On the Solutions of the b-Family of Novikov Equation

Tingting Wang ${ }^{\dagger}$, Xuanxuan Han ${ }^{\dagger}$ and Yibin Lu ${ }^{\text {*, }}$ t
Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China; wangtingting@stu.kust.edu.cn (T.W.); 20202111001@stu.kust.edu.cn (X.H.)
* Correspondence: luyibin@kust.edu.cn
+ All three authors contributed equally to this work.

Abstract

In this paper, we study the symmetric travelling wave solutions of the b-family of the Novikov equation. We show that the b-family of the Novikov equation can provide symmetric travelling wave solutions, such as peakon, kink and smooth soliton solutions. In particular, the single peakon, two-peakon, stationary kink, anti-kink, two-kink, two-anti-kink, bell-shape soliton and hat-shape soliton solutions are presented in an explicit formula.

Keywords: the b-family of Novikov equation; peakon; kink; soliton solutions

Citation: Wang, T.; Han, X.; Lu, Y. On the Solutions of the b-Family of Novikov Equation. Symmetry 2021, 13, 1765. https://doi.org/10.3390/ sym13101765

Academic Editor: Jan Awrejcewicz

Received: 29 August 2021
Accepted: 16 September 2021
Published: 22 September 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

1. Introduction

The b-family of the Camassa-Holm equation

$$
\begin{equation*}
m_{t}+u m_{x}+b u_{x} m=0, m=u-u_{x x} \tag{1}
\end{equation*}
$$

where b is an arbitrary constant and $u(x, t)$ is fluid velocity. Equation (1) was first proposed by Holm and Stanley in studying the exchange of stability in the dynamics of solitary waves under changes in the nonlinear balance in a $1+1$ evolutionary PDE related to shallow water waves and turbulence $[1,2]$. In the case of $b \neq 0$, peakon solutions of Equation (1) were discussed in [1,2]. In the case of $b=0$, Xia and Qiao showed that Equation (1) provides N-kink, bell-shape and hat-shape solitary solutions [3]. For $b=2$, Equation (1) becomes the well-known Camassa-Holm (CH) equation

$$
\begin{equation*}
m_{t}+u m_{x}+2 u_{x} m=0, \quad m=u-u_{x x} \tag{2}
\end{equation*}
$$

which was originally implied in Fokas and Fuchssteiner in [4], but became well-known when Camassa and Holm [5] derived it as a model for the unidirectional propagation of shallow water over a flat bottom. The CH equation was found to be completely integrable with a Lax pair and associated bi-Hamiltonian structure [4-6]. The famous feature of the CH equation is that it provides peaked soliton (peakon) solutions [4,5], which present an essential feature of the travelling waves of largest amplitude [7-9]. For $b=3$, Equation (1) becomes the Degasperis-Procesi (DP) equation

$$
\begin{equation*}
m_{t}+u m_{x}+3 u_{x} m=0, \quad m=u-u_{x x}, \tag{3}
\end{equation*}
$$

which can be regarded as another model for nonlinear shallow water dynamics with peakons $[10,11]$. The integrability of the DP equation was shown by constructing a Lax pair, and deriving two infinite sequences of conservation laws in [12].

In this paper, we are concerned with the b-family of the Novikov equation

$$
\begin{equation*}
m_{t}+u^{2} m_{x}+b u u_{x} m=0, \quad m=u-u_{x x} \tag{4}
\end{equation*}
$$

where b is an arbitrary constant. It is easy to see that the b-family of the Novikov Equation (4) has nonlinear terms that are cubic, rather than quadratic, of the b-family
of CH Equation (1). The Cauchy problem of the b-family of the Novikov Equation (4) was studied in [13].

For $b=3$, Equation (4) becomes the Novikov equation

$$
\begin{equation*}
m_{t}+u^{2} m_{x}+3 u u_{x} m=0, \quad m=u-u_{x x} \tag{5}
\end{equation*}
$$

which was discovered by Vladimir Novikov [14] in a symmetry classification of nonlocal PDEs with quadratic or cubic nonlinearity. In [15,16], it was shown that the Novikov equation provides peakon solutions such as the CH and DP equations. Additionally, the Novikov Equation (5) has a Lax pair in matrix form and a bi-Hamiltonian structure. Moreover, it has infinitely many conserved quantities.

The purpose of this paper is to investigate the solutions of the b-family of the Novikov Equation (4) in the case of $b \neq 0$ and $b=0$. We will show that Equation (4) possesses symmetric travelling wave solutions, such as peakon, kink and smooth soliton solutions. In particular, the single peakon, two-peakon, stationary kink, anti-kink, two-kink, two-antikink, bell-shape soliton and hat-shape soliton solutions are presented in an explicit formula and plotted.

The rest of this paper is organized as follows. In Section 2, we derive the N-peakon solutions in the case of $b \neq 0$. In Section 3, we discuss the N-kink and smooth soliton solutions in the case of $b=0$.

2. Peakon Solutions

In this section, we derive the N-peakon solutions in the case of $b \neq 0$. We assume the N-peakon solution as the form

$$
\begin{equation*}
u=\sum_{j=1}^{N} p_{j}(t) \mathrm{e}^{-\left|x-q_{j}(t)\right|}, \tag{6}
\end{equation*}
$$

where $p_{j}(t)$ and $q_{j}(t)$ are to be determined. The derivatives of (6) do not exist at $x=q_{j}(t)$, thus (6) can not satisfy Equation (4) in a classical sense. However, in the distribution, we have

$$
\begin{gather*}
u_{x}=-\sum_{j=1}^{N} p_{j}(t) \operatorname{sgn}\left(x-q_{j}(t)\right) \mathrm{e}^{-\left|x-q_{j}(t)\right|} \tag{7}\\
m=2 \sum_{j=1}^{N} p_{j}(t) \delta\left(x-q_{j}(t)\right) \tag{8}\\
m_{t}=2 \sum_{j=1}^{N} p_{j, t} \delta\left(x-q_{j}(t)\right)-2 \sum_{j=1}^{N} p_{j} q_{j, t} \delta^{\prime}\left(x-q_{j}(t)\right) \tag{9}\\
m_{x}=2 \sum_{j=1}^{N} p_{j}(t) \delta^{\prime}\left(x-q_{j}(t)\right) \tag{10}
\end{gather*}
$$

Substituting (6)-(10) into (4) and integrating against the test function with compact support, we obtain that $p_{j}(t)$ and $q_{j}(t)$ evolve according to the dynamical system:

$$
\begin{cases}q_{j, t}=\left(\sum_{i=1}^{N} p_{i} \mathrm{e}^{-\left|q_{j}-q_{i}\right|}\right)^{2}, & 1 \leq j \leq N \tag{11}\\ p_{j, t}=(b-2) p_{j}\left(\sum_{i=1}^{N} p_{i} \mathrm{e}^{-\left|q_{j}-q_{i}\right|}\right)\left(\sum_{i=1}^{N} p_{i} \operatorname{sgn}\left(q_{j}-q_{i}\right) \mathrm{e}^{-\left|q_{j}-q_{i}\right|}\right), & 1 \leq j \leq N\end{cases}
$$

For $N=1,(11)$ is reduced to

$$
\left\{\begin{array}{l}
q_{1, t}=p_{1}^{2} \\
p_{1, t}=0
\end{array}\right.
$$

Thus, the single peakon solution (See Figure 1) is

$$
\begin{equation*}
u= \pm \sqrt{c} \mathrm{e}^{-|x-c t|}, \quad c>0 \tag{12}
\end{equation*}
$$

For $N=2,(11)$ is reduced to

$$
\left\{\begin{array}{l}
q_{1, t}=\left(p_{1}+p_{2} \mathrm{e}^{-\left|q_{1}-q_{2}\right|}\right)^{2} \tag{13}\\
q_{2, t}=\left(p_{1} \mathrm{e}^{-\left|q_{2}-q_{1}\right|}+p_{2}\right)^{2} \\
p_{1, t}=(b-2) p_{1} p_{2}\left(p_{1}+p_{2} \mathrm{e}^{-\left|q_{1}-q_{2}\right|}\right) \operatorname{sgn}\left(q_{1}-q_{2}\right) \mathrm{e}^{-\left|q_{1}-q_{2}\right|} \\
p_{2, t}=(b-2) p_{1} p_{2}\left(p_{2}+p_{1} \mathrm{e}^{-\left|q_{1}-q_{2}\right|}\right) \operatorname{sgn}\left(q_{2}-q_{1}\right) \mathrm{e}^{-\left|q_{2}-q_{1}\right|}
\end{array}\right.
$$

Solving (13), we have

$$
\left\{\begin{array}{l}
q_{1}(t)-q_{2}(t)=C \tag{14}\\
p_{1}(t)=-p_{2}(t)=-\frac{1}{\sqrt{2 b t \mathrm{e}^{-2 C}-2 b t \mathrm{e}^{-C}-4 t \mathrm{e}^{-2 C}+4 t \mathrm{e}^{-C}}} .
\end{array}\right.
$$

In particular, for $C=1, q_{2}(t)=t, b=1$, the solution (See Figure 2) becomes

$$
\begin{equation*}
u(x, t)=-\frac{1}{\sqrt{2 t \mathrm{e}^{-1}-2 t \mathrm{e}^{-2}}} \mathrm{e}^{-|x-t-1|}+\frac{1}{\sqrt{2 t \mathrm{e}^{-1}-2 t \mathrm{e}^{-2}}} \mathrm{e}^{-|x-t|} . \tag{15}
\end{equation*}
$$

Figure 1. The positive single peakon solution determined by (12) with $c=1$ at time $t=2$.

Figure 2. The two-peakon solution (15) at time $t=2$.

3. Kink and Smooth Soliton Solutions

In this section, we discuss the N-kink and smooth soliton solutions in the case of $b=0$, namely

$$
\begin{equation*}
m_{t}+u^{2} m_{x}=0, \quad m=u-u_{x x} \tag{16}
\end{equation*}
$$

We suppose that the N-kink solution as the form

$$
\begin{equation*}
u=\sum_{j=1}^{N} c_{j} \operatorname{sgn}\left(x-q_{j}(t)\right)\left(\mathrm{e}^{-\left|x-q_{j}(t)\right|}-1\right) \tag{17}
\end{equation*}
$$

where c_{j} are arbitrary constants and $q_{j}(t)$ are to be determined. The derivatives of (17) do not exist at $x=q_{j}(t)$, thus (17) can not satisfy Equation (4) in a classical sense. However, in the distribution, we have

$$
\begin{gather*}
u_{x}=-\sum_{j=1}^{N} c_{j} \mathrm{e}^{-\left|x-q_{j}(t)\right|}, \tag{18}\\
m_{t}=2 \sum_{j=1}^{N} c_{j} q_{j, t} \delta\left(x-q_{j}(t)\right), \tag{19}\\
m_{x}=-2 \sum_{j=1}^{N} c_{j} \delta\left(x-q_{j}(t)\right) . \tag{20}
\end{gather*}
$$

Substituting (17)-(20) into (16) and integrating against the test function with compact support, we obtain that $q_{j}(t)$ evolves according to the dynamical system:

$$
\begin{equation*}
q_{j, t}=\left(\sum_{i=1}^{N} c_{i} \operatorname{sgn}\left(q_{j}-q_{i}\right)\left(\mathrm{e}^{-\left|q_{j}-q_{i}\right|}-1\right)\right)^{2}, \quad 1 \leq j \leq N \tag{21}
\end{equation*}
$$

For $N=1$, we have $q_{1, t}=0$, which yields $q_{1}=c$, where c is an arbitrary constant. Thus the single kink solution (See Figures 3 and 4) is stationary and it reads

$$
\begin{equation*}
u=c_{1} \operatorname{sgn}(x-c)\left(\mathrm{e}^{-|x-c|}-1\right) \tag{22}
\end{equation*}
$$

Figure 3. The stationary kink solution determined by (22) with $c_{1}=c=1$.

Figure 4. The stationary anti-kink solution determined by (22) with $c_{1}=-1, c=1$.
For $N=2,(21)$ is reduced to

$$
\left\{\begin{array}{l}
q_{1, t}=\left[c_{2} \operatorname{sgn}\left(q_{1}-q_{2}\right)\left(\mathrm{e}^{-\left|q_{1}-q_{2}\right|}-1\right)\right]^{2} \tag{23}\\
q_{2, t}=\left[c_{1} \operatorname{sgn}\left(q_{2}-q_{1}\right)\left(\mathrm{e}^{-\left|q_{2}-q_{1}\right|}-1\right)\right]^{2}
\end{array}\right.
$$

If $c_{1}^{2}=c_{2}^{2}$, we obtain

$$
\left\{\begin{array}{l}
q_{1}(t)=\left[c_{1} \operatorname{sgn}\left(C_{1}\right)\left(\mathrm{e}^{-\left|C_{1}\right|}-1\right)\right]^{2} t, \tag{24}\\
q_{2}(t)=q_{1}(t)-C_{1},
\end{array}\right.
$$

where C_{1} is an arbitrary constant. The solution (See Figures 5 and 6) becomes

$$
\begin{equation*}
u(x, t)=c_{1} \operatorname{sgn}\left(x-q_{1}(t)\right)\left(\mathrm{e}^{-\left|x-q_{1}(t)\right|}-1\right)+c_{2} \operatorname{sgn}\left(x-q_{2}(t)\right)\left(\mathrm{e}^{-\left|x-q_{2}(t)\right|}-1\right) \tag{25}
\end{equation*}
$$

where q_{1} and q_{2} are given by (24).

Figure 5. The bell-shape solution determined by (25) with $c_{1}=C_{1}=1, c_{2}=-1$ at time $t=2$.

Figure 6. The hat-shape solution determined by (25) with $c_{1}=1, c_{2}=-1, C_{1}=15$ at time $t=2$.
If $c_{1}^{2} \neq c_{2}^{2}$, we obtain

$$
\begin{equation*}
q_{1}(t)-q_{2}(t)=\ln \left(\frac{1+\operatorname{LambertW}\left(\mathrm{e}^{\left(c_{1}^{2}-c_{2}^{2}\right) t}\right)}{\operatorname{LambertW}\left(\mathrm{e}^{\left(c_{1}^{2}-c_{2}^{2}\right) t}\right)}\right) \triangleq g(t) \tag{26}
\end{equation*}
$$

In particular, for $q_{1}(t)=\frac{1}{2} g(t)$ and $q_{2}(t)=-\frac{1}{2} g(t)$, the solution (See Figures 7 and 8) becomes

$$
\begin{equation*}
u(x, t)=c_{1} \operatorname{sgn}\left(x-\frac{1}{2} g(t)\right)\left(\mathrm{e}^{-\left|x-\frac{1}{2} g(t)\right|}-1\right)+c_{2} \operatorname{sgn}\left(x+\frac{1}{2} g(t)\right)\left(\mathrm{e}^{-\left|x+\frac{1}{2} g(t)\right|}-1\right) . \tag{27}
\end{equation*}
$$

Figure 7. The two kink solution determined by (27) with $c_{1}=2, c_{2}=1$ at time $t=4$.

Figure 8. The two anti-kink solution determined by (27) with $c_{1}=-2, c_{2}=-1$ at time $t=4$

Author Contributions: Investigation, T.W., X.H. and Y.L.; writing - review and editing, T.W., X.H. and Y.L.; funding acquisition, T.W., X.H. and Y.L. The authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Funding: This work is supported by National Natural Science Foundation of China (Grant No. 11461037).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Acknowledgments: The authors are grateful to the anonymous referees for their constructive comments and suggestions, which have greatly improved this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Holm, D.; Staley, M. Nonlinear balance and exchange of stability of dynamics of solitons, peakons, ramps/cliffs and leftons in a $1+1$ nonlinear evolutionary PDE. Phys. Lett. A 2003, 308, 437-444. [CrossRef]
2. Holm, D.; Staley, M. Wave structure and nonlinear balance in a family of $1+1$ evolutionary PDE's. SIAM J. Appl. Dyn. Syst. 2003, 2, 323-380. [CrossRef]
3. Xia, B.; Qiao, Z. The N-kink, bell-shape and hat-shape solitary solutions of b-family equation in the case of $b=0$. Phys. Lett. A 2013, 377, 2340-2342. [CrossRef]
4. Fokas, A.; Fuchssteiner, B. Symplectic structures, their Bäklund transformation and hereditary symmetries. Physica D 1981, 4, 47-66.
5. Camassa, R.; Holm, D. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 1993, 71, 1661-1664. [CrossRef] [PubMed]
6. Fisher, M.; Fisher, J. The Camassa-Holm equation: Conserved quantities and the initial value problem. Phys. Lett. A 1999, 259, 371-376. [CrossRef]
7. Constantin, A. The trajectories of particles in Stokes waves. Invent. Math. 2006, 166, 523-535. [CrossRef]
8. Constantin, A.; Escher, J. Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 2007, 44, 423-431. [CrossRef]
9. Constantin, A.; Escher, J. Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 2011, 173, 559-568. [CrossRef]
10. Degasperis, A.; Procesi, M. Asymptotic Integrability. In Symmetry and Perturbation Theory; World Scientific Publishing: River Edge, NJ, USA; Rome, Italy, 1998; pp. 23-37.
11. Constantin, A.; Lannes, D. The hydrodynamical relevant of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 2009, 192, 165-186. [CrossRef]
12. Degasperis, A.; Holm, D.; Hone, A. A new Integrable equation with peakon solutions. Theor. Math. Phys. 2002, 133, 1463-1474. [CrossRef]
13. Mi, Y.; Mu, C. On the Cauchy problem for the modified Novikov equation with peakon solutions. J. Differ. Equ. 2013,254,961-982. [CrossRef]
14. Novikov, V. Generalizations of the Camassa-Holm equation. J. Phys. A Math. Theor. 2009, 42, 342002. [CrossRef]
15. Hone, W.; Wang, J. Integrable peakon equations with cubic nonlinearity. J. Phys. A Math. Theor. 2008, 41, 372002. [CrossRef]
16. Hone, W.; Lundmark, H.; Szmigielski, J. Explicit multipeakon solutions of Novikov cubically nonlinear integrable Camassa-Holm type equation. Dyn. Partial Differ. Equ. 2009, 6, 253-289. [CrossRef]
