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Abstract: This paper aims to mark out new concepts of r-single valued neutrosophic sets, called
r-single valued neutrosophic £-closed and £-open sets. The definition of £-single valued neutrosophic
irresolute mapping is provided and its characteristic properties are discussed. Moreover, the concepts
of £-single valued neutrosophic extremally disconnected and £-single valued neutrosophic normal
spaces are established. As a result, a useful implication diagram between the r-single valued
neutrosophic ideal open sets is obtained. Finally, some kinds of separation axioms, namely r-single
valued neutrosophic ideal-R; (r-SVNIR;, for short), where i = {0,1,2,3}, and r-single valued
neutrosophic ideal—Tj (r-SVNI T;, for short), where j = {1,2, 2%, 3,4}, are introduced. Some of their
characterizations, fundamental properties, and the relations between these notions have been studied.

Keywords: r-single valued neutrosophic £-closed; £-single valued neutrosophic irresolute map-
ping; £-single valued neutrosophic extremally disconnected; £-single valued neutrosophic normal;
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1. Introduction

In 1999, Smarandache introduced the concept of a neutrosophy [1]. It has been used
at various axes of mathematical theories and applications. In recent decades, the theory
made an outstanding advancement in the field of topological spaces. Salama et al. and Hur
etal. [2-6], for example, among many others, wrote their works in fuzzy neutrosophic
topological spaces (FNTS), following Chang [7]’s discoveries in the way of fuzzy topological
spaces (FTS).

éostak, in 1985 [8], marked out a new definition of fuzzy topology as a crisp subfamily
of family of fuzzy sets, which seems to be a drawback in the process of fuzzification of
the concept of topological spaces. Yan, Wang, Nanjing, Liang, and Yan [9,10] developed a
parallel theory in the context of intuitionistic I-fuzzy topological spaces.

The idea of “single-valued neutrosophic set” [11] was set out by Wang in 2010. Gay-
yar [12], in his 2016 paper, foregrounded the concept of a “smooth neutrosophic topological
spaces”. The ordinary single-valued neutrosophic topology was presented by Kim [13].
Recently, Saber et al. [14,15] familiarized the concepts of single-valued neutrosophic ideal
open local function, single-valued neutrosophic topological space, and the connectedness
and stratification of single-valued neutrosophic topological spaces.

Neutrosophy, and especially neutrosophic sets, are powerful, general, and formal
frameworks that generalize the concept of the ordinary sets, fuzzy sets, and intiuitionistic
fuzzy sets from philosophical point of view. This paper sets out to introduce and examine
a new class of sets called r-single valued £-closed in the single valued neutrosophic topo-
logical spaces in Sostak’s sense. More precisely, different attributes, like £-single valued
neutrosophic irresolute mapping, £-single valued neutrosophic extremally disconnected,
£-single valued neutrosophic normal spaces, and some kinds of separation axioms, were
developed. It can be fairly claimed that we have achieved expressive definitions, distin-
guished theorems, important lemmas, and counterexamples to investigate, in-depth, our
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consequences and to find out the best results. It is notable to say that different crucial
notions in single valued neutrosophic topology were generalized in this article. Different
attributes, like extremally disconnected and some kinds of separation axioms, which have
a significant impact on the overall topology’s notions, were also studied.

It is notable to say that the application aspects to this area of research can be further
pointed to. There are many applications of neutrosophic theories in many branches of
sciences. Possible applications are to control engineering and to Geographical Information
Systems, and so forth, and could be secured, as mentioned by many authors, such as
Reference [16-20].

In this study, X is assumed to be a nonempty set, ¢ = [0,1] and &, = (0,1]. Fora € ¢,
&(v) = a for allv € X. The family of all single-valued neutrosophic sets on X is denoted

by &X.

2. Preliminaries

This section is devoted to provide a complete survey and trace previous studies related
to the idea of this research article.

Definition 1 ([21]). Let X be a non-empty set. A neutrosophic set (briefly, NS) in X is an object
having the form

on = {(V, fo, (vV), 0, (V) Tler, (v)) s v € X},

where
p:X—=|7017,6:X—]70,1%, 7:X—]70,17]
and
Y S ﬁUn (V> + éan (U) + ﬁUn (V) S 3+
represent the degree of membership (namely po, (v)), the degree of indeterminacy (namely gy, (v)),
and the degree of non-membership (namely fj, (v)), respectively, of any v € X to the set o7,.

Definition 2 ([11]). Let X be a space of points (objects), with a generic element in X denoted
by v. Then, o, is called a single valued neutrosophic set (briefly, SVNS) in X, if o, has the

form o, = {pg,, 00,7, ), Where pg,, 00,70, : X — [0,1]. In this case, ps,,c,, Ty, are
called truth membership function, indeterminancy membership function, and falsity membership
function, respectively.

Let X be a nonempty set and & = [0,1] and &y = (0,1]. A single-valued neutrosophic set
on on X is a mapping defined as 0, = (ps,, 0c,, s, ) : X — & such that 0 < pg, (v) + 8¢, (V) +
fiou (v) < 3. o

We denote the single-valued neutrosophic sets ( 0,1,1) and (1,0,0) by 0 and 1, respectively.

Definition 3 ([11]). Let 0, = (0o, 0c,, i, ) be an SVNS on X. The complement of the set oy,
(briefly oy,) is defined as follows:

Oos (V) = 11, (V) 8o (V) = [0, °(vV), T (V) = P, (V).

Definition 4 ([22,23]). Let X be a non-empty set and let oy, vn € & be given by
On = <ﬁgr1’ éoh’ ﬁg'n> and Tn = <ﬁ%/ é"rn’ 77'}’11>' Then:

(1) We Sﬂy that On g Tn lfﬁg’,, S ﬁ'Yn’ éo'n Z Q"Yn’ 170'71 2 ﬁ'}’n‘
(2)  The intersection of oy, and 7y, denoted by oy N 7y, is an SVNS and is given by

On N Yn = <p0’n ﬂﬁ’)‘n’ éUn U é'}’n’ ﬁUn U ﬁ')/n>'
(3)  The union of o, and vy, denoted by 0, U 7y, is an SVNS and is given by

On U’)/Vl = <|ﬁ0'n Up’)’n’ éo'n mé"/n’ ;70';1 mﬁ'}’n>'
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For any arbitrary family {oy }ic; C gx of SVNS, the union and intersection are given by
@ Nigjlonli = (NiejPlo,];» Yiej@l,)r YieiTlio];)
(5)  Uiejlonli = (ViejPlo,1;r NicjOlo)r Nieilion;)-

Definition 5 ([12]). A single-valued neutrosophic topological space is an ordered quadruple
(X, 1P, 29, 27) where 0,78, 1 : ¢X — & are mappings satisfying the following axioms:

(SNT1) #(0) = #(1) = 1and 7 (0) = 20(1) = #1(0) = #1(1) = 0,
(SVNT2) ﬁ( 0n Nyn) > ﬁ(an) N (vu), (o Nyn) < (o) UT(7n),
1 (gy Nyy) < () UET (), for all o, yn € X,
(SVNT3) T (Ujer|oul;) > Njer([oul;), T (Uierlou]j) < Ujert®(loul;),
(U]er[ oulj) < Ujert ([ou];) for all {[ou];,j € T} € X,

The quadruple (X, T, %2, #7) is called a single-valued neutrosophic topological space (SVNTS,
for short). We will occasionally write 027 for (T, ¢, T') and it will cause no ambiguity

Definition 6 ([14]). Let (X, ¥, %%, %7) be an SVNTS. Then, for every o, € &X and r € &,
the single valued neutrosophic closure and the single valued neutrosophic interior of o, are
defined by:

Coon (0,8) = (W € 850w <y, P(Iml) 27, T2([al) <1—1, T([1]) <1-1},
intzso7 (0, U{'Yn € ‘;I 10w 2 Yn, Tﬁ('Yn) >, Té(%l) <l-r, Tﬁ(%z) <1-r}

Definition 7 ([24]). Let (X, %) bean SVNTS and r € &y, 0 € g"fX Then,
(1) oy is r-single valued neutrosophic semiopen (r-SVNSO, for short) iff o, < Capoq (intzpe

On,1),1),
(2) Ern is 2—si31gle valued neutrosophic p-open (r-SVNPO, for short) iff 0 < Capaq (intzp07 (Crpaq
(on,1),7),7).
The complement of r — SVNSO (resp. r-SVNPBO) is said to be an r — SVNSC (resp. 1-
SVNBC), respectively.

Definition 8 ([14]). Let X be a nonempty set and v € X. If s € (0,1],t € [0,1) and p € [0, 1).
Then, the single-valued neutrosophic point X, , in X is given by

_ [ Gtp), fx=v,
Xopp(K) = { (0,1,1), otherwise.
We say xs1p € 0 iff s < po, (V), t > 00, (v) and p > 7, (v). To avoid the ambiguity, we
denote the set of all neutrosophic points by pt(&X).

A single-valued neutrosophic set 0y, is said to be quasi-coincident with another single-valued
neutrosophic set <y, denoted by 0,,q7yy, if there exists an element v € X such that

ﬁUn (V) + ﬁ’)‘n (V) > 1/ éUn (V) + é')/n (U) S 1’ 17(771 (V) + 77')‘n (V) S 1.

Definition 9 ([14]). A mapping TP% = TP, 70,7 : ¢X — &is called single-valued neutrosophic
ideal (SVNI) on X if it satisfies the following conditions:
() ZP(0) = 1and Z%(0) = Z(0) = 0.
(I) If oy < yn, then I (vy,) < IP(0y), Z9(vn) > Z%0w), and I7(y,) > Z7(0y), for

’Y‘rf! On € CX B B 5 5
(I3) ZP(0y Uyn) > ZP(00) NZP(yn), Z%(0n U yn) < IQ(%) UZ®(yn) and

T (0 Uyn) < ZT(0y) UL (7yy), for each oy, yn € EX.

The triple (X, T, ZPT) is called a single valued neutrosophic ideal topological space in

Sostak’s sense (SVNITS, for short).



Symmetry 2021, 13, 53

40f18

Definition 10 ([14]). Let (X, t027, ZP7) be an SVNITS for each o, € &X. Then, the single valued
neutrosophic ideal open local function [0,]5 (TP, IPT) of oy, is the union of all single-valued
neutrosophic points X i such that, if yn € Qo (Xstx, 1) and ZP(¢u) > r, I9%cu) < 1-—7,
Z7(gn) < 1—r, then there is at least one v € X for which pg, (V) + p, (v) —1 > pc, (v),

0o, (V) + 84, (v) =1 < &, (v), and o, (v) + 7, (v) = 1 < 7, (v).

Occasionally, we will write [0 ]% for [oy,]%(TP27, ZP2T), and it will cause no ambiguity.

Remark 1 ([14]). Let (X, P2T) be an SVNITS and 0, € EX. Then,
Cliﬁéﬁ (0u, 1) = 0w U [0u]7, intﬁﬁ@ﬁ (0w, 1) = 0w N [(05)7)".
It is clear that CI‘gﬁéﬁ is a single-valued neutrosophic closure operator and (TPZ(IP, et (Ze, I
(Z) is the single-valued neutrosophic topology generated by CI’ipgﬁ, ie.,

E(I) (on) U{?’| CITPQ'I (o, 7) =0}

Theorem 1 ([14]). Let {[0y];}ic) C &X be a family of single-valued neutrosophic sets on X and
(X, P21, 7PN be an r-SVNITS. Then,

@ (U(ouli)y = i€ ) < (Ulouli = i € )7,

@ (Nlowli) = i € )7 = (N(louli)r = i€ ).

Theorem 2 ([14]). Let (X, %1, ZPT) be an SVNITS and oy, yn € &X, r € &. Then,

(1) 1ntfpg,](¢7n V y,r) < in pev( r) \/m’t’ip(),7 (Yn,1),
(2) intzseq (00, ¥ ) < lntépgq(o—n/ ) <oy < CI~pgr/(Un, ) < Cipon ((Tn, )

(
(3)  Clipgy([04],7) = [intssg (00, 7)], and [Clzzg; (00, 7)) = intesyy ([0n]%, 7),
(4) lnt£pg11 (o0 A Yn, )*mtﬁpan (O, )/\mtgfpcv (7n,7).

3. £-Single Valued Neutrosophic Ideal Irresolute Mapping

This section provides the definitions of the r-single-valued neutrosophic £-open set
(SVN£O, for short), the r-single-valued neutrosophic £-closed set (SVN£C, for short) and
the £-single valued neutrosophic ideal irresolute mapping (£-SVNI-irresolute, for short), in
the sense of Sostak. To understand the aim of this section, it is essential to clarify its content
and elucidate the context in which the definitions, theorems, and examples are performed.
Some results follow.

Definition 11. Let (X, #0%7, Z0%7) be an r-SVNITS for every o, € &% and r € &. Then, oy, is
called r-SVNEC iff CI‘ip@ﬁ (0w, 1) = 0. The complement of the r-SVNEC is called r-SVNEO.

Proposition 1. Let (X, 127, 7P%7) be an r-SVNITS and o;, € &X. Then,
(1) o0y isr-SVNEC zﬁ‘[an] < 0y,

(2) 0y is -SVNEO iff ([04]5)¢ > [0n]°,

(3) IftP([on]¢) > 1, T%([on]¢) <1 —r, T1([0n]¢) <1 —r, then 0, is -SVNEC,

(4) IftP(on) >1,7%(0n) <1—r1,T1(0y) < 1—r, then oy is r-SVNEO,

(5) If(r,1 is r-SVNSC (resp. r-SVNBC), then int_sq7 ([0n], 1) < 0 (resp.int g ([int,pa7 (0, 7)]
r/ ) < aﬂ)

Proof. The proof of (1) and (2) are straightforward from Definition 11.
(3) Let T ([0,]) > 7, T%([0n]¢) <1 —7r, T1([04]¢) <1 —r. Then,

0 = Cepai (00, 1) > CITPQU (0, 7) = 0 U o] > [o0]E.
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Hence, 0, is an -SVNEC.
(4) The proof is direct consequence of (1).
(5) Let 0y, be an r-SVNSC. Then,

0 > integor (Cpor (0, 7),7) > intgper (CLpgy (0, 1), 7) = intepoy ([0 U [0u]5], 7)
> intzay ([0l 7)-
The another case is similarly proved. [

Example 1. Suppose that X = {a,b}. Define e, yn, G € &X as follows:

7n = ((0.3,0.3),(0.3,0.3),(0.3,0.3)); &, = ((0.7,0.7),(0.7,0.7), (0.7,0.7));

¢n = ((0.2,0.2),(0.2,0.2),(0.2,0.2)).

Define T991, 7097 : X & gs follows:

1/ lfa‘n:Q/ 1, ifa'n:(ollll)/

~ v yam=1 ; L if o =cn
#(0y) = 3 Fow=m o) = § if 0<ou<gu
37 lf Oy = €y " se; /

0, if otherwise; O ofheruise
0/ 1']((771:9/ O/ ifo'i’l:(o’l’l)/

_ O ¥ om=1 : 2, if 0w =cn
R I O A I 0 A
5 if on=en; . se;

i 1, if otherwise;
0, if o =0, 0, if ow=1(0,1,1),

_ O #om=1 : 2 if ou=cn
T”(Un) — ;' 1f On = Yn; IW(Un) = 2 if 0< 0n < Gn,
37 lf On = €ny " ] ’

Y e 1, if otherwise.

(1) Gu = {(0.6,0.6),(0.6,0.6), (0.6,0.6)) is 3-SVNEC but T ([G,]°) # %, T9([Gn)°) % 3, and
T([Gu]) £ 3,
(2) Gu={(0.6,0.6),(0.6,0.6), (0.6,0.6)) > intzs;([Gul%, 1) = 0 but G, is not is 3-SVNSC.
3

Lemma 1. Let (X, 2797, 7PT) be an SVNITS. Then, we have the following.

(1)  Every intersection of r-SVNEC’s is -SVNEC.
(2)  Every union of r-SVN£QO’s is r-SVN£O.

Proof. (1) Let {[ou]i}ic; be a family of -SVN£C’s. Then, for every i € j, we obtain
[0n); = Cliﬁ@ﬁ ([ou)i, r), and, by Theorem 1(2), we have

Nijlonli = M Chgr ([oulir7), ) = (V([ouli U (0uli)r) = leul U N (louli)7

icj icj icj icj
> ﬂ[‘Tn]i U (n[ffn]i)f = Clipéﬁ(ﬂ[‘fn]i/ﬂ
i€j icj i€j

Therefore, N;cr[0w]; is -SVNEC.
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(2) From Theorem 1(1). O

Lemma 2. Let (X, %797, Z02T) be an SVNITS for each r € &y. Then,
(1) Foreach r-SVN£O o, € @X, 0nqYn iﬁf(fnqCIiﬁ@ﬁ (Yn, r),~
(2) x4 tkqCme7 (Yn, 1) iff 0uqyn for every r-SVNEO oy, € EX with Xsik € On.

Proof. (1) Let 0, be an -SVN£O and 0,,G7y,. Then, for any v € X, we obtain

pUn (V) + p")‘n (V) > 1’ éan (V) + é')’n (U) S 1/ 17(711 (V) + ﬁ'Yn (V) S 1.

This implies that g, < pjg, ]c, 0y, 2 O,)c and iy, > fg,|c; hence, v, < [03]°. Since
. is -SVNZLO, CItT:pg,,('yn, ) < lepw([ oul€, 1) = [0n]°, it follows that UnqCprg,,('yn,r).

(2) Let xstkqCLpg,]('Yn/ 7). Then, anqCI-qu(’yn, r) with xg¢, € 0. By (1), we have

Ynqon for each -SVN£O o, € CX. On the other hand, let 0;,§7y,. Then, v, < [0,]¢. Since oy,
is r-SVN£O,

Since x;;x € 0, we obtain xs,t/kﬁCléﬁgﬁ (yn,r) O

Definition 12. Suppose that f : (X, ff W,If oy (Y, 25 Ip 1\ is a mapping. Then,

(1) fis called £-SVNI-irresolute iff f ~(0y) is -SVNEO in X for any r-SVNEO oy, in Y,
(2)  f is called £-SVNI-irresolute open iff f(0y,) is -SVNEO in Y for any r-SVNEO oy, in X,
(3)  f is called £-SVNI-irresolute closed iff f(cy,) is -SVNEC in Y for any r-SVNEC oy, in X.

Theorem 3. Let f : (X, % M,I{éﬁ) — (Y, féﬁ 5@'7) be a mapping. Then, the following
conditions are equivalent:

(1)  fis £-SVNI-irresolute,

(2)  f~Y(ou) is -SVNEC, for each r-SVN£C 0, € Y,

(3) f(CIﬁﬁ@ﬁ(crn, ) < Clﬁpg,7 (f(on),r) for each oy, € &, red,

4 CI{PQ’? (f ), r) < f (Clépov (Yn, 1)) for each 7y, € &Y, reg.

Proof. (1)=(2): Let 0}, be an - SVNEC in Y. Then, [0;]¢ is r-SVN£O in Y by (1), we obtain
F1([on]¢) is r-SVNE£O. But, f~1([04]¢) = [f~*(04)]°. Then, f~1(0y,) is r-SVNLC in X.
(2)=(3): Foreach 0, € CX and r € ¢, since CI_M (CI-M (f(on),r) = Cliﬁ@ﬁ (f(on), 7).
2

From Definition 11, CIf:PQ'i (f(on),r) is -SVNEC in Y. By 2), f~ (CIEPQ,, (f(on),r)) is r-

SVN£C in X. Since
on < fﬁl(f( n) < f ( ~P017(f(‘7”)/r>)’

by Definition 11, we get,
CLiger (0,7 < Cliges (F " (Cligey (f(e),7)),7) = £ (Cligg (F) 7).
Hence,
f (Clﬁ,lp@ﬁ (ou, 1)) < f(f (lepw (flou),1))) < Cﬁpw (f(on),7).
(3)=(4): For each 7, € &¥ and r € &, put o, = f~1(74). By (3),

F(CLgan (f (), ) < CLlgan (£ (), 7) < CLigay (v 7).
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It implies that CI’%W (fYyn),r) < f‘l(CI‘%W (Y, 7).

(4)=(1): Let 79, be an r-SVN£O in Y. Then, [y,]¢ is an »-SVN£C in Y. Hence,
Cr: 0 ([7nl¢,r) = [714], and, by (4), we have,

FHwml) = £~ (lepw([ nl% 1)) = CI’;ﬁ@ﬁ (FH Trl) )

On the other hand, £~ (1) < Cléey (" (F7ul), ). Thus, £ (1)) = Clén (1

([vn]%), ), thatis f~1([yx]¢) is an r-SVN£C setin X. Hence, f~1(y,) is an r—SVNEO set in
X. O

Theorem 4. Let f : (X, 7%, 709y — (Y, %59, 78%) be a mapping. Then, the following
conditions are equivalent:
(1)  f is £-SVNlI-irresolute open,

(2) f(1nt£pg,7 (oy,1)) < 1nt£pg,7 (f(on),7) for each o, € EX, r € &,

3) m%((f (ra)r) < F- H(intp (v, 1) for each oy € 87, 1 € Go,

(4) Foranyy, € CY and any r-SVNEC oy, € §X with f =1 () < oy, there exists an r-SVNEC
¢n € & with v, < ¢y such that f~1(gn) < oy

Proof. (1)=-(2): For every 0, € §X r € & and mt’spg,7 (on,7) < 0y from Theorem 2(2),
we have f(1nt£pq,7 (0, 1)) < f(ow). By (1), f(int‘[%ﬁ@,7 (o, 7 )) is -SVN£O in Y. Hence,
1

f(intiﬁéﬁ (0w, 7)) = int: 200 (f(intiﬁéﬁ (0,7))) < int 20 (f(on),r).
(2)=-(3): For each 7, € CY and r € &, put o, = f~(y,) from (2),
£ty (7 (rn), 7)) < gy (£ Crm) ) < ity (n,7):

It implies that

1nt£ﬁ0’7 (f ( ‘rl)rr) < f_l (f(lnt~pw1 (f_l ('Yn)rr))) < f_l(int%ﬁéﬁ (’)/nﬂ’))-

(3)=(4): Obvious.
(4)=(1): Let &, be an r-SVN£O in X. Put 7, = [f(ex)]¢ and ¢, = [e] such that oy, is
r-SVNEC in X. We obtain

FHm) = FHfen))) = [F T (f(en)])° < [en]” = on.

From (4), there exists -SVN£O ¢, € &' with 7, < ¢, such that FYgn) < on = [en]"
It implies e, < [f~1(c)]° = f~'([ca]°). Thus, f(en) < f(f'([c])) < [cn]". On the

other hand, since v, < ¢,;, we have
flen) = [7]° = [en]"
Hence, f(en) = [cn]¢, thatis, f(e,) is -SVN£O in Y. O
Theorem 5. Let f : (X, ~ﬁ en Iféﬁ) (Y, 4 91 T féﬁ) be a mapping. Then, the following
conditions are equivalent:

(1)  f is £-SVNI-irresolute closed.
2) f(C ~pe17(')’n/ r) < CI£9917 (f(yn),7) for each vu € &%, 1 € &o.
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Proof. Obvious. O

Theorem 6. Let f : (X, ff éﬁ,If oy 5 (Y, f T SQ ) be a bijective mapping. Then, the following
conditions are equivalent:
(1)  f is £-SVNI-irresolute closed,

(2) Clam,7 (f (o), 7) < fU(CE 5 (0w, 7)) for each oy, € &, red
T2 )

Proof. (1) = (2) : Suppose that f is an £-SVNI-irresolute closed. From Theorem 5(2),
we claim that, for each 7, € ¢X and r € &,

f(CI%iatﬁ(%/T)) < CI: 2007 (f(vn), 7).

Now, for all 0, € @’Y, r € &, put yn = f!(ou), since f is onto, it implies that
f(f~Y(ou)) = oy Thus,

F(Cgey (£ (00),1)) < Clég (F(F (@), 1) = Cliey (0, 1)

Again, since f is onto, it follows:
Cly (@), ) = £ (F(Clego (£ (o), 1)) < £ (Clegy (00,7))

(2) = (1) : Put g, = f(7a). By the injection of f, we get

Clguy(107) = Clopy (F (£ (), 1) < fH(Cly (F0),7)

for the reason that f is onto, which implies that
FCEpy (7,)) < £ (Cgag (F0),1) = oy (7). 7).
O

4. £-Single Valued Neutrosophic Extremally Disconnected and £-Single Valued
Neutrosophic Normal

This section is devoted to introducing £-single valued neutrosophic extremally dis-
connected (£-SVNE-disconnected, for short) and £-single valued neutrosophic normal
(£-SVN-normal, for short), in the sense of Sostak. These definitions and their components,
together with a set of criteria for identifying the spaces, are provided to illustrate how the
ideas are applied.

Definition 13. An SVNITS (X, P27, 7007) is called £-SVNE-disconnected if # (CI; (0w, 1)) >
I’,~TQ(CIT@(0}[,T)) <1-r #1(C ‘i:r (on,7)) < 1—r for each T (cy) > r, Bo(oy) < 1—7,
(o) <1-—r.

Definition 14. Let (X, ©°21,7097) be an SVNITS and r € &. Then, o, € &X is said to be:

(1)  r-single valued neutrosophic semi-ideal open set (r-SVNSIO) iff o, < Cl’i son (iNtea7 (0, 7), 1),

(2)  r-single valued neutrosophic pre-ideal open set (r-SVNPIO) iff 0, < intzpeq (Cprqv (on,7),7),

(3)  r-single valued neutrosophic a-ideal open set (r-SVNaIO) iff 0, < int=pg; (CITPQ,, (intzp0700, 1),
r),r),

(4)  r-single valued neutrosophic B-ideal open set (r-SVNPBIO) iff 0, < Capoi (intzpe (lepen
(Un/r)/ r)/ T),

(5) r-single valued neutrosophic B-ideal open (r-SVNSBIO) iff oy < lepon (intzpa7 (CIﬂ,Q,7
(Unr r)/ 7’), 7’),
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(6) r-single valued neutrosophic regular ideal open set (r-SVNRIO) iff 0, = intpg; (Cl’gp@ﬁ

(o, 7),7).

The complement of r-SVNSIO (resp. r-SVNPIO, r-SVN«IO, r-SVNBIO, r-SVNSBIO, r-
SVNRIO) are called r-SVNSIC (resp. r-SVNPIC, r-SVNuaIC, r-SVNPBIC, r-SVNSBIC, r-SVNRIC).

Remark 2. The following diagram can be easily obtained from the above definition:

r—SVNwalO = r—SVNSIO = r—SVNSO

¥ ¢ 4
r—SVNRIO = r—SVNPIO = r—SVNBIO = r—SVNBO
¢

r—SVNSIO = r—SVNSBIO = r— SVNBIO.

Theorem 7. Let (X, ©°%,7P0T) be an SVNITS and r € &y. Then, the following properties

are equivalent:

(1) (X,%P91,ZP0T) is £-SVNE-disconnected,

() ffi([int’ép (Un,r)]f) >, i—@([int‘g@ (Ufl,r)]C) <1-r7, ”T—ﬁ([int‘g,7 (0, 7)]¢) < 1 — 7 for each
#([0u]0) > 7, 7([]) < 1—7, F([]) <1, ~

(3) Cl‘gp@ﬁ (intgpoq (00.7),7) < intepoq (Cl‘gﬁgﬁ (0w, 7),71), for each oy € &%,

(4)  Every r-SVNSIO set is r-SVNPIO,

(5) T (Cly(ow, 1)) = 1, TClyy(0u, 1)) < 11, T1(Cly; (0u, 7)) < 1—r for each r-SVNSBIO
U'n S gxr

(6) Every r-SVNSPBIO set is r-SVNPIO,

(7)  For each o, € &, oy, is r-SVNaIO set iff it is -SVNSIO.

Proof. (1) = (2):The proof is direct consequence of Definition 14.
(2)=(3): For each o, € &%, #(inty(onr)) > 1, T(inty(on, 7))
<1-—r t1(inty;(0n, 7)) <1—r,and, by (2), we have

¥ ([ints; ([intys (00, 7)],1)]) 2 7, 20([intgy ([inte (0, 1)), 7)) < 17,

1 (fint ([inte (0, I, )]) <17
Thus,
Tp(CI’gﬁ(intfﬁ (0, 1),1)) >71, f@([CI'gg- (intzo(oy,7),7)) <1-—7, f’7([CI§,7 (intz;(0n,7),7)) <1—71;
hence,

CIgﬁ@ﬁ (inti_p@ﬁ (op.r),7) = intsa; (Clépg,-, (intf_p@ﬁ (on,7),1),1) < intsa; (Clérﬁgﬁ (on,7),7).

(3)=(4): Let 0;; be an r-SVNSIO set. Then, by (4), we have
0n < Cleggy (intpon (0, 7),7) < intepgs (Clopgy (0, 7), 7).

Thus, ¢, is an r-SVNPIO set.

(4)=(5): Since 0y, is an r-SVNSPIO set, 0y, < Clipgﬁ (intzpe7 (C Iéﬁéﬁ (0n,7),7),7). Then,
CI’?W (0w, 1) is r-SVNSIO, and, by (4), CI‘;@,7 (on,7) < il’ltfﬁgﬁ(CIépgﬁ(U’n,r),l’) ; hence,
TCIE, (0, 7)) > 1, T0CLy (03, 7)) < 1— 1, T1CI; (03,7)) < 1=

(5)=(6): Let 0;; be an r-SVNPBIO set, then, by (5), CI‘jé,ﬁ@,7 (o, 1) < inteper (CI* (03, 7), 7).
Thus,

o < CI‘;-Q,7 (0w, 7) < intzp; (CI@W (on,7),7).



Symmetry 2021, 13, 53 10 of 18

Therefore, 0;, is an r-SVNPIO set.

(6)=(7): Let 05, be an r-SVNSIO. Then, 0y, is r-SVNSBIO, by (6), 0, is an r-SVNPIO set.
Since oy, is »-SVNSIO and r—SVNPIO, oy, 1S ~r—SVNszO. i

(7) = (1): Suppose that T (0y,) > r, T%(0y) <1—r, T1(0y) < 1—r, then CI‘gp@ﬁ (o, 1)
is r-SVNSIO, and, by (7), CI?W (o, 1) is -SVN@aIO. Hence,

CI%,

007

(0w, 1) < intzpos (CIﬂ,Q,, (intgoer (CI* (0, 7),7),7), 1) = intspe (CIﬁW (on,7),1) < Clﬂ,g,, (o, 7).
Hence,

fﬁ(CIEfp@ﬁ (on, 1)) >, f@(Clﬁﬁ@ﬁ (on, 7)) <1-—r, fﬁ(CI‘gpgﬁ (on, 7)) <1—r.
Thus, (X, 007, 727T) is £-SVNE-disconnected. [

Theorem 8. Let (X, 7097, 7097 be an SVNITS r € & and 0, € &X. Then, the following
are equivalent:

(1) (f( #0271, 7P js £-SVNE-disconnected,

(2)  Clppy (0, 7)7Cs007 (Yn, 1), for every T (o) > r, #(0w) < 1 -7, #1(0y) < 1—rand

every r-SVNEO 7, € §X with 0,4n, N )
(3)  Clapgy (intzpor (Clangy (0, 7),7),7)GCp07 (Y, ¥), for every o € &X and r-SVNEO 7y, € &%
with 0,4vn.

Proof. (1)=-(2): Let ¥ (0y) > r, %(0y) < 1—r,%1(0y) <1 —r. Then, by (1),
fﬁ(CIiﬁ (o, 1)) >, T@(Clég(vn,r)) <l-rv, 7~.”7(CI§17 (on, 7)) <1-—r.
Since [CL 537 (0, 7)]€ is an r-SVNE£O and CI‘gﬁ@q (0n, r)ﬁ[CI‘f%ﬁ@ﬁ (0w, 1)], it implies that
CIWW (03, 7)GC 2007 ( [CIW,7 (on, 7)), 7).

5\/1(\?23(1}3: Lek;c T(ﬁz()an) > 1, t(0y) < 1—7,T(0y) < 1—r. Since [Cly; (0, 7)]¢ is an
- , then, by (2),

(:prq,7 (0, 7)GC 2007 ( [Clﬁ,g,, (0, 1)), 7).
This implies that Cl‘gpéﬁ (o, 7) < intzpey (CLpev (on,1),1) < Cl‘gpéﬁ (on,7),80
fp(CI‘f%ﬁ (on, 1)) >, f@(CI‘;@(Un,r)) <1-r, fﬁ(CI’fﬂ (on, 7)) <1-—r.
(2)=(3): Suppose that 7, € {'jf( and vy, is an r-SVN£O with 0,4, Since
#° (intsp (CI (0n,1),1)) > 1, (mtTU(CI 2 (00,7),7)) <1—r, T(inty (CI i(on,7),7)) <1—r.
By (2), we have CIﬂfp@,7 (intzpaq (Cprqv (0, 7),7),7)GC 2007 (Y, 7).
(3)=(2): Let #(0y,) >, T@(an) <1-r, Tﬁ(an) < 1-rand 7, be an r-SVN£O with
0nq4vn- Then, by (3), we obtain CI%M (intzpa7 (CIfM (ou,7),7),7)GC007 (yn, 7). Since
Clg7 (0, 1) < Cliga (iny son (Cligar (0, 7),7),7),

then, we have CI’;-@,7 (00, 7)GC 2007 (Yn, 7). O

Definition 15. An SVNITS (X, #%1, T 5’7) is called £-SVN-normal if, for every [o4]1q[on]>
with T ([oy]1) > 7, T([on]1) < 1—7r, #1([ou]1) < 1 —r and [0y]3 is -SVNEO, there exists
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[yalj € &%, forj = {1, 2} with T ([va){) > 1, T8([va))) <1 —1, T1([yal]) <1 =7, [ul2is
r- SVN£C such that [oy]2 < [vul1, [on]1 < [Yn]2 and [vn]1G[vn)2-

Theorem 9. Let (X, 2797, ZP%T) be an SVNITS; then, the following are equivalent:

1 (X, P 1, 0T is an £-SVN-normal.

(2) (X, %P1, 7PN is an £-SVNE-disconnected.

Proof. (1)=(2): Let () > r, #¥(0,) < 11, 71(0;) < 1—rand [Cly (0, 7)) be an
r-SVNZ£O. Then, 0,4 [Cpren (0, 7)]¢. By the £-SVN-normality of (X, 097, ZP0T), there exist
[yn); € &%, fori = {1,2} with

P([valf) =7, (vl <1-r F(lml) <1-7,

and [7y,]5 r-SVNEC such that [CIfW (00, 1)] < [Yn)1, on < [yn)2 and [yn]19[vn]2- Since
Cliﬁéﬁ(gnlr) < Clipéﬁ([’Yn]Z/ )= [yn)2 < i < CLpon (ou,1),

we have Cprsm (on,7) = [7n]2. Since [lepev (00, 7)]° < [val1 < [vnls = [Cpra'/(‘anr)]C/ SO
[CLZ—PQ’? (0n,7)]° = [7a)1. Hence, CIi—ﬁéﬁ (ou,7) = [1u]{ and

fﬁ(CI‘gﬁ (on, 1)) =71, ’I’@(CIi:_@(an,r)) <1l-r, ’L~"7(CI‘§_,7 (on, 7)) <1-—r.

Thus, (X, 7797, 7097) is an £-SVNE-disconnected.
(2)=(1): Suppose that T (0y,) > r, T(0y) < 1—r, ¥1(

0y) < 1—rand 7, is an
r-SVN£O with 0,,G7y,,. By the £-SVNE-disconnected of (X, #797, 7

a7 ) we have
fp(CIiﬁ (o, 1)) >, f@(Clig(an,r)) <l-rv, 7~.”7(CI‘§17 (op, 7)) <1-—r,

and [CI£

TP"’7£ )] iS r'SVNEO- Since U'nﬁ')’n/ Un S CIi{:’fﬁéﬁ (O'T’ll 7’) and ')’n S [lel‘(jéﬁ (Un, T)]C.
Thus, (X, T°

nrs
o7, 702T) is an £-SVN-normal. [
Theorem 10. Let (X, 7797, 7P%T) be an SVNITS, O, 0nCX and v € &. Then, the following
properties are equivalent:
(1) (X, %P2, IPAT) is £-SVNE-disconnected.
(2) Ifoy is r-SVNRIO, then oy, is -SVNEC.
(3) Ifoy is -SVNRIC, then oy, is -SVNEO.

Proof. (1)=-(2): Let 0, be an -SVNRIO. Then, 03, = intsq; (CI%,

a0 (0n,7),7) and T (0y,) > 1,
(0y) <1—r1,%1(0,) <1—r1. By (1),

T‘U(CI (o0, 7)) > 7, fQ(CIég(Un,r)) <1l-r, %ﬁ(CI’gﬁ (on, 7)) <1-—r.

Hence oy, —1nt~pgr,(CI%pQ,7((7n, r),r) = CI%pQ”((fn, 7).
(2)=(1): Suppose that 0;, = intysg7 (CIfW(Un, r),r), then (c,,) > r, ¥(0y,) <1 -7,

#1(0,) < 1—r1,by (2), 0y is r-SVNEC. This implies that
CIﬁPQ,7 (o, 1) < Cprw (intp7 (CITPQ,? (ow,7),7),1) = ity (Clﬂ,m,(an, r),r) < lepm,(an,r).
Thus,
Tﬁ(CI‘ép (o, 1)) >, fé(CI‘ég-(an,r)) <1l-v, f’7(CI’§,7 (on, 1)) <1-—r,

then (X, #27, ZP27T) is an £-SVNE-disconnected.
(2 )<:> (3): Obvious. [
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Remark 3. The union of two r-SVNRIO sets need not to be an r-SVNRIO.

Theorem 11. If (X, #0097, 721 is £-SVNE-disconnected and oy, v, € X, r € &. Then, the
following properties hold:

(1) If oy and 7y, are r-SVNRIC, then oy, A 7y is r-SVNRIC.
(2)  If oy and vy are r-SVNRIO, then oy, V 7y is r-SVNRIO.

Proof. Let 0, and 1y, be r-SVNRIC. Then, T ([0,/]¢) > 7, 9([0]¢) < 1—7,%1([04]) < 1—7
and T ([v,]¢) > r,22([yn]°) <1 —r,21([yn]°) < 1 —r, by Theorem 7, we have

Tﬁ([int‘;p(an,r)]c) >, i’é([inté@((rn,r)]c) <1-—r, " ([mt (o, 1)) <1-r,

and
P ([intzs (7, 7)) =7, B([intgy (v,1)]) <1 =71, #([ints; (yn,7)]) <1—r.
This implies that
On Nyn = Caooi (lnép@n (ou,7),7) A Caoan (lnti—PQW (vn,1),7)
- intgﬁﬁﬁ (U'n, 1’) A\ 1nt~ﬁ@,7 (r}/n, 1’) - ll’ltipg-ﬁ (0-1/1 A ’)/n, 1’)
S Ci—ﬁ@ﬂ (1nt£ 001 (Un A Yn, ¥ ) )
On the other hand,
Cpan (mtipov (0u Ayn,7),7) = Caaop (lntfPQW (ou, 1) A mtﬁﬂev (vn,1),7)
< Csoa (inti—ﬁéﬁ( 1n,7),7) A Crpan (intf%p@ﬁ (Yn,1),7)
= 0n N\ Yn-
Thus, C a1 (mtﬁm (00 Ayn, 1), 7) = 0y A yn. Therefore, o, A 7y, is an r-SVNRIC.
(2) The proof is similar to that of (1). O
Theorem 12. Let (X, ¥°%1,ZP0T) be an SVNITS and r € &y. Then, the following properties

are equivalent:
(1) (X, TP91,IPA7) is £-SVNE-disconnected,
(2) fp(CI‘;z(Un, r)) > 1, T8(Cls (0w, 1)) < 1—1,%71(CL,

=

(on,1)) <1—r, forevery r-SVNSIO

Un S gX/

(3) fﬁ(CI%(O'”,T)) (CI (0, 1)) <1-—r, TW(CL,] (0w, 1)) < 1—r, forevery r-SVNPIO
oy € CX/

(4) ff’(CI‘g,z(an, r)) > 1, T8(Clsy (0w, 7)) < 1—1,T1(CI; (0, 7)) < 1—, for every r-SVNRIO
o, € §X.

Proof. (1) = (2) and (1) = (3). Let 0, be an r-SVNSIO (r-SVNPIO). Then, oy, is -
SVNSBIO, and, by Theorem 7, we have,

Tﬁ(CI’[%p (o, 1)) >, fé(CI‘éQ-(an,r)) <1l-r7 (CL,] (o, 1)) <1—r.
(2)=-(4) and (3)=-(4). Let 03, be an r-SVNRIO. Then, ¢, is -SVNPIO and r-SVNSIO. Thus,
T‘U(CI (o0, 7)) > 7, f@(CI’g@(Un,r)) <1l-r, %ﬁ(CI‘gﬁ (on, 7)) <1-r.
(4)=(1). Suppose that

fﬁ(intfp (CI’gﬁ (on,1),7)) =71, fé(intfg(CI’f%@ (on,1),7)) =7, fﬁ(intfq (Cliﬁ(an,r),r)) > 7.
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Then, by (4), we have

fﬁ(CI‘gp(inb (CI :(On,7),7),1)) > 71, 'T'@(Cl‘f:r@(int~ (CI o(On,7),7),1)) > 1,
Tl (Cléﬁ(intf_ﬁ (Clﬁfﬁ(an,r),r),r)) >r.

Hence,

CprQ,, (o, 1) <CIﬂ,w(mtTpg,7 (CI%M (On,1),7),7)

= lntfﬁgﬂ (CI-[—PQW (lnt F007] (CIf—pQ;] (Unr T), 7’), 7’), 7’)

= intzpa; (Cprg,, (n,1),1) < CprQ,, (0, 7).

Thus, 77(C (C é(an, r) > r1%(Cliy (0w, 1)) 1 —r,#1(CIl; (0w, 7)) < 1—1; hence,
T, IP0T) i

s, <
(X, P2 is an £-SVNE-disconnected. []

Definition 16. Let (X, P2 be an SVNITS. Then, oy, is said to be an r-SVNESO if o, <
Capai (mtﬂ,‘,17 (o, 7), r)

Definition 17. Let (X, 7727, ZPT) be an SVNITS for each r € &y, 0 € EX and X € PHEX).
Then, xs 1t is called an r-SVNSI-cluster point of oy, if, for every vy, € Qzpon (xs,t,p, r), we have

Tnqintzpar (le—pen (vn,7),7).

Definition 18. Let (X, %7, ZP8T) be an SVNITS for each r € &, o € &X and Xstp € Pt(&X).
Then, the single-valued neutrosophic 6Z-closure operator is a mapping Cypzoan = &~ X o — eX
that is defined as: Cspzpon (0, 7) = \V{Xs1,p € Pt(&X) is -SVNSI-cluster point of oy, }.

Lemma 3. Let (X, T2, Z0%T) be an SVNITS. Then, oy, is r-SVNESO iff Czpoi (0n, 1) = Cspan
(mtﬂw (On,1),7).

Proof. Obvious. O

Lemma 4. Let (X, % PoT) be an SVNITS for each oy, € ¥ and r € &. Then, Cypo1 (0, 1) <
Corzoai (On, 7).

Proof. Obvious. [

Lemma 5. Let (X, P97, ZP0T) be an SVNITS and oy, be an r-SVNESO. Then, Cxop1(0y, 7) =
Coreoan (On, 7).

Proof. We show that C.pa7 (071, 7) < Cgypzoan (0, 7). Suppose that Copop (07, 7) 2 Copepan (0n, 1),
then, there exist v € X and s, t, p € & such that

Pcfp(ﬂn,f) (V) <s< ﬁCMfﬁ(Un,r) (V)r QC (on,1) (V) >t> QC 20 (0n, r)( ) 1

77Cf,7 (on,7) (V) 2p> ﬁCéﬁﬁ (ow,7) (V)

By the definition of Cs7, there exists T0([7,]¢) > 7, T9([74]¢) < 1 —r, T1([74]¢) <
1 — r with 0, < 7, such that

pCfﬁ((rn,r)(V) < pN’Yn( ) <s< pC 20 (0nr) (V> QC_L__@(O'n,Y) (V> 2 @’Yn( ) >t> QC 0 (0n, r)( )

UCfﬁ ((Tn,}’)(v) > ﬁ%: (U) >p> UCAI ,,(Un,r)(v)'
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Then, [v1] € Qo1 (Xs,t,p,7) and

(00 > [1a]® = Cprqr/([Un] r) > lepev(hn]cfr)
= CIﬁpgw;([Un] r) > intzpo7 ([va]S,7)

[lntTPQ’? (o, 1)1 = [7n]"

Thus, 1ntfpg,7 (0w, 7)q[vn]¢. Hence, intzpa (Cprgy, ([nl€ 1), 7)GC a1 (mtﬁm (on,1),7),1).
Since 0y, is an -SVN£SO, we have int.sq; (Clﬁ,g,, (Yn,7),7)40u. SO, X5 1p is not an r-SVNJIZ-
cluster point of ¢;,. It is a contradiction for equation 3. Thus, Cs47 (03, 7) > Cgyzoai (00, 7).
By Lemma 4, we have C.p47 (0%, 1) = Cypz07 (0, 7). O

Theorem 13. Let (X, T2, 7P0T) be an SVNITS. Then, the following properties are equivalent:
(1) (X, %P1, IP07) is £-SVNE-disconnected,
(2) If 0y is r-SVNSBIO and vy, is r-SVN£SO, then lepev (0, 7) A Cipan(vn, 1) < Capap

(o0 N yn),

(3) If 0, is r-SVNSIO and vy, is r-SVNESO, then Cprg,, (0, 7) A Cipai (Yn, 1) < Copan
(‘Tn AYn), . .

(4) Cprev (0, 7)GCos0i (7n, 1), for every r-SVNSIO set o, € &X and every r-SVNESO v, € X
with 0,qvn,

(5) If 0y is an r-SVNPIO and vy, is an r-SVNESO, then CIF:M (0, 7) A\ Capai (Y, 1) < Crpa

(on A vn).

Proof. (1)=(2): Let 0, be an r-SVNSBIO and <, be an r-SVN£SO, by Theorem 7, t#
(CLzs (0, 7))
>, f@(CI‘gé (00,7)) <1—71, (CL,](Un,r)) <1—r. Then,

CIfﬂaﬂ (on, 1) Caaoi (Yn, 1) < Caaon (mtfﬂ@v (Yn,7),7) < Can [CI'Z—#’QW (Y, 7) A mtf—ﬂw (Yn,7),7]
< Conan [Clga [1n A ity (v, 7), 71,7 < Copon [Copon [ A itz (70, 7), 71, 7]
S Cfﬁ@ﬁ [’)/Vl lntf—pgﬂ (,YVI/ )/ ] S Cfﬁ@ﬁ [”Yn A Yns 7’].

Hence, CI%;5 (0, ) A Croar (Y, ) < Crpan (0 A ).
(2)=(3): It follows from the fact that every ~-SVNSIO set is an r-SVNSBIO.
(3)=(4): Clear.
(49)=(1): Let 0, be an r-SVNSIO. Since [Cl%yy; (0, 7)]° < Cpon (inteag; (Cl55 (0],
r),r),t) we have, [Cl’im (0w, 1)]¢ is an r-SVN£SO. Then, by (4), Cl’ipg,7 (0, 7)qGC 207 ([CIWU
(on,7)]6, 7). Thus, CIﬁpQ,] (on, 1) < [Cyoan (CI‘;)(),7 (0w, 7)]6,1)]¢ = intesy <CI-I—P(”7 (on,7),7).
Therefore, Tﬁ(CI’ép (o, 7)) > 7, %@(CI’[%@ (0, 7)) < 1-—7, Tﬁ(CIfﬁ (04,7)) < 1—r. Thus,
by Theorem 12, (X, 097, 7P0T) is £-SVNE-disconnected.

(2)=(5): It follows from the fact that every »-SVNPIO is an -SVNSBIO. [

Corollary 1. Let (X, 7797, 7P0T) be an SVNITS. Then, the following properties are equivalent:

(1) (X,%P91, 700 is £-SVNE-disconnected.

(2) If 0 is an r-SVNSBIO and vy, is an r-SVNESO, then Cléﬁ@ﬁ (o, 7) A Cypzon (Yn, 1)
Caoa1 (0n A Yn)-

(3) If 0y is an r-SVNSIO and vy, is an r-SVNESO, then CI’EZPQ,7 (0, 1) A Cypzpai (Yn, 1) <

Cpar (0 A ).
(4) If 0w is an r-SVNPIO and vy, is an r-SVNESO, then Clipy (0, 7) A Cypzpan (Yn, )

CTPQ'i ((Tn A ')’n)

IN

IN

Proof. It follows directly from Lemma 3 and 5. [
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5. Some Types of Separation Axioms

In this section, some kinds of separation axioms, namely r-single valued neutrosophic
ideal-R; (r-SVNIR;, for short), where i = {0,1,2,3}, and r-single valued neutrosophic
ideal—T]- (r-SVNI Tj, for short), where j = {1, 2, 2%, 3,4}, in the sense of Sostak are defined.
Some of their characterizations, fundamental properties, and the relations between these
notions have been studied.

Definition 19. Let (X, ©°97,ZP%) be an SVNITS and r € &y. Then, X is called:

(1) r-SVNIR iff xs,t,pﬁCI_ﬁrp@ﬁ (Ysy ty,pr, 1) implies ysl,tl,plﬁCIﬁW (Xs,t,p,7) for any Xs i p # Ys,,
1, p1-

(2) r-SVNIR; iff xs,t,pﬁCI‘iﬁ@ﬁ (Ysy,ty,p1, 1) implies that there exist -SVNEO sets on, 7, € X
such that Xstp € On, Ys; ty,p; € Yn and 0uqyn. )

(3)  r-SVNIRy iff X5t pGn = CIi{rﬁéﬁ (gn, ) implies there exist r-SVNEQO sets on, vy € & such
that xstp € On, Gn < yn and ouqyn.

(4) r-SVNIRs iff [cn]1 = (zliﬁ@ﬁ([gn]l,r)ﬁ[gn}z = CIﬁﬁ@q([gn]z, r) implies that there exist
r-SVNEO sets 0y, vy € &X such that [c,]1 < o, [Gnl2 < n and TnlYn-

(6)  r-SVNITy iff X5 t,pqYs, t,,p, implies that there exists r-SVNEO on € CX such that xs 1 € 0y
and Ysy,b,p190n- }

(6)  r-SVNITy iff Xs 4 pYsy t1,p, implies that there exist r-SVNEO sets on, v, € &X such that
Xstp € Ons Ysy,ty,pr € T and OndYn- i

(7) r-SVNIT, 1 iff Xs,t,pqYsy ty,p, implies that there exist r-SVNEO sets on, vy € &X such that
Xstp € On, Ysy by, p1 € Y and CI‘f_ﬁ@ﬁ(Un,r)ﬁCIf_ﬁ@ﬁ (Y, 7).

(8) r-SVNITsiffitisr-SVNITRy and r-SVNIT;.

(9 r-SVNITy iff it is -SVNITRs and r-SVNIT,.

Theorem 14. Let (X, t%1,70%T) be an SVNITS and r € &y. Then, the following statements
are equivalent:

(1) (X, TP, 7PeT) is r-SVNIR,.

(2) If xsppqon = CIfﬁ@ﬁ(Un,r), then there exists r-SVNEO v, € &% such that xst,,q7yn and
on < Yn.

(3) I’fxs/t/pﬁan - CI?PQ’? ((Tn, 7‘), then Clﬁﬁéﬁ (xsrt’p, T)ﬁ(fn - Cliﬁéﬁ (Jn, 7’).

(4) Ifxs,t,pﬁCIf_ﬁ@ﬁ (ysl/tlzpl 7 T), then le_ﬁéf/ (xs,t,p, r)ﬁCIipﬁﬁ (ys1,t1 /Pl’ 1’).

Proof. (1)=(2): Let x5+ pqon = Crt (0w, 7). Then,

007

S+ﬁ7n(v)<1/ t+éan(v)>1/ p+;7(7n(v)21/

for every ys, t,p, € 0n, we have sy < pg,(v), t1 > 00, (v) and p1 > 7y, (v). Thus,
X5t p7CT 30 (Ysy b1, 7). Since (X, 7027, 7PAT) is an r-SVNIR,, we obtain ys, ¢, p, 7CT s
(%s,tp,7). By Lemma 2(2), there exists an r-SVN£O ¢, € CX such that x5 ,qc, and
Ysitp < Gn- Let
Tn = \/ {on : XstpG6n, Ysitip € G}
Ysy,ty,p1 €0

From Lemma 1(1), vy, is an r-SVN£O. Then, x5 ¢ pGvn, 0n < Yn-

(2)=(3): Let x5t pgoy, = Clﬁpéﬁ(an,r). Then, there exists an -SVN£O 7, € CX such
that x5t »,§vn and 0, < . Since for every v € X,

s < 1 - ﬁWn (V)’ t 2 1 - é'}‘n (V)/ p Z 1 - 17’}‘;1 (V)’

we obtain

Cliﬁéﬁ(xs,t,prr) < Cliﬁ@ﬁ([')’n]crr) = [a] < [ou]".
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Therefore, Cliﬁ@ﬁ (xS,t,p, T)ﬁa’n - Cliﬁ@”—/ (O-n, 1’).
(3)=>(4): Let o1 p7CL 50 (Vsy t1,p1, 7). Then, Xop pGCL s (Vs t1py,7) = Cliggy (Clogyg

(ysl,tl(,il; ’ r)(a’;)Cl?y (3)/ [Sjll tl/ Pl (-xs,t,p/ T’)ECIiﬁéﬁ (]/sl,tl,pl, 7").
=(1): ear.

Theorem 15. Let (X, 2797, ZPT) be an SVNITS and r € &. Then, if X is

(1) [r-SVNIRz and r-SVNIRy] =@ r-SVNIR, =¥ r-SVNIR; =(©) r-SVNIR,.
(2) r-SVNIT, = r-SVNIR,.

(3) r-SVNIT; = r-SVNIR,.

(4) r-SVNITy = r-SVNIRs.

(5) r-SVNITy =@ r-SYNIT; =) r-SVNIT,y =) - SYNIT, =@ r-SVNIT;.

Proof. (1,). Le~t xsitfﬁgn““: CIip-éﬁ(gn,r), by Theorem 14(3), CIﬁp-Q-ﬁ(xs/t,p,r)ﬁgn = Clip@ﬁ
(g?l/ 7’). Since (X, f’pgﬂ, IPQ'//) iS V—SVNIR3 and lefﬁ@ﬁ (xs,t,p, 7’) - Cliﬁ@ﬁ (Cliﬁ@ﬁ (xs,t,p, 7’), 1’),
there exist r—SV1>I£O~~s~etsg,~l,’)/n € X such that Xstp € CIﬁp@ﬁ(xslt,p, 7) < 0u, 6n < yp and
0uqyn. Hence, (X, TP, ZPCT) is r-SVNIR,.

(1p). For each xs,,g,pﬁCI’;;@,7 (Ysi,t1,p1, 1), DY -SVNIR, of X, there exist r-SVNZO sets
On, Y € X such that Xsrp € O, Yoy ty,p1,7 € Clﬁp@ﬁ (Ysptipi,707) < vn and 0Gyn. Thus,
(X, £001, 7007 is r-SVNIR;.

(1¢). Let (X, %791, 702T) be r-SVNIR;. Then, for every X 4, p7CT 5y (Ysy t1,pr, 7, 7) and
Xstp 7 Ysy t1,p1, there exist r-SVNEO sets 0y, v € th such that x5t € 0u, Ys, t,,p; € Yn and
0nqyn- Hence, x5 € 0y < [7]°. Since 7y, is an r-SVN£O set, we obtain CI‘ﬁp@ﬁ (Xs1,p,7) <
CI‘;-@,7 ([vulr) = [vnl® < [Yspir,p]¢. Thus, ysl,tl,pﬁCIiﬁ@ﬁ (xstp,7) and (X, TP, TPOT) is
r-SVNIRy.

(2). Let xS,t,quI-f—ﬁg‘ﬁ (Ysptaprs7)- Then, Xs 1 pGys, 4,1~ By r-SVNIT, of X, there exist r-
SVNZ£O sets 0, 7 € ¢X such that xst,p € Oy, Vs, t1,p, € Yn and 0,77y, Hence, (X, 7097, 7007)
is -SVNIR;.

(3) and (4) The proofs are direct consequence of (2) .

(54). The proof is direct consequence of (1).

(5p). For each xs4,,qVs, t,,p,, since X is both r-SVNIR, and r-SVNIT], then, there

exists an r-SVN£O set ¢, € ¢X such that Xstp € Gn and Ys, t; p,G6n- Then,

Xt €6n = intiﬁ@ﬁ(g”/r) < intiﬁ@’?([yslrtl/m]c’r) = [Cliﬁéﬁ Ys1,t,p1 7))

Hence, xs,,g/pﬁCI’;;@,7 (Ysi,t1,p1,7)- By -SVNIR; of X, there exist r-SVNZO sets 0y, yn €
¢X such that xs1 p € 0y, CIﬁp@ﬁ (Ysi b1, 1) < vn and 6,Gvn. Thus, 0y < [74], s0

CI 5y (0, 7) < Clpy ([7n]% 1) = [10]° < [Clopgy (Vs 1,00, 7)]
It ilflpI{%%CIiééﬁ ((Tn, V)ECI'_QL_@,? (ysl,tl,p], 1’) With xs,t/p E Un al’ld ysl/tllpl E lejﬁéﬁ (ysl,tl,p], 1’).
Thus, (X, T, Zr0) is r-SVNIT,;.
2 ~
5¢). Let Xs t »GVs, t,.p- Then, by r-SVNIT,; of X, there exist --SVN£O sets 0y,, 7, € &X
, ,qu 1.41,P1 y 22

such that x5, € 0, Ys ty,py € Yn and CI‘;@,7 (On, r)ﬁCIfT:p@ﬁ (7n, ), which implies that ¢,,4y,.
Thus, (X, T, Z°) is r-SVNIT;.
(54). Similar to the proof of (5.). O

Theorem 16. Let (X, T2, 70%T) be an SVNITS and r € &y. Then, the following statements
are equivalent:

(1) (X, TP, 7PeT) is r-SVNIR,.
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(2) If xstp € 0y and oy is -SVNEO set, then there exists r-SVNEO set v, € 65( such that
Xstp € Tn < CIf-ﬁg’ﬁ (')/n/ 7) < op. i

(3)  If xstpqou = Clﬁpg,,((fn, r), then there exists r-SVNEO set [y,]; € &%, j = {1,2} such that
Xstp € [Yn]1, On < [Yn]2 and CITPQW ([vul17 )qCITPQU ([vnl2,7)-

Proof. Similar to the proof of Theorem 14. [

Theorem 17. Let (X, T2, 7021 be an SVNITS and r € &y. Then, the following statements
are equivalent:

(1) (X, TP, Z0eT) is r-SVNIR3.

(2) If [0n)19[on]2 and [o4]1, [Un]z are r-SVNEC sets, then there exists r-SVNEO set vy, € &X
such that [oy)1 < v, and CITPQ,, (Yn,7) < [04]2-

(3)  Forany (o)1 < [0n]2, where [0y]1 is an r-SVNEQO set, and [0y, is an r-SVNEC set, then,
there exists an r-SVNEO set v, € EX such that [0]1 < yn < CIqu:/ (Yn,7) < [On]2

Proof. Similar to the proof of Theorem 15. [

Theorem 18. Let f : (X, ~é’7,zfé’7) N (Y,%zﬁéﬁ
£-SVNI-irresolute open mapping an of]
r-SVNIR,.

) be a £-SVNI-irresolute, bijective,
r-SVNIR,. Then, (Y, 2%, 70%7) is

@ N‘Dx

Proof. Let ys 46y = CI*(Gn, 7). Then, by Definition 11, g, is an -SVNEC set in Y. By The-
orem 3(2), f'(gu) is an r-SVNEC setin X. Put ysr,p = f(xs,p). Then, xg 1 pGf ' (gn). By -
SVNIR, of X, there exist -SVN£O sets 0y, 7y, € CX such that xs 1 € oy, f “1(¢n) < 9nand
0ugyn- Since f is bijective and £-SVNI-irresolute open, ystp € f(0u), 6n < f(f 1(gn)) <
f(vn) and f(04)qf (7a). Thus, (Y, T’féﬁ,Iféﬁ) isr-SVNIR,. O

Theorem 19. Let f : (X, Tf o Zf ) — (Y, f @'7,15@7) be an £-SVNI-irresolute, bijective,
£-SVNI-irresolute open mapping and (X, #*", I°") be an r-SVNIR;. Then, (Y, pqn IPQU)
r-SVNIRs.

Proof. Similar to the proof of Theorem 18. [

6. Conclusions

In summary, we have introduced the definition of the r-single valued neutrosophic £-
closed and r-single valued neutrosophic £-open sets over single valued neutrosophic ideal
topology space in Sostak’s sense. Many consequences have been arisen up to show that
how far topological structures are preserved by these r-single valued neutrosophic £-closed.
We also have provided some counterexamples where such properties fail to be preserved.
The most important contribution to this area of research is that we have introduced the
notion of £-single valued neutrosophic irresolute mapping, £-single valued neutrosophic
extremally disconnected spaces, £-single valued neutrosophic normal spaces and that we
defined some kinds of separation axioms, namely r-SVNIR;, where i = {0,1,2,3}, and
r-SVNIT;, where j = {1,2, 2%, 3,4}, in the sense of Sostak. Some of their characterizations,
fundamental properties, and the relations between these notions have been studied.
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