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Abstract: A topic of current interest in the study of topological indices is to find relations between
some index and one or several relevant parameters and/or other indices. In this paper we study
two general topological indices Aα and Bα, defined for each graph H = (V(H), E(H)) by Aα(H) =

∑ij∈E(H) f (di, dj)
α and Bα(H) = ∑i∈V(H) h(di)

α, where di denotes the degree of the vertex i and α is
any real number. Many important topological indices can be obtained from Aα and Bα by choosing
appropriate symmetric functions and values of α. This new framework provides new tools that allow
to obtain in a unified way inequalities involving many different topological indices. In particular, we
obtain new optimal bounds on the variable Zagreb indices, the variable sum-connectivity index, the
variable geometric-arithmetic index and the variable inverse sum indeg index. Thus, our approach
provides both new tools for the study of topological indices and new bounds for a large class
of topological indices. We obtain several optimal bounds of Aα (respectively, Bα) involving Aβ

(respectively, Bβ). Moreover, we provide several bounds of the variable geometric-arithmetic index
in terms of the variable inverse sum indeg index, and two bounds of the variable inverse sum indeg
index in terms of the variable second Zagreb and the variable sum-connectivity indices.

Keywords: variable Zagreb indices; variable sum-connectivity index; variable geometric-arithmetic
index; variable inverse sum indeg index

1. Introduction

Chemical compounds (like hydrocarbons) can be represented by means of graphs.
A topological descriptor is a numerical value (or a set of numerical values) that encapsu-
lates some property of that graph. Moreover, if the descriptor correlates with a certain
molecular characteristic, it is said to be a topological index, and it can be employed to study
physicochemical properties of chemical substances.

In mathematical chemistry the analytical and structural properties of topological
indices have been studied in depth over the last years (see, e.g., [1–3]). The theoretical and
practical interest of topological indices lies in the fact that they have become an important
tool for the study of multiple practical problems in Computer Science ([4]), Physic ([5]),
Ecology ([6]), among others.

Countless applications of topological indices have been reported, most of them con-
cerned with exploring medicinal and pharmacological issues. A turning point in the math-
ematical examination of topological indices happened in the second half of the 1990s, when
a significant and ever growing research field on this matter started, resulting in numerous
publications. In this context, especially the papers of Erdös [7,8] should be mentioned.

The concept of variable molecular descriptors was proposed as a new way of char-
acterizing heteroatoms in molecules (see [9,10]), but also to assess structural differences
(see [11]). In [12] the authors tested the correlation abilities of several topological indices
used in practice for the case of standard heats of formation and normal boiling points of
octane isomers.

In the sequel H = (V(H), E(H)) denotes a finite simple graph where, V(H) is the set
of vertices and E(H) is the set of edges. di denotes the degree of the vertex i. In [13–15],
the following variable Zabreb indices are studied:
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Mα
1 (H) = ∑

i∈V(H)

dα
i , (1)

Mα
2 (H) = ∑

ij∈E(H)

(didj)
α, (2)

with α ∈ R. Mα
1 is known as the variable first Zabreb index and Mα

2 is the variable second
Zabreb index.

Note that if we take α = 2, we obtain the well-known first Zagreb index M1; if α = −1,
we obtain the inverse degree index

ID(H) = ∑
i∈V(H)

1
di

= ∑
ij∈E(H)

( 1
d2

i
+

1
d2

j

)
, (3)

M3
1 is the forgotten index, etc. Moreover, if α = −1/2, we obtain M−1/2

2 the famous
Randić index and M1

2 is the second Zagreb index. It is noteworthy that Mα
2 with α = −1

(the modified Zagreb index ([16])) performs significantly better than M−1/2
2 .

Besides, variable Zagreb indices have shown their theoretical importance and ap-
plicability in mathematical chemistry (see [17]). The idea behind the variable molecular
descriptors is that the variables are determined during the regression so that the standard
error of estimate for a particular studied property is as small as possible. For application
details and mathematical theory see [14,15,18–22].

In [23] is studied the variable sum-connectivity index

χα(H) = ∑
ij∈E(H)

(di + dj)
α, (4)

with α ∈ R.
Note that ∑ij∈E(H)(di + dj) = ∑i∈V(H) d2

i , thus χ1 is the first Zagreb index M1, 2χ−1

is the harmonic index H (see [24–28]), etc. Some relations connecting these indices are
reported in [26].

In [29,30] the variable geometric-arithmetic index is defined by

GAα(H) = ∑
ij∈E(H)

 2
√

didj

di + dj

α

, (5)

with α ∈ R.
Clearly, GA1(H) and GA−1(H) are the geometric-arithmetic index GA(H), and the

arithmetic-geometric index AG(H), respectively.
In [30,31] is introduced the variable inverse sum indeg index as

ISIα(H) = ∑
ij∈E(H)

(
didj

di + dj

)α

. (6)

with α ∈ R.
Note that ISI1(H) is the standard inverse sum indeg index ISI(H).

Motivation and Contributions

The main reason for use topological indices is to obtain prediction of some property
of molecules (see, e.g., [11,12]). Therefore, given some fixed parameters, a natural problem
is to find the graphs that minimize (or maximize) the value of a topological index on the
set of graphs satisfying the restrictions given by the parameters (see, e.g., [7,8]).
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Let f : Z+ × Z+ → (0, ∞) be any symmetric function ( f (x, y) = f (y, x)), h : Z+ →
(0, ∞) any function and α ∈ R. Many important topological indices can be defined as

Aα(H) = ∑
ij∈E(H)

f (di, dj)
α, (7)

or
Bα(H) = ∑

i∈V(H)

h(di)
α. (8)

One of the main problems in the study of topological indices is to find bounds for
them, since this kind of results provide interrelations between different topological indices:

Since topological indices correlate with chemical properties of compounds, finding
the compound with extreme behavior for a certain property is equivalent to optimizing
a topological index I1 with a strong correlation with that property on the appropriate set
of graphsH. If the behavior of the graphs with respect to the index I2 is determined, and
there exists a known relation between I1 and I2, then a large amount of the graphs in H
can be removed a priori before starting the study. This leads to a significant simplification
in the optimization problem.

The main goal of this paper is to obtain optimal bounds for the general topological
indices Aα and Bα. We have seen that many important topological indices can be obtained
from Aα and Bα by choosing appropriate values of α and functions f and h:

• if h(t) = t, then B2 is the first Zagreb index M1;
• if h(t) = t, then B−1 is the inverse degree index ID;
• if h(t) = t, then B3 is the forgotten index F;
• if h(t) = t, then Bα is the variable first Zagreb index Mα

1 ;
• if f (x, y) = xy, then A1 is the second Zagreb index M2;
• if f (x, y) = xy, then A−1/2 is the usual Randić index M−1/2

2 ;
• if f (x, y) = xy, then A−1 is the modified Zagreb index MZ;
• if f (x, y) = xy, then Aα is the variable second Zagreb index Mα

2 ;
• if f (x, y) = x + y, then A−1/2 is the sum-connectivity index χ;
• if f (x, y) = x + y, then 2A−1 is the harmonic index H;
• if f (x, y) = x + y, then Aα is the variable sum-connectivity index χα;
• if f (x, y) = 2

√
xy/(x + y), then A1 is the geometric-arithmetic index GA;

• if f (x, y) = 2
√

xy/(x + y), then A−1 is the arithmetic-geometric index AG;
• if f (x, y) = 2

√
xy/(x + y), then Aα is the variable geometric-arithmetic index GAα;

• if f (x, y) = xy/(x + y), then A1 is the variable inverse sum indeg index ISI;
• if f (x, y) = xy/(x + y), then Aα is the variable inverse sum indeg index ISIα.

Thus, each theorem in this paper about Aα and Bα is a result for each one of these
indices. Moreover, for each fixed function f (respectively, h), we obtain a result for each
real value of α.

Our approach provides both new tools for the study of topological indices and new
bounds for a large class of topological indices. In particular, we obtain several optimal
bounds of Aα (respectively, Bα) involving Aβ (respectively, Bβ), see Theorems 1, 2 and 3
(respectively, Propositions 1, 2 and 3). Moreover, we provide several optimal bounds of
GAα in terms of ISI−α (see Theorems 4 and 5), and two optimal bounds of ISIα involving
M2α

2 and χ−2α in Theorem 6.

2. Bounds for the General Topological Indices Aα and Bα

Throughout this work, H = (V(H), E(H)) denotes a finite simple graph. We denote
by ∆, δ, n ,m the maximum degree, the minimum degree and the cardinality of the set of
vertices (order) and edges (size) of H, respectively.

A graph is regular if all its vertices have the same degree. A graph is bipartite if a set
of vertices can be partitioned into two disjointed sets so that all its edges have one end in
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each of those sets. A graph is said to be biregular if a bipartite graph such that the vertices
of one bipartition have degree δ and the vertices of the other bipartition have degree ∆.

In [32] it is proved that, if p1, . . . , pm are positive numbers which ∑m
i=1 pi = 1 and F is

a real continuous function that is convex, then:

F
( m

∑
i=1

pi(xi)
)
≤
( m

∑
i=1

piF(xi)
)

. (9)

Note that if p1 = 1
m , ..., pm = 1

m , we obtain the following particular case of Jensen’s
inequality. This inequality will be a main ingredient in the proof of Theorem 1 below.

Lemma 1. Let be F : R+ → R+ a convex function and x1, . . . , xm > 0, then

F
( x1 + · · ·+ xm

m

)
≤ 1

m
(

F(x1) + · · ·+ F(xm)
)
.

Theorem 1. Consider a symmetric function f : Z+ ×Z+ → (0, ∞). If H is a graph of size m and
α, β ∈ R with αβ > 0, then

Aα(H) ≥ mα/β+1

A−β(H)α/β
,

and the bound is tight if H is a regular or biregular graph.

Proof. By the premise of the theorem we have to α, β ∈ R with αβ > 0. Since −α/β < 0,
we can consider the convex function F(x) = x−α/β. Lemma 1 gives

mα/β(
∑ij∈E(H) f (di, dj)−β

)α/β
≤ 1

m ∑
ij∈E(H)

(
f (di, dj)

−β
)−α/β

=
1
m ∑

ij∈E(H)

f (di, dj)
α,

mα/β+1

A−β(H)α/β
≤ Aα(H).

If H is regular or biregular with maximum degree ∆ and minimum degree δ, then

mα/β+1

A−β(H)α/β
=

mα/β+1(
f (∆, δ)−βm

)α/β
= f (∆, δ)αm = Aα(H).

The previous theorem shows some mathematical relationships for the general variable
index Aα. Note that this result has an important theoretical scope since it allows to find
bounds for all possible topological indices that can be written as a symmetric function of
two real variables ( f (x, y)).

The argument in the proof of Theorem 1 allows to prove the following result.

Proposition 1. Consider a function h : Z+ → (0, ∞). If H is a graph of order n vertices and
α, β ∈ R with αβ > 0, then

Bα(H) ≥ nα/β+1

B−β(H)α/β
,

and the bound is tight if H is a regular graph.
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The previous proposition shows some mathematical relations for the general variable
index Bα. This result has an important theoretical scope since it allows to find bounds for
all possible topological indices that can be written as a function of a real variable (h(t)).

Corollary 1. Let H be a graph of order n and size m, and let α, β ∈ R with αβ > 0. Then

Mα
2 (H) ≥ mα/β+1

M−β
2 (H)α/β

, χα(H) ≥ mα/β+1

χ−β(H)α/β
,

GAα(H) ≥ mα/β+1

GA−β(H)α/β
, ISIα(H) ≥ mα/β+1

ISI−β(H)α/β
,

the equality in each bound is attained if H is a regular or biregular graph. Moreover,

Mα
1 (H) ≥ nα/β+1

M−β
1 (H)α/β

,

the equality in the bound is attained if H is a regular graph.

Proof. Let f1, f2, f3, f4 : Z+ ×Z+ → (0, ∞) defined as

f1(x, y) = xy, f2(x, y) = x + y, f3(x, y) =
2
√

xy
x + y

, f4(x, y) =
xy

x + y
,

it is clear that these are symmetric functions, then applying Theorem 1 with the functions
f1, f2, f3, f4 respectively we have

Mα
2 (H) ≥ mα/β+1

M−β
2 (H)α/β

, χα(H) ≥ mα/β+1

χ−β(H)α/β
,

GAα(H) ≥ mα/β+1

GA−β(H)α/β
, ISIα(H) ≥ mα/β+1

ISI−β(H)α/β
,

and the equality in each bound is attained if H is a regular or biregular graph, let h : Z+ →
(0, ∞) defined as h(x) = x then by Proposition 1 we have

Mα
1 (H) ≥ nα/β+1

M−β
1 (H)α/β

,

and the equality in the bound is attained if H is a regular graph.

The previous corollary establishes new relations between some variable topological
indices which are common in many theoretical and practical applications.

Theorem 2. Consider a symmetric function f : Z+ ×Z+ → (0, ∞). If H is a graph of size m and
α, β ∈ R with αβ > 0 and |β| ≤ |α|, then

Aα(H) ≥ m1−α/β Aβ(H)α/β,

and the bound is tight if H is a regular or biregular graph.
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Proof. By the premise of the theorem we have to α, β ∈ R with αβ > 0. Since α/β ≥ 1, we
can consider the convex function F(x) = xα/β. Lemma 1 gives( 1

m ∑
ij∈E(H)

f (di, dj)
β
)α/β

≤ 1
m ∑

ij∈E(H)

(
f (di, dj)

β
)α/β

=
1
m ∑

ij∈E(H)

f (di, dj)
α,

m1−α/β Aβ(H)α/β ≤ Aα(H).

If H is regular or biregular with maximum degree ∆ and minimum degree δ, then

m1−α/β Aβ(H)α/β = m1−α/β
(

f (∆, δ)βm
)α/β

= f (∆, δ)αm = Aα(H).

The previous theorem also shows some mathematical relationships for the general
variable index Aα. Note that this result has an important theoretical scope since it allows to
find bounds for all possible topological indices that can be written as a symmetric function
of two real variables.

Proposition 2. Consider a function h : Z+ → (0, ∞). If H is a graph of order n and α, β ∈ R
with αβ > 0 and |β| ≤ |α|, then

Bα(H) ≥ n1−α/βBβ(H)α/β,

and the bound is tight if H is a regular graph.

Proof. Since α/β ≥ 1, we can consider the convex function F(x) = xα/β. Lemma 1 gives( 1
m ∑

i∈V(H)

h(di)
β
)α/β

≤ 1
n ∑

i∈V(H)

(
h(di)

β
)α/β

=
1
n ∑

i∈V(H)

h(di)
α,

n1−α/βBβ(H)α/β ≤ Bα(H).

If H is regular, then di = δ for all i ∈ V(H) and

n1−α/βBβ(H)α/β = n1−α/β
(
h(δ)βn

)α/β
= h(δ)αn = Bα(H).

The previous proposition shows some mathematical relations for the general variable
index Bα. This result has an important theoretical scope since it allows to find bounds for
all possible topological indices that can be written as a function of a real variable.

The proof of the following corollary is analogous to the proof of Corollary 1 using the
results obtained in Theorem 2 and Proposition 2.

Corollary 2. If H is a graph of order n, size m and α, β ∈ R with αβ > 0 and |β| ≤ |α|, then

Mα
2 (H) ≥ m1−α/β Mβ

2 (H)α/β, χα(H) ≥ m1−α/βχβ(H)α/β,

GAα(H) ≥ m1−α/βGAβ(H)α/β, ISIα(H) ≥ m1−α/β ISIβ(H)α/β,
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the bound is tight if H is a regular or biregular graph,

Mα
1 (H) ≥ n1−α/β Mβ

1 (H)α/β,

the bound is tight if H is a regular graph.

Note that the previous corollary provides optimal bounds for variable topologi-
cal indices based on two important invariants of a graph (maximum degree and min-
imum degree).

The following Lemma appears in [22]. This inequality will be useful in the proofs of
Theorem 3 and Proposition 3 below.

Lemma 2. Consider real numbers 0 < β ≤ 1 ≤ α, M > 0 and 0 ≤ x1, . . . , xn ≤ M. Then( n

∑
j=1

xα
j

)1/α
≤ M1−β

n

∑
j=1

xβ
j .

Theorem 3. Consider a symmetric function f : Z+ ×Z+ → (0, ∞) and α, β ∈ R. If H is a graph
with maximum degree ∆ and minimum degree δ, and

F∆,δ = max
{

f (x, y) : x, y ∈ Z+, δ ≤ x, y ≤ ∆
}

,

f∆,δ = min
{

f (x, y) : x, y ∈ Z+, δ ≤ x, y ≤ ∆
}

,

then
Aα(H) ≤ Fα(1−β)

∆,δ Aβ(H)α, if 0 < β ≤ 1 ≤ α,

Aα(H) ≤ f α(1+β)
∆,δ Aβ(H)−α, if α ≤ −1 ≤ β < 0.

Proof. Let us consider first the case 0 < β ≤ 1 ≤ α. Since f (di, dj) ≤ F∆,δ for every
ij ∈ E(H), Lemma 2 gives

( n

∑
ij∈E(H)

f (di, dj)
α
)1/α

≤ F1−β
∆,δ

n

∑
ij∈E(H)

f (di, dj)
β.

Consider now the case α ≤ −1 ≤ β < 0 and define a = −α and b = −β. Thus,
0 < b ≤ 1 ≤ a. If we consider the function 1/ f , then 1/ f (di, dj) ≤ 1/ f∆,δ for every
ij ∈ E(H), and the previous argument gives

( n

∑
ij∈E(H)

1
f (di, dj)a

)1/a
≤ 1

f 1−b
∆,δ

n

∑
ij∈E(H)

1
f (di, dj)b ,

( n

∑
ij∈E(H)

f (di, dj)
α
)−1/α

≤ f−1−β
∆,δ

n

∑
ij∈E(H)

f (di, dj)
β.

The previous theorem shows some mathematical relationships for the general variable
index Aα. Note that this result has an important theoretical scope since it allows to find
bounds for all possible topological indices that can be written as a symmetric function of
two real variables.

Proposition 3. Consider a function h : Z+ → (0, ∞) and α, β ∈ R. If H is a graph with
maximum degree ∆ and minimum degree δ, and

K∆,δ = max
{

h(x) : x ∈ Z+, δ ≤ x ≤ ∆
}

,

k∆,δ = min
{

h(x) : x ∈ Z+, δ ≤ x ≤ ∆
}

,
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then
Bα(H) ≤ Kα(1−β)

∆,δ Bβ(H)α, if 0 < β ≤ 1 ≤ α,

Bα(H) ≤ kα(1+β)
∆,δ Bβ(H)−α, if α ≤ −1 ≤ β < 0.

Proof. Let us consider first the case 0 < β ≤ 1 ≤ α. Since h(di) ≤ K∆,δ for every i ∈ V(H),
Lemma 2 gives ( n

∑
i∈V(H)

h(di)
α
)1/α

≤ K1−β
∆,δ

n

∑
i∈V(H)

h(di)
β.

Consider now the case α ≤ −1 ≤ β < 0 and define a = −α and b = −β. Thus,
0 < b ≤ 1 ≤ a. If we consider the function 1/h, then 1/h(di) ≤ 1/k∆,δ for every i ∈ V(H),
and the previous argument gives

( n

∑
i∈V(H)

1
h(di)a

)1/a
≤ 1

k1−b
∆,δ

n

∑
i∈V(H)

1
f (di)b ,

( n

∑
i∈V(H)

h(di)
α
)−1/α

≤ k−1−β
∆,δ

n

∑
i∈V(H)

f (di)
β.

The previous proposition also shows some mathematical relations for the general
variable index Bα. This result has an important theoretical scope since it allows to find
bounds for all possible topological indices that can be written as a function of a real variable.

The proof of the following corollary is quite analogous to the proof of Corollary 1
using the results obtained in Theorem 3 and Proposition 3.

Corollary 3. Consider a symmetric function f : Z+ × Z+ → (0, ∞) and α, β ∈ R. If H is a
graph with minimum degree δ and maximum degree ∆, then

Mα
2 (H) ≤ ∆2α(1−β)Mβ

2 (H)α, if 0 < β ≤ 1 ≤ α,

Mα
2 (H) ≤ δ2α(1+β)Mβ

2 (H)−α, if α ≤ −1 ≤ β < 0.

χα(H) ≤ (2∆)α(1−β)χβ(H)α, if 0 < β ≤ 1 ≤ α,

χα(H) ≤ (2δ)α(1+β)χβ(H)−α, if α ≤ −1 ≤ β < 0.

GAα(H) ≤ GAβ(H)α, if 0 < β ≤ 1 ≤ α,

GAα(H) ≤
( 2
√

∆δ

∆ + δ

)α(1+β)
GAβ(H)−α, if α ≤ −1 ≤ β < 0.

ISIα(H) ≤
( ∆

2

)α(1−β)
ISIβ(H)α, if 0 < β ≤ 1 ≤ α,

ISIα(H) ≤
( δ

2

)α(1+β)
ISIβ(H)−α, if α ≤ −1 ≤ β < 0.

The previous results establish new bounds on the variable topological indices. Fur-
thermore, in this same direction, the well known classical indices (harmonic index, Randić
index, Zagred index, among others) appear as particular cases Aα and Bα.

3. Relations between GAα and ISIα

Theorem 4. If H is a graph with minimum degree δ, maximum degree ∆ and α > 0, then(
2
∆

)α

ISIα(H) ≤ GA−α(H) ≤
(

max
{

2
δ

,
(∆ + δ)2

2
√

∆3δ3

})α

ISIα(H).
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The lower bound is tight if and only if H is regular. If 2
δ > (∆+δ)2

2
√

∆3δ3 , the upper bound is tight if

and only if H is regular. If 2
δ < (∆+δ)2

2
√

∆3δ3 , the upper bound is tight if and only if H is biregular. If
2
δ = (∆+δ)2

2
√

∆3δ3 , the upper bound is tight if and only if H is regular or biregular.

Proof. We are going to study the function

P(x, y) =
x + y
2
√

xy
x + y

xy
=

1
2
(x + y)2x−3/2y−3/2, (10)

on the set {δ ≤ x ≤ y ≤ ∆}. Since

∂P
∂x

(x, y) =
1
2

y−3/2
[

2(x + y)x−3/2
(
−3

2

)
(x + y)2x−5/2

]
=

1
2

y−3/2x−5/2(x + y)
[

2x
(
−3

2

)
(x + y)

]
=

1
4

y−3/2x−5/2(x + y)(x− 3y) ≤ 0,

so P(x, y) is a strictly decreasing function on x ∈ [δ, y] for each fixed y ∈ [δ, ∆], and so
P(y, y) ≤ P(x, y) ≤ P(δ, y).

Since P(y, y) = 2/y is a strictly decreasing function on y ∈ [δ, ∆], we have 2
∆ =

P(∆, ∆) ≤ P(x, y) and the equality is attained if and only if x = y = ∆. Thus,

(
2
∆

)α
(

didj

di + dj

)α

≤

 di + dj

2
√

didj

α

for any ij ∈ E(H),

(
2
∆

)α

ISIα(H) ≤ GA−α(H),

and this last bond is tight if and only if di = dj = ∆ for each ij ∈ E(H), i.e., H is a
regular graph.

Define
p(y) = P(δ, y) =

1
2
(y + δ)2y−3/2δ−3/2. (11)

We have

p′(y) =
1
2

δ−3/2
[

2(y + δ)y−3/2 +

(
−3

2

)
(y + δ)2y−5/2

]
=

1
2

δ−3/2y−5/2(y + δ)

[
2y +

(
−3

2

)
(y + δ)

]
=

1
4

δ−3/2y−5/2(y + δ)(y− 3δ).

Since p′(y) has at most a zero on [δ, ∆] and p′(δ) < 0, we conclude

max
y∈[δ,∆]

p(y) = max{p(δ), p(∆)}.

Thus,

P(x, y) ≤ P(δ, y) = p(y) ≤ max
{

2
δ

,
(∆ + δ)2

2
√

∆3δ3

}
.

If 2
δ > (∆+δ)2

2
√

∆3δ3 , then the equality in the bound holds if and only if x = y = δ, if
2
δ < (∆+δ)2

2
√

∆3δ3 , then the equality in the bound holds if and only if x = δ and y = ∆, if
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2
δ = (∆+δ)2

2
√

∆3δ3 , then the equality in the bound holds if and only if x = y = δ or x = δ and
y = ∆. Therefore, di + dj

2
√

didj

α

≤
(

max
{

2
δ

,
(∆ + δ)2

2
√

∆3δ3

})α
(

didj

di + dj

)α

for any ij ∈ E(H),

GA−α(H) ≤
(

max
{

2
δ

,
(∆ + δ)2

2
√

∆3δ3

})α

ISIα(H).

If 2
δ > (∆+δ)2

2
√

∆3δ3 , then the bound is tight if and only if di = dj = δ for any ij ∈ E(H),

i.e., H is regular. If 2
δ < (∆+δ)2

2
√

∆3δ3 , then the bound is tight if and only if {di, dj} = {δ, ∆} for

any ij ∈ E(H), i.e., H is biregular. If 2
δ = (∆+δ)2

2
√

∆3δ3 , then the bound is tight if and only if
di = dj = δ for any ij ∈ E(H), or {di, dj} = {δ, ∆} for every ij ∈ E(H), i.e., H is regular
or biregular.

The previous theorem shows some relations between the variable geometric-arithmetic
index GAα and the variable inverse sum indeg index ISIα, which are two of the most
important and well-studied variable topological indices.

Theorem 5. If H is a graph with minimum degree δ, maximum degree ∆ and α > 0, then(
min

{
δ

2
,

2
√

∆3δ3

(∆ + δ)2

})α

ISI−α(H) ≤ GAα(H) ≤
(

∆
2

)α

ISI−α(H). (12)

The upper bound is tight if and only if H is regular. If δ
2 < 2

√
∆3δ3

(∆+δ)2 , the lower bound is tight if

and only if H is regular. If δ
2 > 2

√
∆3δ3

(∆+δ)2 , the lower bound is tight if and only if H is biregular. If
δ
2 = 2

√
∆3δ3

(∆+δ)2 , the lower bound is tight if and only if H is regular or biregular.

Proof. The argument in the proof of Theorem 4 gives that

2
∆

didj

di + dj
≤

di + dj

2
√

didj

≤ max
{

2
δ

,
(∆ + δ)2

2
√

∆3δ3

} didj

di + dj

for every ij ∈ E(H). Hence,

(
2
∆

)−α
(

didj

di + dj

)−α

≥

2
√

didj

di + dj

α

≥
(

max
{

2
δ

,
(∆ + δ)2

2
√

∆3δ3

})−α
(

didj

di + dj

)−α

and so,

(
min

{
δ

2
,

2
√

∆3δ3

(∆ + δ)2

})α(
didj

di + dj

)−α

≤

2
√

didj

di + dj

α

≤
(

∆
2

)α
(

didj

di + dj

)−α

for any ij ∈ E(H), and(
min

{
δ

2
,

2
√

∆3δ3

(∆ + δ)2

})α

ISI−α(H) ≤ GAα(H) ≤
(

∆
2

)α

ISI−α(H).



Symmetry 2021, 13, 43 11 of 14

The previous theorem is useful, since it provides functional properties of the variable
topological indices GAα and ISI−α, and two important invariants of a graph (the maximum
degree ∆ and the minimum degree δ).

The following Lemma is well-known (see, e.g., ([33], Lemma 5) for a proof of the
equality statement). It will be useful in the proof of Theorem 6 below.

Lemma 3. If ai, bi ≥ 0 and ωbi ≤ ai ≤ Ωbi for 1 ≤ i ≤ n, then

( n

∑
i=1

a2
i

)( n

∑
i=1

b2
i

)
≤ (Ω + ω)2

4Ω ω

( n

∑
i=1

aibi

)2
. (13)

If ai > 0 for some 1 ≤ i ≤ n, then the equality holds if and only if ω = Ω and ai = ωbi for
every 1 ≤ i ≤ n.

Theorem 6. If H is a graph with minimum degree δ, maximum degree ∆ and α > 0, then

2∆3α/2δ3α/2

∆3α + δ3α

√
M2α

2 (H)χ−2α(H) ≤ ISIα(H) ≤
√

M2α
2 (H)χ−2α(H) . (14)

Moreover, the lower bound is tight if and only if H is regular, while the upper bound is tight if
H is a regular or biregular graph.

Proof. Cauchy-Schwarz inequality gives

ISIα(H)2 =
(

∑
ij∈E(H)

(didj)
α 1
(di + dj)α

)2

≤ ∑
ij∈E(H)

(didj)
2α ∑

ij∈E(H)

1
(di + dj)2α

= M2α
2 (H)χ−2α(H).

If H is a regular or biregular graph, then√
M2α

2 (H)χ−2α(H) =

√
(∆δ)2αm

m
(∆ + δ)2α

=
(∆δ)α

(∆ + δ)α
m = ISIα(H).

Let us prove the lower bound.
If α ≥ 0, then

2αδ3α ≤ (didj)
α(di + dj)

α =
(didj)

α

1
(di+dj)α

≤ 2α∆3α.

If α < 0, then

2α∆3α ≤ (didj)
α(di + dj)

α =
(didj)

α

1
(di+dj)α

≤ 2αδ3α.

Since

Ω + ω

2
√

Ω ω
=

1
2

√
Ω
ω

+
1
2

√
ω

Ω
=

1
2

√
2α∆3α

2αδ3α
+

1
2

√
2αδ3α

2α∆3α
=

∆3α + δ3α

2∆3α/2δ3α/2

for every α ∈ R, Lemma 3 gives that
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ISIα(H)2 =
(

∑
ij∈E(H)

(didj)
α 1
(di + dj)α

)2

≥
( 2∆3α/2δ3α/2

∆3α + δ3α

)2
∑

ij∈E(H)

(didj)
2α ∑

ij∈E(H)

1
(di + dj)2α

=
( 2∆3α/2δ3α/2

∆3α + δ3α

)2
M2α

2 (H)χ−2α(H),

ISIα(H) ≥ 2∆3α/2δ3α/2

∆3α + δ3α

√
M2α

2 (H)χ−2α(H) .

Lemma 3 gives that the equality in this bound is attained if and only if 2αδ3α = 2α∆3α,
i.e., H is regular.

The previous theorem is useful, since it establishes functional properties of the variable
topological indices ISIα, M2α

2 and χ−2α , and two important invariants of a graph (the
maximum degree ∆ and the minimum degree δ).

4. Comparative Studies and Conclusions

The main goal of the research on topological indices from a theoretical approach is
twofold: firstly, to find new relationships among them and, secondly, to obtain optimal
bounds (which confirm the validity and relevance of the relations found). Motivated by
the studies [12,15], the introduction of a new general index Aα was deemed convenient
by the authors. This index opens a way of grouping the variable topological indices and
analyzing their properties and relations.

In the aforementioned works, only one chemical-computational study is carried out
and several numerical relationships between the different topological indices are shown.
Our work responds to the need raised in [12,15] in two ways: firstly, by conducting a
theoretical-analytical study on the general index Aα and, secondly, by obtaining new
optimal relationships for that index that involve important invariants of a graph such as
measure, order, maximum degree, and minimum degree (see Theorems 1, 2 and 3).

It is important to highlight that in the works [13,14], the authors study the variable
topological index Mα

1 in tree-type graphs and find optimal bounds for that index in some
families of trees. We study the general index Bα that contains, as a particular case, the
variable topological index Mα

1 ; furthermore, we find new relationships for all graphs and
we obtain optimal bounds associated to other infinite families of graphs (regular and
bi-regular graphs).

In [26] the authors study the variable topological index χα and generalize the results
of [27]. Likewise, they find optimal bounds for χα in terms of several invariants of the
graph (order, maximum degree and minimum degree). In our research these results are
generalized (see Corollaries 1, 2 and 3) and new relationships are found between χα and
other important topological indices (see Theorem 6). It should be noted that all these
relationships are optimal, as evidenced by the results.

In [29] the authors generalize the well-known geometric-arithmetic index, for α ≥ 0
and obtain bounds in terms of invariants of the graph such as: measure, maximum degree
and minimum degree. In [30] a new generalization of the geometric-arithmetic index for
every real α is shown, and a statistical-computational study is conducted on that index. In
this research, the study carried out in [30] is complemented with a theoretical-analytical
study of GAα and in the same direction, new optimal bounds that expand the results shown
in [29] are obtained (see Corollaries 1, 2 and 3 and Theorem 6).

In [30,31] two studies on the variable inverse sum indeg index ISIα are conducted. In
the first, from a statistical-computational viewpoint and in the latter, from a spectral per-
spective. However, neither one considers a theoretical-analytical approach, and that made
us follow this perspective in our work, in which optimal relations and bounds are found
for the variable inverse sum indeg index (Corollaries 1, 2 and 3 and Theorems 4, 5 and 6).
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Topological indices have been successfully applied in several branches of science
(see, e.g., [4–6]). In this research, we focus on a new general framework, given by two
new general topological indices Aα(H) = ∑ij∈E(H) f (di, dj)

α and Bα(H) = ∑i∈V(H) h(di)
α.

They allow to obtain, with each result on Aα (see Theorems 1, 2 and 3) and Bα (see
Propositions 1, 2 and 3), inequalities for a large family of topological indices. In this general
approach, the use of the above mentioned functions ( f and h) allows us to find new
properties of the most important variable topological indices:

• if f (x, y) = xy, then Aα is the variable second Zagreb index Mα
2 ;

• if f (x, y) = x + y, then Aα is the variable sum-connectivity index χα;
• if f (x, y) = 2

√
xy/(x + y), then Aα is the variable geometric-arithmetic index GAα;

• if f (x, y) = xy/(x + y), then Aα is the variable inverse sum indeg index ISIα;
• if h(t) = t, then Bα is the variable first general Zagreb index Mα

1 .

We obtain, in particular, new optimal bounds and relations between these five variable
topological indices in Corollaries 1, 2 and 3.

Furthermore, this general approach opens a new line of research in relation to the
analytical study of other topological indices and provides a basis for defining new indices
with potential application in mathematical chemistry.

Besides, we obtain several optimal bounds of GAα in terms of ISI−α (see
Theorems 4 and 5), and two bounds of ISIα involving M2α

2 and χ−2α in Theorem 6.
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11. Randić, M.; Plavšić, D.; Lerš, N. Variable connectivity index for cycle-containing structures. J. Chem. Inf. Comput. Sci.

2001, 41, 657–662. [CrossRef]
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