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Abstract: In this article, we present a stability analysis of linear time-invariant systems in control
theory. The linear time-invariant systems under consideration involve the diagonal norm bounded
linear differential inclusions. We propose a methodology based on low-rank ordinary differential
equations. We construct an equivalent time-invariant system (linear) and use it to acquire an optimiza-
tion problem whose solutions are given in terms of a system of differential equations. An iterative
method is then used to solve the system of differential equations. The stability of linear time-invariant
systems with diagonal norm bounded differential inclusion is studied by analyzing the Spectrum of
equivalent systems.

Keywords: linear differential inclusion; spectrum of an operator; differential equations

1. Introduction

The dynamical system is time-varying if some time shift to input data on the time
axis leads to equivalent shifting of output data on the same time axis while having no
other changes. On the other hand, a time-varying system is a linear time-invariant if both
linearity and time-invariant conditions are true in all situations. The input-output relation
for linear time-invariant systems is straightforward. For linear time-invariant systems, the
impulse response can characterize the systems under consideration in order to describe the
overall behavior of systems for the input data.

The linear time-invariant analysis and synthesis have captured great attention in
the recent past. If both state and output data to linear time-invariant systems are non-
negative then such systems are internally positive [1,2]. The internally positive linear time-
invariant systems vastly appear in various fields such as engineering, economics, pharmacy,
and chemistry. An intensive amount of research work has been done for the analysis
and synthesis of linear time-invariant systems by making use of convex optimization
techniques [3–8]. If the output to the linear time-invariant system is non-negative for the
non-negative input with zero initial rates, then such a system is externally positive [1,2].

Linear differential inclusions can be used to simplify stability analysis and to synthesis
complex control systems. Linear differential inclusions help ensure that trajectories of
such complex systems possess certain features, which can be used to analyze systems [9].
The trajectories of certain nonlinear systems with polytopic linear differential inclusions
are extensively studies in [10,11].

The linear matrix inequalities technique [10,12,13] is used to solve a large class of
central problems that occur in system theory. Linear matrix inequalities technique simplifies
the control systems so that certain efficient convex optimization techniques can be applied
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to solve them [10]. In [9], a linear parameter varying system is used to represent a nonlinear
control system. For this purpose they have used Mean Value Theorem [14–16]. Furthermore,
linear matrix inequalities are used to study the quadratic stability of polytopic linear
differential inclusions.

The norm bounded linear differential inclusions can be used to describe the non-
linear control systems with very high dimensions [17,18]. J. Doyle has introduced the
idea of structured feedback while considering the fact that admissible perturbation ∆
possesses a block diagonal structure, we refer [10] and the references therein for more
details. For a single block with equality constraints, S. Boyed [10] was able to use the
norm bounded linear differential inclusion and diagonal norm bounded linear differential
equations when there were non equality constraints. The diagonal norm bounded linear
differential inclusion is well-posed if and only if det(I − Dqp∆) > 0 with |∆ii| = 1 [19].
Another equivalent condition is to show that the pair (I + Dqp, I − Dqp) is a W0 pair,
for more details we refer interested reader to see [20]. The standard branch-and-bound
methodologies [21–25] are proposed to determine the well-posedness of the diagonal norm
bounded linear differential inclusion.

In this paper , we study stability analysis of linear time-invariant systems with di-
agonal norm bounded linear differential inclusions. We derive an equivalent dynamical
system parallel to diagonal norm bounded linear differential inclusion. The computation
of the spectrum of the equivalent dynamical system discusses the stability of a given linear
time-invariant system. For this purpose, our aim is to introduce a technique based on
differential equations that maximize the negative spectrum corresponding to an equivalent
dynamical system. Our proposed technique helps us to construct an optimization problem
that involves the computation of eigenvectors and a direction matrix. The solution of
the optimization problem turns over a system of ordinary differential equations whose
solutions describe the maximization of the negative spectrum.

Overview of the Article

The paper is organized as follows. In Section 2, we present the basic definitions and
properties. We start by defining certain types of matrices such as positive definite matrices,
positive semi-definite matrices, negative definite matrices, and negative semi-definite
matrices. Furthermore, we also present the definitions of matrix inequalities and linear
matrix inequalities.

The problem under consideration is discussed in Section 3. Also, we discuss how
were are able to write down an equivalent dynamical system for a the linear time-invariant
system having diagonal norm bounded linear differential inclusion. In Section 4 of our
article, we construct and solve an optimization problem that turns over a system of ordi-
nary differential equations to study the stability analysis of the dynamical system under
consideration.

In Section 5 of our paper, we present an alternative approach to maximize the negative
spectrum while constructing a correlation matrix against theoriginal matrix. Finally, a
conclusion is presented in Sections 6.

2. Preliminaries

Definition 1. M ∈ Rn,n (matrix) is called positive definite if XT MX > 0, for all X 6= 0 ∈ Rn,1.

Definition 2. M ∈ Rn,n is called positive semi-definite if XT MX ≥ 0, for all X ∈ Rn,1.

Definition 3. M ∈ Rn,n is called negative definite if XT MX < 0, for all X 6= 0 ∈ Rn,1.

Definition 4. M ∈ Rn,n is called negative semi-definite if XT MX ≤ 0, for all X ∈ Rn,1.
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Definition 5 ([10]). The matrix inequality F : Rm → Sn,n in X ∈ Rm,1 is defined as

F(X) := F0 +
n

∑
i=1

fi(x)Fi ≤ 0

with X = (x1, x2, x3, ..., xn)T , F0 ∈ Sn,n, Fi ∈ R, i = 1 : n.

Definition 6 ([10]). The linear matrix inequality F : Rm → Sn,n in X ∈ Rm,1 is defined as

F(X) := F0 +
n

∑
i=1

xiFi ≤ 0

and with X = (x1, x2, x3, ..., xn)T , Fi ∈ Sn,n, i = 0 : n.

3. Diagonal Norm Bounded Linear Differential Inclusion

We consider linear time-invariant system with non-linear diagonal perturbation as
ẋ(t) = Ax(t) + Bp p, x(0) = x0

q = Cqx(t) + Dqp p
pi = δi(t)qi, ‖δi(t)‖2 ≤ 1.

(1)

The perturbations δi(t) ∀i in (1) is a time-varying scalar perturbation. The vectors
x(t), p, q are the state-vector, input-vector and output-vector respectively. The system (1) is
quadratically stable if for some real symmetric matrix P we have P = Pt > 0 and it satisfies
Lyapunov function V(x(t)), that is,

dV(x(t))
dt

=

(
dx(t)

dt

)t
Px(t) + xtP

(
dx(t)

dt

)
< 0.

An Equivalent System

The system given in (1) is equivalent to a linear time-invariant system of the form

dx(t)
dt

=
(

A + Bp(I − Dqp,i)
−1δi(t)Cq,i

)
x(t). (2)

The subscript i on matrices Dqp,i and Cq,i denotes the ith-row of the matrix. The system (2)
is quadratically stable if for some real, symmetric matrix P we have P = Pt > 0 and it
satisfies the matrix inequalities(

A + Bp(I − Dqp,i)
−1δi(t)Cq,i

)t
P + P

(
A + Bp(I − Dqp,i)

−1δi(t)Cq,i

)
< 0,

or

xt
[(

A + Bp(I − Dqp,i)
−1δi(t)Cq,i

)t
P + P

(
A + Bp(I − Dqp,i)

−1δi(t)Cq,i

)]
x < 0.

Finally we may write this as

xt
(

A + Bp(I − Dqp,i)
−1δi(t)Cq,i

)t
Px < −xt

(
A + Bp(I − Dqp,i)

−1δi(t)Cq,i

)t
Px. (3)

For quadratic stability, we must have following facts to hold true:

1. xt(A + Bp(I − Dqp,i)
−1δi(t)Cq,i

)
x = 0,

2. xt(A + Bp(I − Dqp,i)
−1δi(t)Cq,i

)
x > 0.

But it’s also highly possible that the quantity
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• xt(A + Bp(I − Dqp,i)
−1δi(t)Cq,i

)
x < 0.

Now, the main task is to make above quadratic form to be strictly positive, that is,

xt
(

P(A + Bp(I − Dqp,i)
−1δi(t)Cq,i)

)
x > 0,

or
P(A + Bp(I − Dqp,i)

−1δi(t)Cq,i) > 0,

or
λi

(
P(A + Bp(I − Dqp,i)

−1δi(t)Cq,i)
)
> 0, ∀i.

4. Systems of ODE’s to Shift Negative Spectrum

In this section, we aim to construct and solve a system of ordinary differential equa-
tions in order to shift the negative spectrum or the negative eigenvalues (say) λ1(t), λ2(t)
from the spectrum of the perturbed matrix

(
Â + D + εE(t)

)
where matrix Â = P(A +

Bp(I − Dqp,i)
−1δi(t)Cq,i) and the perturbation level ε > 0. The matrix D is a diagonal

matrix such that Â + D have the unit diagonal. The matrix function E(t) has zero diagonal
while it’s Frobenius norm is bounded above by 1. As a result, this will case to increase the
eigenvalues λ1(t), λ2(t) so that both becomes strictly positive.

4.1. Optimization Problem

Next, we aim to determine the direction Z = Ė such that the solution of system of
ODE’s obtained while solving optimization problem cause a maximal growth of λ1(t) and
λ2(t). The local optimization problem is given as

max(η1
∗Zη1)

Subject to

η2
∗Zη2 = η1

∗Zη1

〈Z, E(t)〉 = 0

diag(Z) = 0.

(4)

In (4), η1 = η1(t), η2 = η2(t), the eigenvectors corresponding to eigenvalues λ1(t) and
λ2(t) respectively for the perturbed matrix P(A + Bp(I − Dqp,i)

−1δi(t)Cq,i).
The solution Z∗ of above optimization problem given in (4) is obtained as

Z∗ = Ė = (1− µ)η∗1 η1 + µη∗2 η2 − µ{〈η∗1 η1 − η∗2 η2, E(t)〉 − 〈η∗1 η1, E(t)〉}. (5)

4.2. Euler’s Method

The solution to the system of ordinary differential equations in (5) is obtained by
making use of Euler’s method

En+1(t) = En(t) + hĖn(t).

Thus, finally we compute all strictly positive eigenvalues, that is, λi > 0 ∀i from the
eigenvalue problem (

Â + D + εE(t)
)

η(t) = λ(t)η(t).

5. Alternative Way to Compute Strictly Positive Spectrum

In this section, we aim to compute a matrix B for the perturbation matrix
(

Â + D + εE(t)
)

such that

1. Bt = B, Symmetric matrix
2. bij = bji ∈ [−1, 1] ∀i, j,
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3. Diag(B) = 1,
4. λi(B) > 0 ∀i.

For the computation of such a matrix B, we refer to see Section 5 of [26]. After the
computation of B, the nearest correlation matrix, we aim to determine a matrix C such that

C = εB̂ + (1− ε)B

with the perturbation level ε ∈ [0, 1] and the matrix B. The matrix C is also a nearest
correlation matrix. To show this, we have

bii = 1 ∀i, bij = bji ∀i 6= j,

and
b̂ii = 1 ∀i, b̂ij = b̂ji ∀i 6= j.

In view of above one may write

cij = εb̂ij + (1− ε)bij

or
cij = εb̂ji + (1− ε)bji.

To show that Diag(C) = 1, we have that

cii = εb̂ii + (1− ε)bii.

Since ε ∈ [0, 1] and bii = b̂ii = 1 ∀i. Then clearly cii = 1 ∀i.
Next, to show that cij = cji ∈ [−1, 1] ∀i, j. For this, we have

cij = εb̂ij + (1− ε)bij,

or
cji = εb̂ji + (1− ε)bji.

Since bij = bji ∀i 6= j and bij, b̂ji ∀i 6= j lies in [−1, 1] and indicates that cij or cji also
belongs to [−1, 1]. Finally to make sure that the structure of C is positive semi-definite we
take eigevector η ∈ Rn,1 such that

ηtCη ≥ 0.

Since C = εB̂ + (1− ε)B, this ensure that ηt B̂η ≥ 0 and ηtBη ≥ 0 because both B̂ and
B are correlation matrices. Thus,

ηtCη = ε(ηt B̂η) + (1− ε)(ηtBη) ≥ 0,

and this implies that ηtCη ≥ 0.

Construction of B̂

The Cholesky decomposition of B = LLt with Lt being upper triangular Cholesky
decomposition matrix. The column vectors of L are L = (l1, l2, · · · , lm−1, ln) with ln−1 =
(0, 0, · · · , 0, a, b)t and ln = (0, 0, · · · , 0, 0)t. For instance if we take B to be a five dimensional
matrix given by

B =


1 b12 b13 b14 b15

b21 1 b23 b24 b25
b31 b32 1 b34 b35
b41 b42 b43 1 b45
b51 b52 b53 b54 1

.
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Suppose we aim to adjust pair (b45, b54) of B. As B = LLt with

L =


l11 0 0 0 0
l21 l22 0 0 0
l31 l32 l33 0 0
l41 l42 l43 a 0
l51 l52 l53 b c

,

where a and b are computed using Cholesky decomposition of B. For the computation of
upper and lower bounds of pair (a45, a54) one may use the formula Ω̂ = L̂L̂T = l̂n−1 l̂T

n−1 +

l̂n l̂T
n + ∑n−2

i=1 l̂i l̂T
i given by [27]. The computation of upper and lower bounds of (a45, a54)

gives a new matrix B̂ whose all entries are entries of B except (a45, a54) and it is a correlation
matrix if and only if bounds are inside or on the boundaries of closed interval given by [27].
Finally the updated correlation matrix is obtained by taking ε ∈ [0, 1].

6. Conclusions

In this article, we have studied the stability analysis of linear time-invariant systems in
control having diagonal norm bounded linear differential inclusions. The main contribution
is to introduce a low-rank ordinary differential equations based technique to construct and
then solve an optimization problem. The optimization problem involves the computation
of left and right eigenvectors corresponding to the Spectrum of the perturbed matrix.
The solution to optimization problem allows us to check the behavior of the spectrum of
perturbation matrix corresponding to an equivalent system. In near future, our aim is to
discuss:

• Comparison of different numerical techniques to determine the suitable choice of
perturbation level,

• Stability analysis of some practical examples from linear time-invariant systems with
norm bounded differential inclusion and diagonal norm bounded linear differential
inclusions,

• Stability analysis of linear time-variant systems in control.
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