12,801 448 × 448 87.6% 93.9% 88.2%

Ours 2021 - 4096 224 × 224 87.7% 94.5% 93.8%

For experiments in the CUB200-2011 dataset, the performance of the proposed method
achieves 87.7% accuracy. It has the best accuracy compared to the other methods, uses
images with 224 × 224 size, and is 0.2% higher than the second-best approach, NTS.
Moreover, the dimension of the NTS is 2.5 times larger than the OR-Net. To compare
with the methods that use BBox and parts’ information, OR-Net has the best accuracy and
is 0.4% higher than the second-best approach, Mask-CNN; its usage of image sizes and
dimensions are 0.5 and 1/3 times than Mask-CNN, respectively. Although iSQRT-COV
and DCL have the best and second-best accuracy on the CUB200-2011 dataset and achieve
88.7% and 87.8%, respectively, the OR-Net has the third-best accuracy, and its input size is
224× 224, which is 0.5 times smaller than iSQRT-COV and DCL. In addition, OR-Net has a
small dimension and is 1/8 times smaller than iSQRT-COV.

To compare with state-of-the-art methods on the Stanford Cars dataset, OR-Net has
the best accuracy and achieves 94.5%; it is 0.6% higher than the second-best approaches,
NTS and GSFL-Net, in which the input sizes of NTS and GSFL-Net are 224 × 224 and
448 × 448, respectively. Moreover, the dimension of OR-Net is 0.4 and 0.32 times smaller
than the second-best approaches, NTS and GSFL-Net, respectively. To compare with the
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methods which use the information of BBox and parts, OR-Net has the best accuracy and is
2.0% and 3.2% higher than the second-best and third-best approaches, MDTP and FCAN,
respectively; its input size is 0.5 times smaller than second-best and third-best approaches.

Finally, we demonstrate the quantitative comparison results of each method on the
FGVC Aircraft dataset. The proposed OR-Net has the best accuracy compared to thirteen
state-of-the-art methods and achieves 93.8%; it is 0.8% and 2.4% higher than the second-best
and third-best methods, DCL, iSQRT-COV, and NTS, respectively; its input size is 0.5 times
smaller than the second-best and third-best approaches. Although OR-Net’s dimension
is two times larger than the second-best approach, DCL, it is 0.4 and 0.13 times than the
third-best approaches, iSQRT-COV, and NTS.

All in all, the proposed method is the best approach comparing with the state-of-
the-art methods, which use the input size of 224 × 224 on each popular dataset, and its
dimension is smaller than most of the compared methods.

3.3.2. Qualitative Evaluation

We demonstrate the qualitative results in Tables 5 and 6 to present the registration–
fusion features and to validate the effectiveness and superiority of the proposed method.

In Table 5, we present three sets of images for each analyzed target, including bird,
car, and aircraft. The overall, whole-body, torso, and head information (info.) are used
to classify bird species; the overall, whole-body, side, and back (rear) information are
considered in the classification of the car; overall, whole-body, head, and back (rear) are for
aircraft. Furthermore, we demonstrate the feature maps of each information selected from a
set of feature maps of each stream with the best performance after operating the first dense
block. In Table 5, the characteristics of the bird are not apparent on the feature which is
generated from the overall image, but they are obvious on the features which are extracted
from the whole-body, torso, and head images, especially torso and head. The characteristics
of the head and the torso are around the eyes and on the wings (input image), and they
are concentrated in the area with high brightness (feature image). The registering feature
integrates the features from the various streams that can enhance the characteristics of a
bird (registering feature) and effectively improve the classification accuracy. In the Stanford
Cars dataset, we select a car image with a front-side view to present the characteristics of
a car. Although the features extracted from the overall and back images are not obvious,
the features extracted from the whole-body and side images are obvious. The distinctive
features, which are extracted from the full-body and side images, can make up for the
insufficient discrimination of features which are extracted from the overall image. In the
FGVC Aircraft dataset, we take an aircraft image with a side view as an example to present
the difference of each feature generated from various streams. The feature generated by the
overall image is only evident on the upper half of the fuselage, but the features from the
rest of the streams are apparent. Therefore, the feature generated by the registration–fusion
feature module is noticeable compared with the feature generated by the overall image.
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Table 5. Example of registering features on the popular dataset.

Dataset CUB200-2011 Stanford Cars FGVC Aircraft

Visualization

Information Overall Info. Whole-Body Info. Torso Info. Head Info. Overall Info. Whole-Body Info. Side Info. Back Info. Overall Info. Whole-body Info. Head Info. Back Info.

Input images

Feature maps

Registering
feature maps
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In Table 6, we demonstrate the heatmaps of the proposed method (OR-Net) and the
backbone (DenseNet-121) on CUB200-2011, Stanford Cars, and FGVC Aircraft datasets to
present the effectiveness of the proposed framework, where “RF” refers to the proposed
registration–fusion feature module and “DB” is the dense block. In Table 6, the blue color
indicates that the model has less attention on this region, and the red color indicates that the
model focuses on this region. In other words, the darker the color is, the more attention the
model gives to this region. To present the difference between OR-Net and DenseNet-121,
we use the same input for OR-Net and DenseNet-121 and randomly select a feature map
from each block to generate its heatmap. In the CUB 200-2011 dataset, although these
methods focus on the different parts of a bird, such as the bird’s head and the torso of a
bird, on an image after executing the first dense bloc, the attention is low. The OR-Net uses
the registration–fusion feature module, which assembles the feature from various parts
of a bird, to increase the energy of the attention on a bird and significantly increases the
attention to a bird compared to the heatmap of BD-1. The OR-Net gradually focuses on
the whole body of a bird by sequentially executing convolution blocks 2,3,4 and has great
attention compared to DenseNet-121. Although DenseNet-121 gradually concentrates the
attention, the attention is around the bird, which is lower than OR-Net. In the Stanford
Cars, OR-Net focuses on most car parts, and DenseNet-121 only focuses on a small part
of the car after executing the first dense block. OR-Net has the registration–fusion feature
module, which puts more attention on the car, making the subsequent modules focus more
and more on the car. In contrast, most of the DenseNet-121 attention is on the background
outside the car, and only less attention is on a small part of the car after executing the
first dense block. Therefore, the successor modules of the first module of DenseNet-121
pay more and more attention to the outside area of the car. In the FGVC Aircraft, OR-
Net and DenseNet-121 focus on most aircraft parts after executing the first dense block,
but their attention level to the aircraft is different in the following dense blocks. OR-Net
has the registration–fusion feature module, which assembles each part’s feature, making
the following dense blocks pay more attention to the aircraft. Compared to the heatmap of
OR-Net and DenseNet-121 on the last dense block, the OR-Net pays more attention to the
aircraft than DenseNet-121.

In summary, the OR-Net considers the characteristics of different parts of an object,
and various parts have been integrated at the early stages of the framework that allows the
succeeding blocks in the network to further focus on the characteristics of an object.

3.3.3. Qualitative Analysis with Benchmarked Model

We analyze the performance of the benchmarked model (DenseNet-121) with various
input information on the CUB200-2011 dataset and demonstrate the qualitative results in
Table 7. In Table 7, the performance of the benchmarked model with a single resource, such
as overall (original), whole-body, head, and torso images, is poorer than simultaneously
considering all information. The highest Top-1 accuracy of the benchmarked model with
a single resource is 83.4%, which is 0.38% lower than the benchmarked model with all
information. However, the performance of the benchmarked model with all information is
0.5% lower than the proposed OR-Net.
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Table 6. Visualization with heatmap on the popular datasets.

Dataset Model Original Image DB-1 RF DB-2 DB-3 DB-4

C
U

B2
00

-2
01

1 Ours

DenseNet

St
an

fo
rd

C
ar

s Ours

DenseNet

FG
V

C
A

ir
cr

af
t Ours

DenseNet

Table 7. Quantitative comparison with benchmarked model.

Input Information Model Top-1 (%)

Overall DenseNet-121 76.7

Whole-body DenseNet-121 83.4
Head DenseNet-121 76.6
Torso DenseNet-121 71.6

All DenseNet-121 87.2
All OR-Net 87.7

4. Conclusions

This study proposed a novel convolutional neural network, object–part registration–
fusion convolutional neural network (OR-Net), for fine-grained image classification. OR-
Net contains multi-streams, including overall stream, whole-body stream, and parts stream.
The whole-body stream and parts stream indicate the unique parts of the object, and their
inputs are grabbed from the original image to provide more details when extracting features.
The registration–fusion feature module integrates various features, such as whole-body
information, parts information of the object, and overall information that contains large
background, to increase the discrimination of the feature and pay more attention to the
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interesting object. The registration–fusion feature module considers the ratio of feature size
between various features of parts used to register and fuse the information of each feature.

In the experiments, we compare the performance of the OR-Net with the state-of-the-
art methods on three widely used datasets, Caltech-UCSD Birds (CUB200-2011), Stanford
Cars, and FGVC Aircraft, and demonstrate the results with quantitative and qualitative
evaluation. In quantitative evaluation, the proposed OR-Net has the best performance in
classifying bird species with an input size of 224× 224 and achieves 87.7%; it has the best
accuracy in classifying car and aircraft types with various input sizes and achieves 94.5%
and 93.8%, respectively. Moreover, OR-Net has a small dimension compared to the popular
approaches. All in all, OR-Net performs well in quantitative and qualitative evaluation.
The visualization shows that the proposed registration–fusion feature module provides the
discriminative feature and makes the network pay more attention to the interesting target.
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