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Abstract: Among the large family of spin-crossover materials, binuclear systems play an important
role due to their specific molecular configurations, allowing the presence of multi-step transitions and
elastic frustration. Although this issue benefited from a significant number of spin-based theories,
there is almost no elastic description of the spin transition phenomenon in binuclear systems. To
overcome this deficiency, in this work we develop the first elastic modeling of thermal properties
of binuclear spin-crossover solids. At this end, we investigated a finite spin-crossover open chain
constituted of elastically coupled binuclear (A = B) blocks, · · · (A = B) − (A = B) − (A = B) · · · ,
in which the considered equivalent A and B sites may occupy two configurations, namely low-
spin (LS) and high-spin (HS) states. The sites of the binuclear unit interact via an intramolecular
spring and couple to the neighboring binuclear units via other springs. The model also includes
the change of length inside and between the binuclear units subsequent to the spin state changes.
When injecting an elastic frustration inside the binuclear unit in the LS state, competing interactions
between the intra- and the inter-binuclear couplings emerge. The latter shows that according to the
intra- and inter-binuclear elastic constants and the strength of the frustration, multi-step transitions
are derived, for which a specific self-organization of type (HS = HS)-(LS-LS)-(HS = HS)· · · is revealed
and discussed. Finally, we have also studied the relaxation of the metastable photoinduced HS
states at low temperature, in which two relaxation regimes with transient self-organized states were
identified when monitoring the elastic frustration rate or the ratio of intra- and intermolecular elastic
interactions. These behaviors are reminiscent of the thermal dependence of the order parameters of
the system. The present model opens several possibilities of extensions of elastic frustrations acting
in polynuclear spin-crossover systems, which may lead to other types of spin-state self-organizations
and relaxation dynamics.

Keywords: spin transition; 1D elastic chains; binuclear; bistability and multistability; phase transitions;
elastic frustration; Ising models; Monte Carlo simulations

1. Introduction

Spin-crossover materials (SCO) emerged recently as one of the new paradigms of
switchable molecular solids with serious potential applications in reversible high den-
sity memories fast switching molecular electronics as pressure and thermal sensors, in
addition to their possible applications in spintronic [1–11]. Among the large families of
spin-crossover materials, iron (II)-based SCO solids [1,3,12–17] constitute very interesting
objects, due to their bistable vibronic nature which allows them to switch between a non-
magnetic low-spin (LS) state (LS, e0

gt6
2g) to a paramagnetic high-spin (HS, e2

gt4
2g) as a function

of various stimuli. Among these stimuli are temperature, pressure [18], light [19–23], elec-
tric current, static electric field [24–26], high magnetic or pulsed field, etc. [27]. From
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the microscopic point of view, and at the molecular scale, the SCO phenomenon can be
considered as originating from a vibronic interaction which couples the electronic and
the vibrational structures of the molecule. This results in the electronic switching of the
iron center between the LS and the HS states, and is accompanied with a change of the
iron-ligands distances. Earlier crystallographic studies [5,28] demonstrated that the volume
of the coordination sphere of the molecule expands by almost 30% during the switching
from the HS to LS, while the unit cell volume increases by only 3–5%. Thus, locally, each
conversion of a SCO molecule causes an avalanche of acoustic waves that travel in the
crystal and reflect at the surface, which in turn are felt by the other molecules of the lattice.
For the thermally-induced SCO transitions, several molecules may switch at the same time
in the lattice, each one producing acoustic waves reflecting at the surface and interfering,
leading to the generation of complex compressive and tensile stresses, depending on the
direction, inside the lattice. This is the physical elastic origin of the long-range interactions
between the SCO units, which is clearly directional and may lead to competing interactions.
From the experimental point of view, a large variety of thermally-induced spin transition
behaviors is observed, among which are the case of (i) continuous spin transitions [29],
(ii) discontinuous first-order transitions [30], (iii) incomplete transitions [31] with resid-
ual HS fractions and (iv) multi-step spin transitions [32–35]. It is also well known that
the spin transition is sensitive to the nature of the ligands [36] as well as to the solvent
molecules [37].

Despite these different experimental thermal behaviors, these materials share the
same physics. Indeed, it was demonstrated experimentally that changing the ligand or the
anion in the material transforms some transitions from first-order to double or three-step
transitions [38]. In addition, under applied external pressure, some SCO transitions change
from first-order transitions to continuous or incomplete transitions [39]. In particular, the
case of two-step transitions attracted a lot of attention, which is clearly the result of the
microscopic organization of the HS and LS molecules in the plateau region, and is not
due to the existence of some intermediate spin state at the molecular level between the
HS and the LS state in Fe(II)-based SCO solids. Interestingly, spin transition materials
made of interacting polynuclear SCO, among which the most famous are the dinuclear
SCO systems [40,41] usually lead to two-step SCO transitions where the transitions can be
continuous, such as for [Fe(2-pic)3]-Cl2.EtOH [42,43], or both are of first-order [44] or even
one is gradual and the other is discontinuous [45]. In all these cases, the two transitions
are separated by a plateau region, in which the thermal transition strongly “slows down”.
The thermal width of this plateau usually depends on the elastic rigidity of the chemical
bond linking the two iron centers. The presence of the plateau at the transition in the
case of dinuclear systems can be explained by steric effects between the two metal centers
that hinder the concomitant transition from LS to HS, which involves the increase in the
bond-lengths of both transition metals. As a result, the transition of one metal center
strongly affects the ligand field of the other, which then delays its transition to a higher
temperature. It is also worth noticing that several experimental examples found that the
two-step transition can be accompanied by a symmetry breaking [46–52], which results
in the emergence of self-organized spin states in the plateau region. In addition, recent
reports have shown the existence of multi-steps (three, four and sometimes even more)
along the spin transition [49,50,53]. Among these was the famous “Devil’s Staircase” [50],
in which the number of steps was also enhanced by the presence of inequivalent iron
centers. Interestingly, similar behaviors have been also observed in one-dimensional SCO
solids [54–56], which means that the elastic frustration from which these phenomena
originate presents a common trend.

From the theoretical point of view, spin-crossover materials have been modeled by
various type of models. Some of them were first based on Bragg-Williams descriptions of
regular solutions leading to the so-called domain model of Sorai and Seki [57], while others
were based on the Ising-type description initiated by Wajnflasz and Pick [58,59]. Later, it
was demonstrated that these two models are equivalent [60].
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On the other hand, the modeling of multi-step spin transitions started first with
Ising-like models with competing ferro- and antiferro-like interactions [59,61] solved in
mean-field approximation or using Monte Carlo method. Very recently, considerable
progress has been made towards an elastic description of multi-step transitions phenomena
in SCO systems based on the concept of elastic frustration resulting from the presence of
antagonist steric effects, which was introduced in ref. [47]. In this paper, the authors have
studied the case of a 2D lattice with elastic frustration along the diagonal direction, which
shrinks along the LS to HS transition while the unit cell concomitantly expands along the
lateral direction.

Later on, in ref. [62], we investigated the case of 1D frustrated elastic SCO mononuclear
chains, in which the frustration was introduced through conflicting interactions between
the nn and nn equilibrium distances. We have shown in this study that according to the
strength of the frustration, several thermodynamic behaviors can be reproduced, among
which multi-step [30,49–52,63–69] and incomplete spin transitions are retrieved.

In the present work, we extend the elastic modeling of SCO systems to that of binuclear
SCO solids. For this, we first investigate the thermodynamic properties of an isolated open
1D chain made of elastically coupled SCO binuclear units (A = B), where both A and B
can switch from the LS to HS with temperature. The sites A and B are coupled via an
intramolecular spring, and coupled to the other sites belonging to neighboring binuclear
units through other springs. To broaden the horizons of the model, an elastic frustration is
injected in the intramolecular part, which results in competing interactions between the
intra- and the inter-binuclear couplings.

This electro-elastic Hamiltonian, which includes both spins and positions variables,
is solved using Monte Carlo (MC) simulations preformed on both degrees of freedom.
Analytical calculations based on a homogeneous elastic description of the chain are also
developed to validate the MC results. The results show that the misfit of intra- and inter-
binuclear elastic interactions is already sufficient to create an elastic frustration between the
binuclear units, leading to stabilization of intermediate states when moving from the LS to
the HS state. These intermediate states display the emergence of spatial self-organization
of the spin states, in which the binuclear units are coupled antiferro while the organization
inside the binuclear is of ferro type. Similar results are obtained by monitoring the strength
of the elastic frustration.

The manuscript is organized as follows. Section 2 introduces the model Hamiltonian
and the details of the simulations; in Section 3, we present the results related to the
equilibrium properties and derive the phase diagrams; in Section 4, we present the behavior
of the isothermal relaxation of the metastable HS for various intra and intermolecular elastic
constants and frustration rates; and in Section 5 we conclude and outline some possible
extensions of the model.

2. The Model Hamiltonian

The present SCO model for binuclear lattices is inspired from our previous elastic
modeling [70–72] of the spin-crossover material. Let us first recall the basic concepts of the
elastic modeling of SCO materials, accounting for their spin state and volume degrees of
freedom. In the case of 1D SCO systems, the Hamiltonian contains electronic (spin state)
and lattice (elastic) contributions.

In this work, we consider a spin-crossover chain (Figure 1) constituted of elastically
coupled binuclear units, A = B, in which A and B sites may occupy two configurations,
namely, low-spin (LS) and high-spin (HS). Using the same ideas of Ising model, each
spin state of the molecule is associated with a fictitious two-state spin operator, Si. Thus,
Si = +1 will correspond to the HS state, while the value Si = −1 will be associated with
the LS state. The sites are connected by springs and are supposed to move only along the
chain, i.e., in the x direction. Thus, the binuclear at site i contains two atoms A and B with
positions xA

i and xB
i , and their associated spin states are denoted with SA

i and SB
i .
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Figure 1. Schematic view of two coupled binuclear units showing the intra- and inter-binuclear
elastic interactions. kintra

1 is the intramolecular elastic constant, while kinter
1 and kinter

2 are the nn
intermolecular and nnn elastic constants. The bond lengths distances between the sites depend on
the spin states of the connected sites.

Each site is connected elastically to its nearest neighbors (nn) by a spring of elastic
constant kintra

1 inside the binuclear unit, by kinter
1 between the binuclear units and to its next

nearest neighbors by another spring of constant elastic kinter
2 , as schematized in Figure 1.

The equilibrium bond length connecting two nn sites i and j is noted as Rnn
eq
(
Si, Sj

)
.

This quantity can be written as a function of the spin states, so as to have a bigger length
of the chain in the HS state in comparison with that of the LS state. In the same way, the
equilibrium distance between two nnn sites i and k, denoted Rnnn

eq (Si, Sk), is also a function
of the spin states, Si and Sk.

The Hamiltonian describing this 1D systems, taking into account the electronic and
elastic degrees of freedom of the lattice, is derived from our previous 2D electro-elastic
model [71], which has been investigated for several situations of crystal shapes and
sizes [72–79], including core-shell [80] and elastically-frustrated lattices [47,62]. The Hamil-
tonian of this 1D version designed for 1D binuclear chain of Figure 1 writes,

H = ∑i
1
2 [∆0 − kBT ln(g)]

(
SA

i + SB
i
)
+ kintra

1 ∑i=1
[
(xB

i − xA
i )− Rnn

0
(
SA

i , SB
i
)]2

+kinter
1 ∑i=1

[
(xA

i+1 − xB
i )− Rnn

0
(
SA

i+1, SB
i
)]2

+ kinter
2 ∑i

[
(xA

i+1 − xA
i )− Rnnn

0
(
SA

i+1, SA
i
)]2

+kinter
2 ∑i

[
(xB

i+1 − xB
i )− Rnnn

0
(
SB

i , SB
i+1
)]2 (1)

The first term of Hamiltonian (1) represents the effective ligand-field energy, which
here is temperature-dependent due to the presence of the degeneracy ratio, g, between the
HS and the LS states. Thus, the total contribution, writes, ∆0 − kBT ln(g), where ∆0, is 0
K ligand field energy and kB ln(g), is the entropy of the HS states, which originates from
electronic and vibrational degrees of freedom. The molar entropy change at the transition,
∆S = R ln g, easily derived from calorimetric data [34], allows the determination of g
values, which are found as ranging from 100 to 2000. The second term of the Hamiltonian
refers to the intramolecular elastic interactions inside the binuclear units, while the third
term accounts for the elastic inter-binuclear A-B closest atoms (see Figure 1), which can be
considered here as nearest neighbors (nn). The fourth and the fifth terms of Equation (1)
describe the elastic interactions between next nearest neighbors (nnn) atoms of type (A-A
and B-B) belonging to different binuclear sites. Here, all elastic constants, kintra

1 , kinter
1 and

kinter
2 are assumed, for simplicity, as independent on spins and lattice positions. Further-

more, for simplicity, the ligand fields, ∆0, and degeneracies, g, of A and B sites are assumed
to be equal.

2.1. The Equilibrium Distances

The molecules (here, the sites) interact via elastic springs, as depicted in Figure 1,
and the equilibrium bond lengths between two nn i and i± 1 (resp. nnn. i and i± 2)
sites with spins SA

i and SB
i (resp. SA

i and SA
j , SB

i and SB
j ) are noted Rnn

0
(
SA

i , SB
i
)

(resp.

Rnnn
0

(
SA

i , SA
j

)
and Rnnn

0

(
SB

i , SB
j

)
). We denote by RHH

0 , RLL
0 and RHL

0 , the equilibrium

distances between nn HS–HS, LS–LS and HS–LS sites. Then, we have RHH
0 = R0(+1,+1),
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RLL
0 = R0(−1,−1) and RHL

0 = R0(+1,−1). Moreover, we assume the following relation,
RHL

0 = 1
2
(

RHH
0 + RLL

0
)
, which states that the equilibrium bond length between HS–LS

configuration is equal to the average of those of LS–LS and HS–HS configurations. Using
the previous parameters, RHH

0 , RLL
0 and RHL

0 , it is straightforward to demonstrate that
general relations connecting the equilibrium bond lengths and the spin states are written as,

Rnn
0

(
SA

i , SB
i

)
= RHL

0 +
δR
2

(
SA

i + SB
i

)
(2)

Rnnn
0

(
SA

i , SA
j

)
= 2RHL

0 + δR

(
SA

i + SA
j

)
= 2Rnn

eq

(
SA

i , SA
i

)
(3)

Rnnn
0

(
SB

i , SB
j

)
= 2RHL

0 + δR

(
SB

i + SB
j

)
= 2Rnn

eq

(
SB

i , SB
i

)
(4)

where δR =
(

RHH
0 − RLL

0
)

represents the lattice parameter misfit between the LS and
HS states.

2.2. Elastic Frustration inside the Binuclear Units

The concept of elastic frustration supposes the existence of a lattice mismatch between
the nn and nnn bond lengths, leading to antagonist equilibrium distances. From the experi-
mental point of view, these behaviors may result from the existence of steric effects imposed
by the interactions between ligands of neighboring molecules, due to their extended spatial
occupations [34,60,81]. For example, a strong π − π stacking interaction may contribute to
cooperative ferro-elastic interactions, while other electrostatic interactions such as “weak”
hydrogen bonding may prevent the molecular volume change along the transition between
LS and HS, leading to antiferro-elastic interactions.

For this purpose, we chose the HS state free from any elastic frustration, while we
inject an elastic frustration between the nn and nnn for the other HS = LS and LS = LS
configurations. In particular, in the present study, the elastic frustration is considered only
inside the binuclear units as follows,

Rnn
eq

(
SA

i , SB
i

)
= Rnn

0

(
SA

i , SB
i

)
+

δRξ

2

(
1−

(
SA

i + SB
i
)

2

)
(5)

where ξ > 0 is the frustration strength.
Using expression (5), the HS state (SA

i = +1, SB
i = +1 ∀i) is indeed non-frustrated,

since Rnn
eq (+1,+1) = RHH

0 ∀ξ. When ξ > 0, the equilibrium distances between nn pairs for
L=L and H=L configurations are respectively,

Rnn
eq (−1,−1) = RLL

0 + δRξ and Rnn
eq (±1,∓1) = RHL

0 +
δR
2

ξ, (6)

while those of intermolecular nnn sites are maintained to 2RLL
0 and 2RHL

0 , respectively.
Table 1 summarizes the sixth spin configurations of a pair of neighboring binuclear

molecules one and two. It is clear from Table 1 that when the system is in the LS phase, the
elastic frustration strength ξ leads to antagonist distances between nn and nnn distances.
Indeed, since the sites are restricted to move only along the direction of the chain, the
nnn distance for example between A1 and A2 should be equal to the sum of the distances
between A1-B1 and B1-A2. This is not the case when the frustration is injected as we can
see for the LS case, where the total nnn equilibrium distance (LS1-LS2, see Table 1) is equal
to 2RLL

0 (no frustration), while the nn distances impose a total value equal to 2RLL
0 + δRξ.

As a result, the system will try to share the elastic energy excess with the other bonds in
order to optimize the spatial distribution of elastic energy, avoiding large compressive and
tensile stresses. Obviously, the resulting distribution of bond length distance will depend
on the strengths of the nn and nnn elastic constants.
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Table 1. Nearest neighbors and next nearest neighbors spin configurations of a pair of binuclear units (1 and 2) and their
corresponding equilibrium distances showing their antagonist character, except for ξ = 0, where nn and nnn distances fit
each other.

Spin Configurations nn Equilibrium Distances nnn Equilibrium Distances

HS1 = HS1-HS2 = HS2 RHH
0 RHH

0 RHH
0 2RHH

0 2RHH
0

LS1 = LS1-LS2 = LS2 RLL
0 + δRξ RLL

0 RLL
0 + δRξ 2RLL

0 2RLL
0

HS1 = HS1-HS2 = LS2 RHH
0 RHH

0 RHL
0 + δR

2 ξ 2RHH
0 2RHL

0
HS1 = HS1-LS2 = LS2 RHH

0 RHL
0 RLL

0 + δRξ 2RHL
0 2RHL

0
HS1 = LS1-LS2 = LS2 RHL

0 + δR
2 ξ RLL

0 RLL
0 + δRξ 2RHL

0 2RLL
0

HS1 = LS1-HS2 = LS2 RHL
0 + δR

2 ξ RHL
0 RHL

0 + δR
2 ξ 2RHH

0 2RLL
0

We start by studying the frustration for a “homogeneous” binuclear chain, i.e.,
kintra

1 = kinter
1 . In the simulations, we considered the following values for the non-

frustrated equilibrium distances, RLL
0 = 1 nm, RHH

0 = 1.2 nm, RHL
0 = 1.1 nm, leading

to the lattice misfit value, δR = 0.2 nm. The nn elastic constants have been fixed to
kintra

1 = kinter
1 = 34, 000 K·nm−2 = 34 meV·A−2, and the nnn elastic constant is taken as

kinter
2 = 0.1kinter

1 while ∆0 = 450 K and ln g = 5. This value leads to the entropy change,
∆S = 41 J·K·mol−1, a value which is in fair agreement with experimental finding of
calorimetry [32].

3. Results and Discussion

In the electro-elastic model for SCO materials, the spin transition is described using
two macroscopic order parameters, which are the HS fraction, nHS, connecting to the
average magnetization < S >, and the average lattice bond length, < d >. Another
quantity of interest, δn = 1

2
(
< SA

i+1 − SA
i >

)
(or 1

2
(
< SB

i+1 − SB
i >

)
), which measures the

degree of order between A (B) sites belonging to consecutive binuclear units, is also used.
The intramolecular information about the binuclear units can be also studied by monitoring
the temperature dependence of the quantities < dintra > and < dinter >, the average of
intra and inter binuclear distances. These quantities can be expressed simply as,

nHS = 1+<S>
2 , δn =

1
2 ∑N/2

i=2 (SA
i+1−SA

i )
( N−1

2 )
,< dintra > =

∑
N
2 −1

i=1 |xB
i −xA

i |
( N−1

2 )
,

< dinter > =
∑N/2

i=2 (|xA
i+1−xB

i |
( N−1

2 )
, and < d > = <dintra>+<dinter>

2

(7)

where < S > is the average spin value and
∣∣xB

i − xA
i

∣∣ is the distance between neighboring
sites A and B inside the same binuclear unit at position i. This is while

∣∣xA
i+1 − xB

i

∣∣ is
the distance between neighboring B (in binuclear i) and A (inside binuclear i + 1) sites
belonging to consecutive binuclear units.

The Hamiltonian (1), which includes spin and distortion variables, cannot be solved
analytically in view of its complex structure. Therefore, we use the Monte Carlo (MC)
technique to study its thermal properties with frustration, the strength of which is controlled
by the parameter, ξ.

The investigations of the physical properties of the adapted electro-elastic 1D model
for binuclear solids is implemented on a chain with N = 60 atoms, consisting in 30 binu-
clear units. Here, each SCO atom interacts with its surrounding nearest and next nearest
neighbors. When starting the simulations, we first prepare the system in the HS (non-
frustrated by construction) phase by fixing all the spins to Si = +1 and all nn lattice
distances equal to RHH

0 . The Monte Carlo simulations, based on the Metropolis algorithm,
concerned both spin and lattice position variables. The stochastic algorithm is performed
in the following way: first we select randomly a site, i, with spin Si and position xi, and we
change its spin state to S′i = −Si without position change. This new state is accepted or
rejected by the usual Metropolis criterion. In the second step, whatever the result of the first
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MC process, we mechanically relax the lattice by a slight motion of all the nodes randomly
selected, with a quantity δx = 0.001 nm, which is rather small compared to the distance
between two consecutive sites (average distance ~1.1 nm). This procedure is repeated
10 times for each spin flip. When all nodes of the lattice are visited for the spin change, we
define the unit Monte Carlo step, denoted “MCS”. The same procedure is performed at
each temperature. To determine the thermal properties of the system, we first cool down
from 140 to 1 K and then warm up to 140 K, with a 1 K increment. At each temperature, we
perform 105 MCS to reach the equilibrium state and we use 105 other MCS for the statistics.
Using the parameter values of the ligand field energy, ∆0, and the degeneracy ratio, g, and
according to the general law that at the transition the total effective ligand field becomes
equal to zero, we arrive immediately to the expression of the transition temperature T(0)

eq ,
through the relations: < S > = 0 (nHS = 0.5) and < d > = RHL

0 ,

T(0)
eq =

∆0

kB ln(g)
(8)

Figure 2 summarizes the thermal behavior of the HS fraction values for the elastic
constant’s values, kintra

1 = kinter
1 = 34, 000 K·nm−2 = 34 meV·A−2, for the frustration rate,

ξ = 0. We see clearly that the chain presents a first-order transition between the LS and HS
states with a large thermal hysteresis, which is characteristic of a strong cooperative SCO
system. The MC equilibrium temperature is evaluated by taking TMC

eq = T++T−
2 ≈ 90 K,

where T+ and T− are the upper and lower transition temperatures at nHS = 0.5.

Figure 2. (a) Thermal dependence of the HS fraction, nHS, in the non-frustrated case (ξ = 0) for strong couplings
kintra

1 = kinter
1 = 34, 000 K·nm−2 leading to a hysteretic behavior. (b,c) are corresponding snapshots of the spin state

configurations of the lattice along the thermal transition of heating and cooling, respectively. The other parameter values
are: RLL

0 = 1 nm, RHH
0 = 1.2 nm, RHL

0 = 1.1 nm, δR = 0.2 nm, ∆0 = 450 K and ln g = 5.
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The results of Figure 2 indicate the presence of a thermal hysteresis curve while we
deal with a 1D system. This effect can be attributed to the long-range character of the
elastic interactions, which belong to mean field universality class, as demonstrated by
Miyashita et al. [81] and as confirmed in many recent works [82] related to the study of
the dynamic phase transition in 1D. These investigations demonstrated that the hysteresis
widths increase with the length of the chain.

The strength of the cooperative interactions is proportional to the misfit of elastic
energy per site,

(
kintra

1 + 2kinter
2

)
δ2

R. It is worth noticing here that this behavior contrasts
with that of the usual Ising 1D chains with short-range interactions, the kinetic hysteresis
of which are significantly less wide. One may think that the presence of elastic interactions,
which are known to lead to long-range interactions, clearly lead to larger energy barriers of
metastable phases, which may then enhance the existence of these larger kinetic thermal
hysteresis. In experimental systems of 1D spin-crossover systems [66], the SCO chains are
rarely isolated and several types of interactions, such as weak hydrogen bonding or strong
stacking π − π, may connect them, which then lead to 3D topology of interactions with a
strong 1D character, due to this structural anisotropy. In such situations, true first-order
transitions or very sharp transitions are allowed.

The spatial distribution of the HS and LS species along the cooling and heating
processes of the phase transition are summarized in Figure 2b,c. Here, we see that the
transformation starts from both extremities of the chain without showing the presence of
any special self-organization.

Figure 3a presents the thermal evolution of the HS fraction for different values of
the frustration rate ξ. We noticed that in the absence of frustration, the SCO transition is
of first-order with hysteresis (black curves of Figure 3a), with a width of ∆T = 21 K. In
contrast, when the elastic frustration between nn and nnn sites comes into play, the HS
fraction curve shifts to a lower temperature region, and the previous first-order transition
transforms to a non-hysteretic two-step transition with a large plateau around nHS = 0.5
(pink curves of Figure 3a). A further increase of the frustration strength enlarges the
plateau and stabilizes the intermediate state. Similar information is also obtained from the
thermal dependence of the average lattice parameter, < d >, given in Figure 3b, which
exhibits a sizable and continuous increase in < d >LL in the LS state. In particular, it is
remarked that the plateau does emerge in the simulations from the threshold value ξ = 0.6,
for which an average distance corresponds, < d >LL' 1.09 nm (~ RHL

0 ). The analysis of
the thermal behavior of the average intra- and inter-dinuclear distances, < dintra > and
< dinter >, given in Figure 3c,d, leads to the same behavior as that of Figure 3b, due to the
homogenous character of all equilibrium HS–HS, HS–LS and LS–LS distances considered
inside the binuclear and between the binuclear species.

In Figure 3e, we plotted the corresponding thermal dependence of the order parameter
δn, given in Equation (7), which quantifies the degree of ordering between consecutive
binuclear units. In the HS and LS states, one has δn = 0, which means that sublattices
A and B are equivalent. In contrast, in the plateau region where < SA + SB > = 0 (i.e.,
nHS = 0), the curves δn(T) reach a maximum indicating the existence of LS = LS-HS = HS
ordering. This order is partial for ξ = 0.2 and becomes almost complete in the whole plateau
region for ξ = 1, indicating the existence of a symmetry breaking between the sublattices
which couple in an antiferro-elastic fashion.

Figure 3f summarizes the spatial configurations of the spin states (red dots = HS and
blue dots = LS) inside the lattice along the thermal transition of the two-step behavior
obtained for ξ = 1. Here, in the temperature interval 34 ≤ T ≤ 45 K, we see the emergence
of self-organization of spin states inside the plateau region under the form of spin configu-
rations LS = LS-HS = HS-LS = LS-HS = HS, noted for simplicity L2H2 . . . , with the presence
of antiphase boundaries. The latter take place because the symmetric configuration H2L2
has the same energy. It is interesting to remark that while these configurations occur in
spin crossover molecules coupled ferro elastically inside the binuclear units, the binuclear
units themselves are coupled in an antiferro fashion.
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Figure 3. (a) Thermal dependence of the HS fraction obtained by MC simulations performed on spin and lattice positions of
Hamiltonian (1) for different values of the elastic frustration strength ξ. First-order transition is obtained for weak ξ (red and
black curves), which transforms to two-step transitions with a plateau (pink and blue) for larger ξ. (b–d) Corresponding
thermal dependence of the average nn distances < d >, and average nn intra-binuclear, < dintra >, and inter-binuclear,

< dinter >, respectively. (e) Thermal-dependence of δn = 1
2

(
< SA

i+1 − SA
i >

)
, showing a symmetry breaking in the plateau

region, where the spin states self-organize in the ordered state HS = HS-LS = LS . . . for which δn = 1. The degree of
organization is partial for ξ = 0.6, 0.8 and becomes almost complete for ξ = 1. (f) Spatial distribution of the spin states
(red = HS and blue = LS) along the thermal transition for ξ = 1, showing a perfect self-organization of the spin states in the
plateau region, particularly at 40 K. The parameter values are RLL

0 = 1 nm, RHH
0 = 1.2 nm, RHL

0 = 1.1 nm, δR = 0.2 nm,

kintra
1 = kinter

1 = 34, 000 K·nm−2, kinter
2 =

kintra
1
10 , ∆0 = 450 K, ln g = 5.
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3.1. Analytical Expressions of the Relaxed Lattice Bond Lengths

This section is devoted to the analytical investigations of the ξ dependence of the
relaxed nn distance, dx, for the three ordered electronic configurations of Figure 3, namely
H2H2 (HS = HS-HS = HS . . . ), L2L2 (LS = LS-LS = LS . . . ) and L2H2 (LS = LS-HS = HS . . . ),
corresponding respectively to a system fully HS, fully LS and antiferro-magnetical between
binuclear units. When the system is fully HS, its elastic energy is always zero because
the nn and nnn distances are not frustrated. In contrast, when the system adopts the LS
and the ordered antiferro-like structures, the frustration appears, and their total relaxed
elastic energies remain non-zero, due to the intrinsic incompatibility between their nn and
nnn distances.

For this, we consider a homogenous elastic system, in which we replace the local nn
(resp. nnn) distances ri,i+1 (resp. ri,i+2) by an invariant distance x (resp. y) in the lattice [83].
We denote by xrelax

L2L2 and xrelax
L2H2 (resp. yrelax

L2L2 and yrelax
L2H2) the relaxed nn (resp. nnn) distances

corresponding to L2L2 and L2H2 macroscopic states. The total non-relaxed energies of the
system (including electronic and elastic contributions) for the configurations H2H2, L2L2
and L2H2 become,

EH2H2 = N∆e f f +
(N−1)

2 kintra
1

(
x− Rnn

eq (+1,+1)
)2

+ (N−1)
2 kinter

1

(
y− Rnn

eq (+1,+1)
)2

+(N − 2)kinter
2

(
x + y− Rnnn

eq (+1,+1)
)2 (9a)

EL2L2 = −N∆e f f +
(N−1)

2 kintra
1

(
x− Rnn

eq (−1,−1)
)2

+ (N−1)
2 kinter

1

(
y− Rnn

eq (−1,−1)
)2

+(N − 2)kinter
2

(
x + y− Rnnn

eq (−1,−1)
)2 (9b)

EL2H2 = (N−1)
4 kintra

1

(
x− Rnn

eq (+1,+1)
)2

+ (N−1)
2 kinter

1

(
y− Rnn

eq (+1,−1)
)2

+ (N−1)
4 kintra

1

(
x− Rnn

eq (−1,−1)
)2

+ (N − 2)kinter
2

(
x + y− Rnnn

eq (+1,−1)
)2 (9c)

For a chain with homogenous lattice interspacing (x = y) and homogenous nn elas-
tic constant k1 = kintra

1 = kinter
1 , the total non-relaxed energy density after substituting

Rnn
eq
(
Si, Sj

)
and Rnnn

eq (Si, Sk) by their expressions given in Equations (3)–(5), is given in the
case of a long chain (N � 1) by

EL2L2

N
= −∆e f f + kintra

1

(
x− RLL

0 − δRξ
)2

+ kinter
2

(
2x− 2RLL

0

)2
(10a)

EL2H2

N
=

kintra
1
4

(
x− RLL

0 − δRξ
)2

+
kintra

1
4

(
x− RHH

0

)2
+

kintra
1
2

(
x− RHL

0 − δRξ

2

)2
+ kinter

2

(
2x− 2RHL

0

)2
(10b)

EH2H2

N
= ∆e f f +

(
kintra

1 + 4kinter
2

)(
x− RHH

0

)2
(10c)

The relaxed distances are obtained by minimizing these expressions with respect to x,
which gives,

xrelax
H2H2= RHH

0 , (11a)

xrelax
L2L2 = RLL

0 +
δR

1 + 4k
ξ, (11b)

xrelax
L2H2 = RHL

0 +
δR

1 + 4k
ξ

2
, (11c)

where k =
kinter

2
kintra

1
is the ratio between the nnn and nn elastic constants.

In Equations (11b) and (11c), we see that the relaxed nn distances (xrelax
L2L2) in the LS

and in the ordered antiferro-like L2H2 state (xrelax
L2H2), are bigger than their respective non-

frustrated values, RLL
0 and RHL

0 , and are simply linear increasing functions of the frustration
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parameter ξ > 0 and the lattice parameter misfit δR, while they are decreasing functions of
the elastic constant ratio k.

Figure 4 displays the ξ-dependence of the analytical values of xrelax
LL (ξ), given by

Equation (11b) together with the results of MC simulations of Figure 3, at 0 K. An excellent
agreement is obtained between these two sets of data, confirming the relevance of the
present analytical approach.

Figure 4. The ξ dependance of the relaxed nn distance, Rrelax
LL , in the LS state. The blue squares are MC

data and the full red line corresponds to the analytical prediction of Equation (11b). The calculations
are performed at T = 10 K. Observe the excellent quantitative predictions of the analytical approach.

3.2. Effect of the Elastic Frustration on the Transition Temperatures and Phase Diagram

In this section, we aim to find the analytical dependence of the transition temperature
on the frustration parameter ξ. Two situations corresponding to the case of first-order
transition and double step transitions, reported in Figure 3, are analyzed. In the latter
case, we will express the ξ dependence of the transition temperatures between the LS
and the intermediate H2L2 state on the one hand, as well as that of the second transition
temperature between the H2L2 state and the full HS state on the other hand.

We notice that in the case of the first-order transition with a thermal hysteresis, the
analytical method will not give the limiting temperatures (T−, T+) of the hysteresis,
which depend on the kinetic aspects of the process (lifetime of metastable states), but will
rather lead to find the equilibrium temperature Teq, while the MC simulations do exactly
the contrary. In this last case, the equilibrium temperature is derived from MC data as
∼ (T− + T+)/2.

To determine analytically the transition temperatures, Teq, as a function of the strength of
frustration ξ, we study the case of the hysteretic transition of Figure 3a. This cooperative transfor-
mation between full LS and HS states takes place between two ordered states, namely LS and HS,
in which their corresponding configurational entropies are null. Therefore, the condition of equal
free energies at the transition temperature transforms to that of equal energies, and we then have
E
(
T = Teq, < Si > = +1, x = xHH

relax
)
= E

(
T = Teq, < Si > = −1, x = xLL

relax
)
. Using the

total energies calculted in Equation (7), we arrive after some simplifications to the following
expression of the transition temperature,

Teq(ξ) =
∆0

kB ln g
− 2

kB ln g
kinter

2
(1 + 4k)

δ2
Rξ2 (12)

In Equation (12), the first term corresponds to the transition temperature of the usual
Ising-like model and the second corresponds to the contribution of the elastic frustration

which appears as an additional effective ligand field energy, − 2
kB ln g

kinter
2

(1+4k) δ2
Rξ2, to ∆0. It
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is also observed that the global transition temperature of the system shows a quadratic
decrease with the frustration parameter.

The results are shown in the region (i) of the phase diagram of Figure 5, where we see
that the analytical curve Teq(ξ) is in good agreement with the data of MC simulations.

Figure 5. Phase diagram T(ξ) summarizing the evolution of the equilibrium transition temperatures
with the frustration parameter ξ. Squares represent the MC data and the continuous lines correspond
to the analytical calculations. Region (i) with 0.2 < ξ < 0.5 relates to the single-step first-order
spin transition between HS and LS states, while region (ii) with 0.5 < ξ < 1 delimits the complete
two-step transitions behavior made of two consecutive gradual transitions. Black (resp. blue) and
blue (resp. violet) squares (resp. lines) are MC (resp. analytical) data of T−eq (ξ) and T+

eq (ξ).

3.3. Condition of Appearance of the Two-Step Spin Transitions

According to the results of Figure 3a, for large values of ξ, the thermal hysteresis
transforms from first-order to a two-step transition with the emergence of a plateau around
nHS ∼ 0.5. In this region, the spin states show an antiferromagnetic-like self-organization
(L2H2L2 . . . ) between the binuclear units.

As before, we calculate the analytical expressions of the transition temperatures, T−eq(ξ)

and T+
eq(ξ), corresponding to the transition between the full LS state and the intermediate

L2H2 state, and between the L2H2 state and the full HS state. At these temperatures, the
total energies of the elastically relaxed LL, L2H2 and HH states must obey the follow-
ing conditions,

E
(

T = T+
eq , < Si > = +1, x = xHH

relax

)
= E

(
T = T+

eq , < Si > = 0, x = xL2H2
relax

)
(13a)

and
E
(

T = T−eq , < Si > = −1, x = xLL
relax

)
= E

(
T = T−eq , < Si > = 0, x = xL2H2

relax

)
(13b)

Using the expressions of energies found in Equations (10a)–(10c), we arrive immedi-
ately after some simplifications to,

T+
eq(ξ) = Teq(ξ)−

2δ2
R

kB ln gkintra
1

[
16k2+1

16(1+4k)2 − k
1+4k

]
ξ2 +

kintra
1 δ2

R
kB ln g

(32k2+16k+2)
16(1+4k)2 ξ

− kintra
1 δ2

R
16kB ln g

(22k2+16k+2)
(1+4k)2

(14a)

and

T−eq(ξ) = Teq(ξ) +
2δ2

R
kB ln gkintra

1

[
16k2+1

16(1+4k)2 − k
1+4k

]
ξ2 − kintra

1 δ2
R

kB ln g
(32k2+16k+2)

16(1+4k)2 ξ

+
kintra

1 δ2
R

16kB ln g
(22k2+16k+2)

(1+4k)2

(14b)
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The two-step transitions exist when the two following conditions are fulfilled:
T+

eq(ξ) > T−eq(ξ) and T−eq(ξ) > 0. In Figure 5, which represents the system’s phase diagram
of the system, we report both analytical Teq(ξ) curves and MC results. It is found that there
is very good agreement between the analytical predictions and the MC data. In particular,
two important regions of ξ values (ξ < 0.5 and ξ > 0.5) corresponding to first-step and
two-step transitions are well reproduced as well as the “critical” value, ξ ∼= 0.5, beyond
which a “bifurcation-like” behavior of the transition temperature is evidenced.

3.4. Effect of the Intramolecular Elastic Constant

We now turn to the analysis of the effect of intramolecular elastic interactions inside
the binuclear units on the global behavior of the chain, and for that we consider the last
frustrated SCO chain with the parameter of frustration ξ = 1. We fix the values of the nn
and nnn intermolecular elastic constant to kinter

1 = 34, 000 K·nm−2 and kinter
2 = 0.1kinter

1

and we vary the intramolecular elastic constant, kintra
1 . We denote by η =

kintra
1

kinter
1

the ratio

between the intra and inter nn elastic constants. The values of the parameters taken in the
simulations are the same as the previous ones.
a/Thermal dependence of the HS fraction and lattice bond lengths:

In Figure 6a–e we show the behavior of nHS(T), < d >(T), < dintra >(T), < dinter >(T)
and δn curves for different values of the ratio between intra and intermolecular constants
η =

kintra
1

kinter
1

. In the first figure, we see that increasing η (i.e., kintra
1 ) leads to an increase in

the width of the plateau for the two-step transition, which reaches a saturation for the high
values of η. It is also observed (see Figure 6) that at a low temperature, the nn intramolecular
distances increase and saturate rapidly to the value of the HS equilibrium distance while
the intermolecular nn distances decrease when η increases. This is a result of the counter-
reaction of the increase in the intramolecular distance by maintaining the nnn distance free
from frustration.

Figure 6f presents the spatial configurations of the spin states (red dots = HS and
blue dots = LS) inside the lattice of the chain along the thermal transition for ξ = 1 and
η = 40, giving rise to the two-step behavior. We see again the presence of the self-organized
spin state structure L2H2 in the plateau region, i.e., for 26 ≤ T ≤ 45 K. In addition,
antiphase boundaries are also evidenced because the symmetric configuration (H2L2) has
the same energy.

Now we are interested in the η dependence of all nn distances inside and between
the binuclear units. For this, we select the three ordered electronic configurations of
Figure 6, namely H2H2 (HS = HS-HS = HS . . . ), L2L2 (LS = LS-LS = LS . . . ) and
L2H2 (LS = LS-HS = HS . . . ).

We denote by xrelax
LL and xrelax

L2H2 the relaxed nn distances corresponding to L2L2 and
L2H2 macroscopic states. We denote by x the nn intramolecular distances and by y the
nn intermolecular distances. The total non-relaxed energy of the system is still given by
Equations (9a)–(9c) for all these configurations.

Substituting Rnn
eq
(
Si, Sj

)
and Rnnn

eq (Si, Sk) by their expressions given in Equations (3)–(5),
the elastic energy densities in the case of a long chain (N � 1) are,

EHH
N

= ∆e f f +
kintra

1
2

(
x− RHH

0

)2
+

kinter
1
2

(
y− RHH

0

)2
+ kinter

2

(
x + y− 2RHH

0

)2
(15a)

EHH
N

= ∆e f f +
kintra

1
2

(
x− RHH

0

)2
+

kinter
1
2

(
y− RHH

0

)2
+ kinter

2

(
x + y− 2RHH

0

)2
(15b)

EL2H2

N
=

kintra
1
4

(
x− RHH

0

)2
+

kinter
1
2

(
x− RHL

0 − δRξ

2

)2
+

kintra
1
4

(
y− RLL

0 − δRξ
)2

+ kinter
2

(
x + y− 2RHL

0

)2
(15c)
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Figure 6. (a) Thermal dependence of the HS fraction obtained by MC simulations for η values showing the occurrence of two-
step transitions with a plateau at ξ = 1, in which the width increases with increasing η values. (b–d) corresponding thermal
dependences of the average nn distances over the lattice, < d >, intra-binuclear, < dintra > and inter-binuclear distances

< dinter >, respectively. (e) Thermal dependence of δn = 1
2

(
< SA

i+1 − SA
i >

)
for different values of the elastic constant ratio

η, showing a perfect order in the temperature interval, 40–60 K. (f) Snapshots of the lattice along the spin transition (red = HS
and blue = LS) showing a self-organization of the spin states of the binuclear units (HS = HS-LS = LS-HS = HS-LS . . . ) in
the plateau region (~50 K). The other parameter values are: RLL

0 = 1 nm, RHH
0 = 1.2 nm, RHL

0 = 1.1 nm, δR = 0.2 nm,
ξ = 1, kinter

1 = 34, 000 K·nm−2, kinter
2 = 0.1kinter

1 , ∆0 = 450 K and ln g = 5.
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The relaxed intra and inter distances are obtained by minimizing the three energy
densities with respect to x and y parameters, i.e., ∂(E/N)

∂x = 0 and ∂(E/N)
∂y = 0. This leads to,

〈dintra〉LL = xLL
relax = RLL

0 +
Aη − B
Aη + B

δRξ (16a)

〈dinter〉LL = yLL
relax = RLL

0 +
Cη + B
Aη + B

δRξ (16b)

and
〈dintra〉L2H2 = xL2H2

relax = RHL
0 +

Aη − B
Aη + B

δRξ

2
(16c)

〈dinter〉L2H2 = yL2H2
relax = RHL

0 +
Cη + B
Aη + B

δRξ

2
(16d)

where A = 1 + 2k, B = 2k and C = 1− 2k, with k =
kinter

2
kinter

1
.

The analytical η dependence of 〈dintra〉, 〈dinter〉 and 〈d〉 = 〈dintra〉+〈dinter〉
2 for the three

studied configurations are given in Figure 7 together with the MC results, showing a very
good agreement between these two sets of data.

Figure 7. Relaxed nn distance, Rrelax
LL , in the LS state vs. elastic ratio η between intra- and inter-

binuclear elastic constants. The red, blue and black squares are MC data and the black, red and blue
lines correspond to the analytical prediction of Equations (16a)–(16d). The calculations are performed
at T = 0 K. Observe the excellent quantitative predictions of the analytical approach.

b/Transition temperatures and phase diagram:
The thermal dependence of the HS fraction of Figure 6a shows that for large values

of η, the width of the plateau increases. In the following, we determine analytically
the expressions of the transition temperatures, T−eq(η) and T+

eq(η), associated with the
L2L2↔L2H2 and the H2H2↔L2H2 transitions, respectively. At these temperatures, the
total energies of the elastically relaxed L2L2, L2H2 and H2H2 states must respect the
following conditions,

E
(

T = T+
eq , < Si > = +1, xintra = 〈dintra〉HH , xinter = 〈dinter〉HH

)
= E

(
T = T+

eq , < Si > = 0, xintra = 〈dintra〉L2H2, xinter = 〈dinter〉L2H2

) (17a)

and
= E

(
T = T−eq , < Si > = −1, xintra = 〈dintra〉Ll , xinter = 〈dinter〉LL

)
= E

(
T = T−eq , < Si > = 0, xintra = 〈dintra〉L2H2, xinter = 〈dinter〉L2H2

)
(17b)
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Using the expressions of energies found in Equations (15a)–(15c), we arrive immedi-
ately after some simplifications to,

T−eq(η) =
∆0

kB ln g +
kinter

1 δ2
R

16(Aη+B)2kB ln g

[
A2(ξ − 1)2η3 +

(
2AB

(
5ξ2 − 8ξ + 5

)
− 16ξ2

(
(C−A)2

2 +
kinter

2
kinter

1
(A + C)2

))
η2 +

(
11ξ2B2 − 6ξB2 − 31B2

)
η

]
(18a)

T+
eq(η) =

∆0

kB ln g
−

kinter
1 δ2

R

16(Aη + B)2kB ln g

[
A2(ξ − 1)2η3 + 2AB

(
5ξ2 − 8ξ + 5

)
η2 +

(
11ξ2B2 − 6ξB2 + B2

)
η
]
. (18b)

For ξ = 1, which is the value considered in the MC investigation of η effect, we find
these temperatures,

T−eq(η) =
∆0

kB ln g
+

kinter
1 δ2

R

16(Aη + B)2kB ln g

[(
4AB− 16

(
(C−A)2

2
+

kinter
2

kinter
1

(A + C)2

))
η2 − 26B2η

]
(19a)

T+
eq(η) =

∆0

kB ln g
−

kinter
1 δ2

R

16kB ln g(Aη + B)2

[
4ABη2 + 6B2η

]
(19b)

Here again, the comparison between the analytical results and MC data, summarized
in Figure 8, shows a very good agreement, confirming the relevance of the homogeneous
elastic approach to reproduce the MC results.

Figure 8. Elastic ratio η , dependence of the upper (T+
eq ) and lower (T−eq ) transition temperatures of

Figure 5 (a) obtained from MC (squares) simulations and analytical (continuous lines) investigations
of Equations (19a) and (19b). An excellent agreement is found between both sets of data.

4. Relaxation of the HS Fraction at Low Temperature

This last section is devoted to the analysis of the dynamical properties of the present
binuclear chain through the analysis of the time evolution of the HS fraction and the
average nn distances along the relaxation at low temperature (10 K) of the metastable HS
state. For this, the chain is initially prepared in the HS state by setting all spin state values
equal to +1 and all nn distances equal to RHH

0 . In this state, by construction the chain does
not experience any elastic frustration, which means that its elastic energy is equal to zero.
Since at 10 K, the LS state is the stable one (see Figure 3a), the HS chain will relax towards
the LS state. Here, we are interested in the effect of the frustration parameter, ξ, and elastic
interactions ratio, η, on the shape of the relaxation curves.
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4.1. Elastic Frustration Effects on the Low Temperature Relaxation of the Metastable HS State

We start by analyzing the effect of the elastic frustration on a homogeneous binuclear
chain in which all involved (intra- and intermolecular) elastic constants are equal. Here,
the values of the nn elastic constants have been fixed to kintra

1 = kinter
1 = 51, 000 K·nm−2,

and those of nnn are taken as kinter
2 = 0.1kinter

1 . The obtained results are summarized in
Figure 9a,b, where we observe that for the values of frustration parameter, 0 < ξ < 0.6,
the lifetime of the HS metastable state decreases and the relaxation process accelerates
with increasing ξ values. This behavior is ascribed to the decrease in the effective elastic
energy barrier facing the flip of an HS site to LS. Indeed, for ξ = 0, the elastic energy cost
for the HS to LS spin flip is easily found as ∆E0 =

(
1
2 kintra

1 + 1
2 kinter

1 + kinter
2

)
δ2

R, where

δR =
(

RHH
0 − RLL

0
)
. When ξ increases, the average nn distance in the LS state is no more

RLL
0 , but becomes xrelax

LL = RLL
0 + δR

1+4k ξ (see Equation (12b)), which is bigger than RLL
0 , as we

can observe in Figure 9b, where the value of < d > at infinite time raises up as ξ increases.
Consequently, the new energy barrier becomes

∆E(ξ) =
(

1
2 kintra

1 + 1
2 kinter

1 + kinter
2

)(
RHH

0 − xrelax
LL

)2
=
(

1− 1
1+4k ξ

)2
∆E0. This energy bar-

rier has a non-monotonous behavior with ξ, since it goes through a minimum for ξ = 1+ 4k.
It has a decreasing function in the interval 0 < ξ < 1 + 4k and its derivative becomes posi-

tive for ξ > 1+ 4k. In the situation in Figure 9, the ratio, k =
kinter

2
kintra

1
= 1

10 , and the barrier, ∆E,

is then expected to completely vanish for ξ = 0.7. ∆E(ξ), is then clearly lower than ∆E0 in
the region ξ < 0.7 and has a decreasing behavior as ξ increases. As a result, the relaxation
of the metastable HS state is expected to be faster for higher ξ values in this region. This
analytical prediction is in excellent agreement with the MC data in Figure 9a,b.

On the other hand, for ξ > 0.74, Figure 9c,d exhibit two relaxation regimes. In
the first regime, both nHS and < d > fall down to intermediate values (nHS = 0.4 and
< d > ∼ 1.14), and then a new regime in which the relaxation process slows down
starts from these values. In Figure 9e we plot the temporal evolution of the average intra-
dinuclear spin-spin correlation, < SASB >, for different values of the elastic frustration
strength ξ (0.75 < ξ < 0.83), which shows the same trend as those of nHS and < d >. Since,
< SASB > = n++ + n−− − 2n+− where n++, n−− and n+− = n−+ are the respective
probabilities of obtaining HS-HS, LS-LS and HS-LS dimers; it is clear that the first regime
of < SASB > corresponds to the formation of HS-LS dimers. Thus, for ξ = 0.82 and 0.83,
for example, < SASB > reaches the value 0.2, which means that 80% (= n+− + n−+) of the
lattice is formed by HS-LS dimers and 20% of LS-LS dimers. This leads to nHS = 0.41 at the
end of the first regime, in excellent agreement with the results of Figure 9c. This means that
in the first regime, for strong ξ values, the chain tends to stabilize transient antiferro-elastic
intra-binuclear states. In the second regime, < SASB > increases due to the increase in
the LS-LS species as a result of the conversion of HS-LS binuclear configurations to LS-LS
states, due to thermal relaxation. These behaviors are confirmed by the time dependence
of the snapshots of Figure 9f, which clearly indicate the emergence of new and transient
organized states identified around 800 MCS and 1000 MCS, and resemble a mixture of
successive (H = L)-(H = L) or (L = H and (H = L)-(L = L) . . . configurations.

In this second slow regime, taking place after 1000 MCS, the increase in ξ results in an
increase in the lifetime of the metastable state. This behavior is in very good agreement
with the previous analysis based on the non-monotonous behavior of the elastic energy
barrier with the frustration parameter, ξ.
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Figure 9. (a) MC results of the time evolution of the isothermal relaxation of the metastable HS fraction, nHS, for different
values of the elastic frustration parameter ξ (for 0 < ξ < 0.6) with η = 1. Inset: corresponding snapshots of the lattice
along the relaxation (red = HS and blue = LS) of the homogenous binuclear chain for ξ = 0, which corresponds to the black
curve in Figure 9a. (b) Corresponding time evolution of the average nn distances < d >. (c) Time evolution of the HS
fraction, nHS (for 0.75 < ξ < 0.83). (d) Corresponding time evolution of the average nn distances < d >. The parameter

values are RLL
0 = 1 nm, RHH

0 = 1.2 nm, RHL
0 = 1.1 nm, δR = 0.2 nm, kintra

1 = kinter
1 = 51, 000 K·nm−2, kinter

2 =
kintra

1
10 ,

∆0 = 450 K and ln g = 5. (e) Temporal evolution of the average intramolecular spin-spin correlation, < SASB >, for different
values of the elastic frustration strength ξ (0.75 < ξ < 0.83) showing the existence of two relaxation regimes. (f) Spin
configurations along the relaxation of the chain for ξ = 0.82 and η = 1 (red = HS and blue = LS), showing the emergence
of a transient self-organized state between 800 MCS and 1000 MCS, made of a mixture of successive (H = L)-(H = L) and
(L = L) configurations.
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4.2. Effect of Intramolecular Elastic Constant on the Relaxation Curves

Here we study the effect of intramolecular elastic interactions inside the binuclear
units on the relaxation process of the previous chain. For this, we monitor the ratio,

η =
kintra

1
kinter

1
, between the intra and intermolecular elastic constants in the range 1–1.7. The

values of the other parameters are the same as those in Figure 9.
Figure 10a,b displays the time dependence of the HS fraction, nHS, as well as that of

the average nn bond length distance, < d >, along the relaxation process from HS to LS
at T = 10K for different values of η. Both figures show that an increasing η leads to an
increase in the lifetime of the HS metastable, which extend the relaxation process with an
emergence of a slight plateau for η = 1.7. The corresponding snapshots for the case η = 1.7
are given in Figure 11.

Figure 10. (a) MC results of the time evolution of the HS fraction nHS of Hamiltonian (1) for different
values of the elastic ratio, η, along the relaxation of the metastable HS fraction of non-frustrated
binuclear SCO chain containing 60 binuclear units, showing the occurrence of two-step transitions
with a plateau at η =1.7 (nHS = 0.53) (dark blue curve). (b) Corresponding thermal dependences of
the average nn distance, < d >. The other parameter values are the same as those in Figure 9.
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Figure 11. Snapshots of the lattice along the relaxation (red = HS and blue = LS) for ξ = 0,
η = 1.7 and T = 10 K. The other parameter values are: RLL

0 = 1 nm RLL
0 = 1 nm, RHH

0 = 1.2 nm,
RHL

0 = 1.1 nm, δR = 0.2 nm, ξ = 1, kinter
1 = 34, 000 K·nm−2, kinter

2 = 0.1kinter
1 , ∆0 = 450 K and

ln g = 5.

5. Conclusions

1D binuclear SCO chains are widely explored in the literature due to a rich variety
of behaviors, among them being first-order, gradual, two-step as well as incomplete or
partial spin transitions. However, the elastic description of 1D binuclear SCO chains has
never been investigated in the theoretical literature of SCO materials. To address this short-
coming, we have extended the previous electroelastic model and adapted it to mimic the
thermal behavior of a 1D elastic chain made of elastically-coupled binuclear spin-crossover
blocks, · · ·A = B−A = B−A = B · · · . To account for the steric effects inside and between
the binuclear units, we included an elastic frustration leading to antagonist equilibrium
distances between nearest and next nearest neighbors. The sites of the binuclear unit
interact via a harmonic intramolecular spring and the binuclear unit itself couples to the
neighboring binuclear units via other springs. We have solved this model by combining
MC simulations performed on the spin states and another MC procedure for the lattice
positions. To understand the relevant parameters acting on the outputs of the model, we
have also adapted an analytical method, developed in the context of recent studies of
frustrated 1D chains [62]. By doing so, we could predict the dependence of the HS fraction
on several model parameters, such as the elastic frustration strength and the intramolecular
elastic constant.

In the present work, we have first demonstrated that the injection of an elastic frus-
tration between nn and nnn equilibrium distances, i.e., inside the binuclear units, as a
parameter leading to expand the intramolecular distance in the LS state, leads to stabilize
intermediate spin states along the thermal transition between the LS and the HS phases.
We found that according to the strength of this elastic frustration, well organized antiferro-
elastic structures (LS = LS-HS = HS-LS = LS . . . ) are stabilized. This result is contrasting
with the usual antiferro HS-LS-HS-LS . . . configurations which appeared in the previous
frustrated 1D mononuclear model [62]. However, if one considers the binuclear unit as
a single component, then it becomes clear that the binuclear unit organizes itself in the
plateau under the usual HS-LS-HS-LS antiferro configurations. We find that the spin state
organization in the plateau is made of self-organized structures. In the second step of this
work, we identified that the intramolecular elastic interaction linking the atoms inside the
binuclear units plays a leading role in the thermal properties of the studied spin transition
between the LS and the HS phases. Thus, an increase in this elastic constant with respect to
the intermolecular elastic constant results in two-step transition behaviors with an increase
in the width of the plateau which reaches saturation. On the other hand, the stabilization
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of the previous LS = LS-HS = HS-LS = LS . . . configuration expresses that in this situation
the two sites inside the binuclear are so strongly correlated that each binuclear unit reacts
as a single molecular object.

We have also studied the time dependence of the HS fraction and lattice parameter of
the present frustrated chain, thus simulating the relaxation of a metastable photoinduced
HS state. The obtained results clearly demonstrate that the shape of the relaxation curves
transform from continuous to two-step behaviors, which is reminiscent of the thermal
dependence of the order parameters of the system at equilibrium thermodynamics.

Lastly, the present work opens several opportunities of extensions related first with
the examination of other situations of frustrations. Indeed, here we considered the HS state
free from frustration, but one may consider the LS state free from frustration and the HS
and HS-LS states as frustrated. This will surely lead to other types of thermal behavior of
the binuclear chain. Moreover, this model deserves to be extended to two-dimensions to
well analyze the dimensionality effects on the modes of self-organization of the spin states.
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