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Abstract: In this paper, a complete non-linear symmetric oscillator model using the Hamiltonian
approach has been developed and used to describe the cardiovascular conduction process’s dy-
namics, as the signal generated from the cardiovascular muscle is non-deterministic and random.
Electrocardiogram (ECG) signal is a significant factor in the cardiovascular system as most of the
medical diagnoses can be well understood by observing the ECG signal’s amplitude. A non-linear
cardiovascular muscle model has been proposed in this study, where a modified vanderPol symmetric
oscillator-based equation is used. Gone are the days whena non-linear system had been designed us-
ing the describing function technique. It is better to design a non-linear model using the Hamiltonian
dynamical equation for its high accuracy and flexibility. Varying a non-linear spring constant using
this type of approach is more comfortable than the traditional describing function technique. Not
only that but different initial conditions can also be taken for experimental purposes. It never affects
the overall modeling. The Hamiltonian approach provides the energy of an asymmetric oscillatory
system of that cardiovascular conduction system. A non-linear symmetric oscillator was initially
depicted by the non-linear mass-spring (two degrees of freedom) model. The motion of an uncertain
non-linear cardiovascular system has been solved considering second-order approximation, which
also demonstrates the possibility of introducing spatial dimensions. Finally, the model’s natural
frequency expression has also been simulated and is composed of the previously published result.

Keywords: non-linear dynamical system; Hamiltonian dynamics; symmetric oscillator; cardiovascu-
lar muscle; action potential

1. Introduction

It has long been known that a linear system cannot entirely model the human car-
diovascular system’s activities as the heart rate is not a linear function or a constant [1,2].
The proper reason for the ECG signal variability is not clearly understood, making it an
open research area. Cardiovascular signals contain [3] a considerable number of symmet-
ric oscillatory components, which are unpredictable and not strictly periodic. It is more
realistic to model the above system in a non-linear approach. One of the famous methods
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is the mass-spring-based non-linear modeling approach [4]. Some non-linear model under
supply chain framework was studied by Sarkar [5] Tayyab et al. [6].

Days are gone when the Hodgkin-Huxley equation [7] was used to describe the
non-linear equations, and the van der Pol approach had been used in the 20th century
to design asymmetric relaxation oscillator for the study of conduction methods in the
cardiovascular system [8,9]. A non-linear manufacturing model with inflation was solved
by Sarkar et al. [10]. In the same direction, some non-linear manufacturing model under
the consideration of reliability was developed by Sarkar [11] and Sarkar [12]. Here, the
concept related to coupled symmetric oscillator has been introduced to represent the
nonlinearity. This type of model played an essential role in the last recent years, along with
the mass-spring-type model.

Hamiltonian mechanics is a sophisticated formulation of classical mechanics. This
approach is generally used to represent the oscillating system in nature or involving very
complex dynamical equations. Hamiltonian dynamics has a significant advantage in that
it can represent a system that is coordinate independent. This concept of representation
of the complex dynamical equation has been used in this work or the proposed model of
cardiovascular conduction process is based on it as the model shows nonlinearity [13,14].
As a result, the non-linear spring constant can easily be changed depending on the environ-
mental situation and simulated according to the design. A non-linear system can easily be
represented in the well-known function technique, but the whole design or mathematical
model must vary the spring constant. That is why Hamiltonian dynamics comes into the
picture. The nonlinearity present in cardiovascular muscle dynamics has been studied
in this work in Section 10. In the Hamiltonian approach of nonlinearity, the parameter
accountable for nonlinearity has been changed. It is found that the variation of the spring
constant does not affect the modeling.

Here, an attempt is taken using a modified van der Pol symmetric oscillator equation
to design the above-proposed model. The work’s beauty incorporates [15,16] Hamiltonian
approach towards the multiple coupled symmetric oscillators. It has also been used to find
the amplitude-frequency relation for the two degrees of freedom of the proposed non-linear
model [17]. A non-linear system for healthcare was developed by Jemai and Sarkar [18].
In this paper, using the Hamiltonian approach, the non-linear natural frequency has been
calculated and simulated to develop the cardiovascular conduction system’s dynamics.

1.1. Review on Cardiovascular Conduction Process towards the Prosthetic Heart

The study of the cardiovascular conduction process is significant for developing a
prosthetic heart as the conduction process is a substantial part of the artificial heart. The
development of modeling of cardiovascular conduction process and simulation technique
of ECG signal faces numerous problems. This problem analysis improves the development
process of a simulative model of ECG signal through research. This research analysis
improvises the development process esthetically, depicted in a tabular forma given below
in Table 1.

Table 1. A short literature review on the cardiovascular conduction process.

An Author with Reference
Number Theme Future Scope Limitation

Yamada [19] An implantable motor-driven
artificial heart was tested.

The pump-based system
tested on some animals may
improve system efficiency.

The control analogy of this
non-linear system is not

illustrated.

Love [20]

A mechanical, hydraulic
circulation system was tested

for developing an artificial
heart system.

This mechanical circulation
system generates an initial
idea of the artificial heart.

The system and control
dynamics is not mentioned.
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Table 1. Cont.

An Author with Reference
Number Theme Future Scope Limitation

Kurita [21]
The whole operation is

described as the development
of an artificial heart.

Modification of the pump
system provides development

towards the artificial heart.

The heart model’s pumping
operation is proposed, but the
other operational parameters

are not considered. For
example, transportation delay,

nonlinearity

Konieczny [22]

The non-invasive pressure
monitoring system in an

artificial heart was proposed
and analyzed.

The future scope is aimed at
the development of

non-invasive heart prostheses
or assistive devices.

The pressure sensing
technique for various

conditions was not illustrated.

Baldoni [23]

A magnetic heart valve
sensing system was proposed

for tracking heart valve
prosthetic.

The monitoring system will be
a step towards the

development of the entire
prosthetic heart monitoring

system

The valve activity during
monitoring is elaborated in

this study, but the controlling
analogy is not exact.

Rosli [24]

A smart wireless heart
monitoring system was

developed that uses heartbeat
data for alarming.

This system may recognize
the specific heart problem and

alert the medical person.

The parametric analysis on
several critical factors like
system stability, sensitivity,

and reliability was not
pointed out.

Marom [25]

Three different Numerical
models of artificial heart

systems were developed in
the aspect of flow control.

The various numerical model
may develop the artificial
model of the human heart.

The proposed design is
incapable of generating a
transfer function analogy.

Shi [26]
The proposed artificial heart
model was based on physical

and numerical analysis.

The actual artificial heart
model may be developed by
electrical and mathematical
analysis, comparing with a

simulative approach.

Analysis of disease-related
issues with cardiovascular
system is depicted in this

article.

Pohlmann [27]

Some optimization techniques
were realized in the artificial

heart for optimal system
performance.

The optimization technique
drives towards functional

improvement in the
development of the artificial

heart.

Optimization parameters of
artificial heart modeling
systems have not been

considered.

1.2. Importance of van der Pol Equation

In practical, almost all the system behaves like a non-linear system. For analyzing a
non-linear system, the basic equation is modified using the van der Pol equation. Without
this equation, it is challenging to study any basic non-linear symmetric oscillator system.
Here, in this study, a non-linear symmetric oscillator-based approach is used to represent a
cardiovascular muscle. That is why the van der Pol equation is used here.

1.3. Why Hamiltonian Approach

The Hamiltonian operator is nothing but an energy operator that represents the total
energy of a system. As energy cannot be created or destroyed, the concept of conservation
of energy can be applied for both linear and non-linear systems. In this study, the modeling
of the cardiovascular conduction process is shown in a non-linear way. The Hamiltonian
approach is used to represent the overall nonlinearity. Hamiltonian dynamics’ main
advantage is that it is coordinate independent, so the non-linear spring constant can easily
be varied and simulated according to one’s wishes.
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1.4. Background and Related Work

In the artificial heart pumping system, a suitable heartbeat has been maintained using
medium-speed motor that pumps the blood very efficiently (Frazier, 1994). The process of
blood circulation was clearly described, with most transportation delay time with 1 ms.
The goal was to accomplish the desired step response that contains less than 4% and 9%
steady-state error, overshoot, respectively. The use of a controller has improved the system
characteristics. Researchers started working on the Study and Analysis of the Human
Cardiovascular system in 1940, while in 2004, VAD had been patented for uninterrupted
blood flow (Choi and Min, 2014). From previous research work, it has been observed that
the cardiovascular conduction process in the ventricular assist device was incorporated
and had also been modified so many times considering the activities of cardiovascular
muscle in a linear approach. Sustainable practice in the healthcare system was studied
by Jemai et al. In this direction, a non-linear smart system was developed by Dey et al.
Implementation of the artificial lower limb under non-linear stability was proposed by
Das et al. Herbal medicines have a good impact described by Garai et al. The natural or
essential cardiovascular muscle behavior was modeled using some necessary elementary
substances like mass and spring, and those were considered a linear element. However,
ECG that generates from cardiovascular muscle is indeterministic. A flower pollination
algorithm was developed by Sahaet al. [28]. to maintain any machine. So, an ambiguity
comes between the theoretical result and experimental result. These elements (mass and
spring) do not show linearity when it goes under a real-life experiment or used in some
implementation. One of the reasons is transportation delay in any practical system (it is
also called nonzero reaction time); nonlinearity comes into the picture. Cardiac muscle also
has nonzero reaction time, due to which the overall model becomes non-linear. Here, in our
work, a complete non-linear symmetric oscillator model using the Hamiltonian approach
has been used to represent the energy of the cardiovascular conduction system’s dynamics
in a non-linear way.

1.5. Contributions and Organization

For describing the non-linear dynamics of the cardiovascular conduction system,
modeling is necessary, representing the system’s activities. Here, a complete non-linear
symmetric oscillator-based model using the Hamiltonian approach has been developed
to describe the cardiovascular conduction system dynamics in a non-linear way [29,30].
Reality shows the nonlinearity of spring and damper. The above-discussed transport delay
in the cardiovascular conduction system is mainly responsible for making the overall
designed model non-linear. As the non-linear system does not obey the additivity and
homogeneity property, its overall energy must be represented. The proposed non-linear
cardiovascular conduction system’s total energy is characterized by Hamiltonian dynamics,
as it talks about the system energy. Finally, for the validation of the model, simulation of
the non-linear model has been done considering different spring constant values.

Modified van der Pol equation has been used for model formation. How the real
work has been organized is given below. Initially, the modified van der Pol equation was
used for model formation, where spring is considered a non-linear element in Section 2.
Hamiltonian dynamics is described for the linear mass-spring model, which is unable to
explain the nonlinearity. So, in Section 3, Hamiltonian dynamics is again applied for the
non-linear model. Due to the loading effect, the Hamiltonian approach is also tested for
the series connection of two mass-spring models in Section 5. The degree of freedom has
also been determined by varying the spring constant, simulation is done for our proposed
design, which shows periodicity and proves that the proposed model is correct as the ECG
signal is periodic. The phase portrait of the model has also been simulated. It is found from
the simulation aspect that state point came closer to the saddle point, which ensures the
stability of the proposed design.
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1.6. General Objective of the Study

In this study, a non-linear symmetric oscillator-based model using the Hamiltonian
approach has been developed to explain overall the cardiovascular conduction system
dynamics in a non-linear way, which is better than describing the function approach of
nonlinearity. In the proposed modeling, the nature of nonlinearity is found among spring
and damper. Lag phase or slow time introduces nonlinearity within the model. However,
the proposed design of the entire cardiovascular conduction process has been formulated
using the Hamiltonian approach, and after simulation, it was found that the design gives
stability. Here, a two-dimensional phase portrait of the proposed design considering
different initial conditions has been tested. At the same time, the three-dimensional phase
portrait for the proposed method has also been depicted. From all the phase portraits, it is
observed that the system is stable towards the proposed design. A detailed explanation of
the simulation result is given in the Section 8.

2. Modified Symmetric Oscillator Equation-Based Non-Linear Model of the
Proposed Design

The following notation is utilized for the modelling of this study. Table 2 is given
below, representing the parameters used in the entire work.

Table 2. Parameter used in the implementation.

Symbol Meaning Unit

β Damping constant lbfs/inch

σ Constant of van der Pol model NA

x Displacement cm
.
x Velocity cm/s

X The amplitude of input sinusoidal signal for non-linear analysis V

M The distance between nodes mm

Y The output of the non-linear system V

M Mass of cardiovascular muscle g

K Spring constant N/m

B Viscous drug P

N Order of spring constant NA

K The slope of non-linear section NA

δij Kronecker delta NA

KE Kinetic energy J

PE Potential energy J

Px Momentum kg. m/s

H Hamiltonian operator NA

Ĥ(v) Hamiltonian considering multiple inputs NA

L Lagrangian operator NA

ω Angular frequency rad/s

T Period s

Φ Phase shift rad

V Describing function NA

Bn Amplitude of oscillation V
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The Van der Pol symmetric oscillator is nothing but a primary type of non-linear
symmetric oscillator used to represent any non-linear model. Our cardiac muscle (a part
of the cardiovascular conduction system) can also be described as a non-linear symmetric
oscillator. So, it is represented in terms of a modified van der Pol symmetric oscillator-
based equation. The Hamiltonian approach is used to describe the nonlinearity in words
of energy. Here, non-linear symmetric oscillator is used to represent the cardiovascular
conduction system [31] toproduce its fundamental behavior. The non-linear dynamical
equation of the modified van der Pol symmetric oscillator is given below.

d2x
dt2 + β (x2 − σ)dx

dt
+ ω0

2·x = F(t). (1)

Here, “σ” is taken 1 for vander Pol non-linear Model.
Equation (1) has been modified and given in a general form to maintain the symmetric

oscillator’s constant amplitude and synchronize the intrinsic frequency.

d2x
dt2 + β (x2 − σ)dx

dt
+ x(x + m)·(x + nm)/mn = 0, (2)

where m is the distance between nodes and n is an integer always taken positively in
this model.

At x = −m, saddle point or breakaway point occurs.
At x = −n·m, the stable node is found for every positive value of n. Here, “n”

represents integers.
In the previous work [32], the above equation was only tested for only n = 2. However,

the above modification has drastically changed the properties and the stability of the whole
system after considering the value of n greater than 2. With the repetitive experiments,
it is seen that the system gives optimum stability at n = 4. The simulation result has
also been observed that the simulated distance between saddle point nodes is fixed. A
new parameter (γ) has been introduced in this model to varying the distance [33]. The
mathematical equations are needed to introduce (γ) are given below.

.
xi = y1 (3)

.
yi= f (xi, yi). (4)

Considering the above modification
.

yi can be written in terms of f(xi, yi), where f(xi,
yi) is given as follows.

f(xi, yi) = −βi(xi
2 − σi) yi−fixi (xi + γi)(xi + mi). (5)

The other difficulty with the previous model is that the fixation of amplitude means
amplitude could not be controlled. In our proposed design, by varying the parameter σ,
the system amplitude has also been maintained. It is seen from the simulation result that
simulation curves come and move closer to the saddle point, which is the most essential
desired result towards the non-linear model of the cardiovascular system. All simulation
results are given later in the Section 8.

3. Hamiltonian Approach for Linear System

The general formula to find the degree of freedom of any system is given by (3N-
M) [34,35] where M is number of constrains and N is denoted by the number of free
particles. For example, on the sphere, the degree of freedom is (3 × 1 − 1) = 2, whereas, for
a simple pendulum, the degree of freedom is (3 × 1 − 2) = 1 as the number of constrains is
2(angel of deflection and sufficient length). Similarly, our proposed non-linear symmetric
oscillatory model towards the cardiovascular system’s conduction is also having more than
two degrees of freedom, which possess some advantages as the number of independent
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coordinates is less. A PID controller with two degrees of freedom would have related
to the proposed design in the future. It would have been able to reject the disturbances
quickly. Newtonian mechanics (1670) reformulated progressively in the 1800 centuries
made solutions to a far greater number of problems. It was first constructed in 1780 by
scientist Lagrange and then again reformulated by William. R. Hamilton in 1830. The
Lagrangian mechanics is based on the difference of kinetic energy and potential energy
usually written in terms of position and velocity. Still, the Hamiltonian mechanics [36,37]
is generally written in the momentum and position form. In some previous research work,
the cardiovascular system model was represented by a frictionless mass-spring mechanical
system where the model was considered a linear system. Figure 1 illustrates the system, as
mentioned earlier, is given below.
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To find the Lagrangian and Hamiltonian expression for the above model, in which
“F(t)” denotes the applied force on the mass, “x” represents displacement, and “m” ex-

presses the model’s mass k means spring constant. KE is given by 1
2 m

.
x2. That represents

the energy due to the motion of the system while the PE = −
∫ x

∝ (−kx)dx = 1
2 k x2.

So, the Lagrangian L can be calculated [21] as

L = KE − PE (6)

L =
1
2

m
.

x2−1
2

k x2. (7)

Considering Px = m
.
x, Equation (7) can be written as

L =
Px

2

2m
− 1

2
k x2. (8)

Hence, the generalized momentum

Px =
∂L
∂

.
x
= m

.
x (9)

.
x=

Px

m
. (10)

In terms of Hamiltonian
H = ∑ Pj

.
qj − L, (11)

where Pj is generalized momentum and
.

qj is generalized velocity. Finally, the expression of
H becomes

H = Px
.
x− L (12)

H = Px
Px

m
− (

Px
2

2m
− 1

2
K x2) (13)

H =
Px

2

2m
+

1
2

K x2. (14)
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So Hamiltonian H represents the total energy, and the equation of motions is framed below.

.
x =

∂H

∂
.

Px
=

Px

m
(15)

.
Px = −∂H

∂
.
x

= −kx. (16)

Multiplying Equation (15) by m and then comparing with Equation (16), it can be
written as

.
Px = m

..
x = · · · d

dt
(m

.
x). (17)

Again, it is known to us that
.

Px = −K. x, thus, rearranging this equation,

.
Px + k.x = 0 (18)

d
dt

(m
.
x) + k.x = 0 (19)

..
x + (

k
m
)x = 0 (20)

..
x + ω2x = 0, (21)

whereω =
√

k
m The natural frequency.

The period of oscillation is also given by

T =
2π
ω

= 2π

√
k
m

. (22)

4. Hamiltonian Approach for Non-Linear System

For explaining the essential dynamic characteristics of a vibrating system quickly, one
degree of freedom can generally be modeled. However, when two cells of the cardiovas-
cular wall [38,39] are connected in series, it should be represented as a non-linear system
having two degrees of freedom. In this section, the symmetric oscillator has thoroughly
been analyzed using the Hamiltonian approach is given below.

mjδij
..
xi + f(x1, x2, . . . . . . , xn) = 0. (23)

where δij is called Kronecker delta.
By the Hamiltonian approach, the system Hamiltonian H can be written as

H (x1, x2, . . . . . . , xn) =
1
2

n

∑
j=1

mjxi
2 + F(x1, x2, . . . . . . , xn), (24)

where T = 2π
ω . It denotes the time of the non-linear modeled symmetric oscillator. So, the

potential energy is given by

KE =
1
2

n

∑
j=1

mjxi
2 and PE = F(x1, x2, . . . . . . , xn). (25)

As the Hamiltonian approach is suitable for the conservative systems, the total energy
remains the same during the movement of an uncertain non-linear [40] model related to
the human cardiovascular system.

H = PE + KE. (26)
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Taking integration of Equation (24), a new function Ĥ(v) has been defined describing
the energy of the system considering multiple inputs and given below.

Ĥ (x1, x2, . . . . . . , xn) =
∫ T

4

0

1
2

[
n

∑
j=1

mjxj
2 + F(x1, x2, . . . . . . , xn)

]
dt =

T
4

H0. (27)

For simplicity, a sinusoidal form-based displacement is taken to describe the dynamics
approximately.

xj (t) = Bn cosωt, (28)

where Bn is the generalized varying amplitude, where n varies from 1 to N andω denotes
the angular frequency for the oscillation [41]. Putting the value of (28) into (27) Ĥ can be
written as follows.

Ĥ(B1, B2, . . . . . . , BN,ω) =
∫ T

0 [ 1
2ω

2 sin2 (ωt)∑n
j=1 mjBi + F(B1 cosωt + B2 cosωt+

. . . + BN cosωt)]dt = T
4 H0.

(29)

5. Modeling of the Proposed Design

In this section, the series connection of two mass-spring models [42,43] is taken
together, and the Hamiltonian approach analyzes the nonlinearity. Series connection of two
cardiovascular muscle cells is represented as cardiac fiber, or a muscle is a chain connection
of cardiac cells. Modeling one cell can be described in a linear approach, but two cells’
loading effect series connection cannot be represented by a linear model [44]. That is why
the Hamiltonian method is introduced. The following Figure 2 describes the non-linear
proposed model to explain the human cardiovascular system’s conduction process.
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Here, k1 and k2 represents the linear coefficient of spring, whereas k1
N and k2

N

represents the non-linear coefficient of spring. d1 and d2 represent the displacement of
mass M. Applying Hamiltonian H to the system Ĥ can be written as

Ĥ (d1, d2) = 1
2

∫ T
4

0 [ M
.

d1
2 + M

.
d2

2 + K1M1
2 + 1

2 k1
Nd1

4 + k2 (d1 − d2)
2 +

1
2 k2

N(d1 − d2)
4 + k1d2

2 + 1
2 k1

Nd2
4]dt.

(30)

Considering the first-order approximate solution in the sinusoidal form, d1 = B1 cosωt
and d2 = (B1 − B) cosωt and then putting the value d1(t) and d2(t) in Equation (30), Ĥ can
be written as given below.

Ĥ(BO, B1,ω) = 1
2

∫ T
4

0 {Mω2[B1
2 + (B1 − B0)

2] ∗ sin2(ωt) + 1
2 B1

2 cos2(ωt)+
1
2 k1

NB1
4 cos4(ωt) + k2[B1 cosωt− (B1 − B0) cos2(ωt)] + k2

N[B1 cosωt−
(B1 − B0) cosωt]4 + (B1 − B0)

2k1 cos2(ωt) + 1
2 (B1 − B0)

4k1
N cos4(ωt)}dt.

(31)

Taking the first derivative of the above equation and making equals zero for getting
the frequency of oscillation.
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The frequency amplitude relation has been established and given below.

4B1k1 + 9 A2B1k1
N + 3 B1k1

N−3B03(k1
N + k2

N) − 4 B1Mω2

− B(4k1 + 4k2 + 9B1
2k1

N−4Mω2) = 0.
(32)

The above equation can be rearranged as follows:

(B0−2B1) (4k1 + 3B0k1
N+ 3B0B1k1

N +3B1
2k1

N− 4Mω2) = 0. (33)

Combining Equations (32) and (33)ω(B)

ω(B0) =
1
4

√
32k2 + 16k1 + 3B02k1

N + 24k2NB02

M
. (34)

Special cases:

a. For k1 = 0, k1
N = 0, ω(B0) =

1
4

√
32k2 + 24B02k2N

M
(35)

b. For k2
N = 0, ω(B0) =

1
4

√
32k2 + 16k1 + 3B02k1

N

M
. (36)

For more accurate results, d1(t) and d2(t) have been formulated for simulation in
sinusoidal form and are shown below:

d1(t) = B3 cosω2t + (B2 − B3) cos 3ω2t (37)

d2(t) = B5 cosω2t + (B4 − B5) cos 3ω2t. (38)

As cardiovascular muscle does not consist of one or two cells, preferably Z number of
cells connected in series should be used to design cardiovascular muscle dynamics [45,46].
When only one cell is considered, it has been observed that the degree of freedom (DOF)
is 1(3 × 1 − 2 = 1), whereas it will be two if two cells are connected in series as several
constraints are four (3 × 2 − 4 = 2). The degree of freedom can be determined in three
cells using the same formula, three (3 × 3 − 6 = 3). It means if the Z number of cells are
connected in series, the degree of freedom will be Z. So, Equation (30) will be working
correctly without any difficulties with a variable Z.

6. Generation of Action Potential and Coupling of Nodes

When the cell membrane crosses a specific threshold value or threshold potential, an
action potential is generated [47,48] across the cell wall. Current is flowing due to this
action potential [49] in or out of the cell. Spontaneous depolarization is one of the essential
properties of the cardiac conduction system. The action potential is automatically generated
in this system without external input. The degree of an action potential depends on how
fast the depolarization occurs. However, in our proposed design considering unidirectional
coupling, the term for the mass-spring non-linear model is (k1d1-k2d2) used for action
potentials. The difference in coefficient tells us the asymmetry in the collar. Initially, to
observe the interaction between two nodes, k1 and k2 have been considered equal to one.
Finally, by varying the value of k1 and k2, different coupling simulation result has been
observed and given in the next section.

7. Muscle Dynamics Traditional Describing Function Method to Determine
Nonlinearity

The describing function technique can describe the non-linear behavior of any non-
linear system in control system engineering [49,50]. This method has also been used.
This method is nothing but a frequency domain analysis related to the system. This
technique is also called the “describing function analysis technique,” whose mathematical
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representation can be given as V(V,ω) = Y1
X ∠Φ. Now this, “Φ” denotes overall phase

shift. Figure 3 represents the simple block of the above analysis technique.
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Figure 4. Input–output characteristics of the proposed design.

Let incoming signal is given by x(t) = Xsinωt, and due to this, input–output is given
by

y = 0, for 0 ≤ ωt ≤ θ1,
= K.(x− M

2 ), for θ1 ≤ ωt ≤ θ2,
= K.(V− M

2 ), for θ2 ≤ ωt ≤ (π− θ2),
= K.(V− M

2 ), for (π− θ2) ≤ ωt ≤ (π− θ1),
= 0, for (π− θ1) ≤ θ1,

(39)

A1 = 2
π [
∫ θ2
θ1 K(X.Sinωt− M

2 )cosωt d(ωt) +
∫ π−θ2
θ2 K(s− M

2 )cosωt d(ωt)+∫ π−θ1
π−θ2 k(X.Sinωt− M

2 )cosωt d(ωt)]
(40)

A1 = 2K
π

[
X
2

∫ θ2
θ1 2sinωt.cosωt d(ωt)

−M
2

∫ θ2
θ1 cosωt d(ωt) + (N− M

2 )
∫ π−θ2
θ2 cosωt d(ωt)

+X
2

∫ π−θ1
π−θ2 2sinωt.cosωt d(ωt)− M

2

∫ π−θ1
π−θ2 cosωt d(ωt)

] (41)

A1 = 2K
π

[
X
2

∫ θ2
θ1 2sinωt.d(ωt)

−M
2

∫ θ2
θ1 cosωt d(ωt) + (s− M

2 )
∫ π−θ2
θ2 cosωt d(ωt) + X

2

∫ π−θ1
π−θ2 sin 2ωt. d(ωt)− M

2

∫ π−θ1
π−θ2 cosωt d(ωt)

]
A1 = 0.

(42)

Now the value of B1 has to be calculated and given as follows.

B1 =
2
π

∫ π
0

y(t)sinωt.d(ωt)
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B1 = 2
π

[∫ θ2
θ1 K(Xsinωt− M

2 )sinωt.d(ωt)

+
∫ π−θ2
θ2 K(N− M

2 )sinωt d(ωt)
+
∫ π−θ1
π−θ2 K(Xsinωt− M

2 )sinωtd(ωt)
] (43)

B1 = 2K
π

[∫ θ2
θ1 Xsin2ωt.d(ωt)

−
∫ θ2
θ1 −

M
2 sinωt d(ωt) + (s− M

2 )
∫ π−θ2
θ2 sinωtd(ωt)

+X
∫ π−θ1
π−θ2 sin2ωt.d(ωt)− M

2

∫ π−θ1
π−θ2 sinωt d(ωt)

] (44)

B1 =
2K
π

[
X.θ2− X.θ1− X

2
sin 2θ2 +

X
2

sin 2θ1 + 2Vcosθ2−Mcosθ1
]

. (45)

As input is x(t) = X.sinωt, and at ωt = θ1, amplitude is M
2 .M = 2Xsin θ1. So,

sin θ1 = M
2X .

Similarly, at ωt = θ2, the amplitude is s. So V = Xsin θ2. So, sin θ2 = V
X . Putting

these values
B1 =

KX
π

[2(θ2− θ1)− sin 2θ1 + sin 2θ2 ]. (46)

Hence, the mathematical representation of describing function for the proposed model
is given by

V(X,ω) =

√
A1

2+B1
2

X ∠ tan−1 A1
B1

= B1
X ∠0.

(47)

V( X,ω) = K
π [2(θ2− θ1)− sin 2θ1− sin 2θ2 ] for X > V

= 1− 2
π [2(θ2− θ1)− sin 2θ1 + sin 2θ2 ] for V > X > M

2 .
(48)

Equation (48) represents the proposed model equation considering all kinds
of nonlinearity.

8. Simulation Result

The proposed non-linear Hamiltonian approached model has been simulated keep-
ing mass and amplitude fix along with linear spring constant and varying the value of
non-linear spring constant values and the periodic functions x1(t) and x2(t) are plotted
concerning time. Here, mass M = 1 and k1 = 5 and k2 = 3 and B = 10 are kept constant.
Figure 5 represents the simulation with k1

N = 1 and k2
N = 5 where Figure 6 represents the

simulation with k1
N= 3 and k2

N=7.
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Figure 6. Plot of x1(t) and x2(t) when k1
N = 3, k2

N = 7.

Table 3 represents the parameters taken for simulation, and the corresponding values
for every parameter have also been included in it.

Table 3. Value of the parameters taken for simulation.

Parameter Values

k1
N 1,3

k2
N 5,7

M 1

B 10

Here, in the simulation, three different lines are used. Those are solid, dot, and dashed.
The solid line represents the numerical values, whereas the other lines represent the first
order and second-order Hamiltonian, respectively. It has been observed that the first-order
and second-order Hamiltonian overlaps with numerical solutions. At time 0.05 µs, the
numerical solution is 3.7, whereas at the same time, the simulated value of first-order and
second-order Hamiltonian modeling-based simulated results are 3.69 and 3.73, respectively,
which are very close to accurate or mathematical work.

Similarly, at the time 0.15 µs, the numerical solution is −7, whereas at the same
moment, the simulated value of first-order and second-order modeling based simulated
results are −6.68 and −7.01, respectively. The previous section has already discussed that
by varying the parameter, the system amplitude, means the amplitude of the modified
symmetric oscillator equation-based non-linear model, can be controlled. By running the
simulation, the results are shown below. Figure 7a represents a two-dimensional (2D)
phase portrait of the proposed design considering all different initial conditions, whereas
Figure 7b shows a 3D phase portrait for the proposed method. From the 2D phase portrait,
it is evident that whatever may be the initial condition; ultimately, all state points are
converging towards the equilibrium points. Hence the non-linear proposed design is stable.
From the 3D phase, portrait stability can also be explained in a more prominent way than a
2D portrait. In Figure 7b, it has been observed that the initial condition may start from three
independent different coordinates-based points. Still, all topics are converging towards the
center of the figure, which assures stability.

From the above phase portrait, it is found that every point in the phase portrait is
bounded for time, which means that the system is always converging to its equilibrium
states considering any initial conditions. Hence the system is stable considering all types of
nonlinearities. It is observed from the above phase portrait that, at time 25 µs, the phase’s
value is positive, but after 1 µs again, the step is positive, which means that the degree may
vary for time. Still, ultimately, it does not go into the negative region.
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Figure 7. (a) Represents a 2D phase portrait considering the different initial conditions. (b) Represents a 3D phase portrait
considering the different initial conditions.

In the above figure, the x-axis represents states while the y-axis represents the re-
sponses. Initially, we considered the value of σ equal to unity, which is one of the van
der Pol equation’s essential parameters. Here, the variation has also been considered and
simulated. It is found that the interpretation does not affect our system stability. Instead,
Figure 8 shows that the equilibrium state point or only state points came closer to the
saddle point, ensuring the design reliability. The polar plot of cardiovascular muscle is
depicted in Figure 9 that will be essential to find stability in the traditional describing
function method.
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Equation (48), representing the cardiovascular muscle model’s nonlinearity, has been
simulated along with a polar story shown below in Figure 10. Here, the describing function
has been plotted from Equation (48) in blue color.
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Figure 10. Superimpose of polar plot and describing function.

In the above diagram, the polar plot of the ordinary cardiovascular muscle system and
its describing function characteristics has been depicted at a time. It is observed from the
simulation result that an expected limit cycle is found along the path “V” for our proposed
design. Moving points E and F represents the intersection points of the polar plot and
describing functions. A completely converging limit cycle has been observed within this
limit. If the points E and F move away from the polar plot, the system would be unstable.
Thus, the design can work for real-life situations for a particular bounded region.

9. Comparative Study of Our Proposed Design with Traditional Describing Function
and Future Scope

In the conventional describing function technique, a non-linear system can easily be
analyzed. The nonlinearity present in cardiovascular muscle dynamics has been studied
in this work in Section 10. However, the parameter responsible for nonlinearity could
not be varied. In the Hamiltonian approach of nonlinearity, the parameter accountable
for nonlinearity has been changed. It is observed that the variation of the spring constant
does not affect our modeling. As both approaches are based on energy, the result in terms
of stability remains the same. Interpretation of the non-linear parameter and strength
using the Hamiltonian process is the main advantage of our proposed design over the
traditional describing function method. A comparative study-based approach for human
cardiovascular disease detection can be modeled in the future, considering our proposed
plan as nonlinearity change parameters from person to person. Different values of the
non-linear parameter can be found in various diseases, which will help future research
work.

10. Conclusions

The human cardiovascular system’s conduction process has been discussed in this
work with the aid of a modified symmetric oscillator equation and an extended Hamilto-
nian approach for solving the motion of a non-linear system with two degrees of freedom
(two degrees of freedom). The second-order approximation is observed from the simula-
tion that the second-order Hamiltonian is overlapped with the numerical result. In our
proposed model, a modified van der Pol symmetric oscillator equation has also been used
to implement the series connection of two same type conduction cells of the cardiovascular
system, which helps describe the complete process of conduction. The modeling can be
done using only the describing function, but if the spring constant has to be varied, then the
overall model equation has to be modified, which is a tedious job. Analysis of two identical
cells using the Hamiltonian dynamical approach is better than describing the function
approach. Using the Hamiltonian mechanics, the spring constant can easily be varied.
The symmetric oscillator’s natural frequency has been evaluated for the above-designed
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model compared with the previous simulated result, which shows that saddle point or
breakaway point came closer with state points. This work’s main advantage or beauty
allows us to anticipate the human cardiovascular conduction process’s properties obtained
from different patients. We observed the non-linear parameter variation, which cannot be
obtained from the describing function method.
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