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Abstract: Isothermic surfaces are defined as immersions with the curvture lines admitting conformal
parameterization. We present and discuss the reconstruction of the iterated Darboux transformation
using Clifford numbers instead of matrices. In particulalr, we derive a symmetric formula for the
two-fold Darboux transformation, explicitly showing Bianchi’s permutability theorem. In algebraic
calculations an important role is played by the main anti-automorphism (reversion) of the Clifford
algebra C(4, 1) and the spinorial norm in the corresponding Spin group.
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1. Introduction

Isothermic surfaces have a very long history. They have been first introduced by
Lamé in studies on stationary heat flows (described by the Laplace equation), in the
broader context of triply ortogonal systems of coordinates [1]. Then, the main progress
towards the theory of isothermic surfaces was done by Bertrand [2], who was first to
notice that “in any triply isothermic (in physical sense) orthogonal system in E3 any
coordinate surface admits conformal curvature parameterization” [3]. Transformations
of isothemic surfaces, studied by Darboux and Bianchi [4,5], strongly suggested that the
related system of nonlinear partial differential equations (see (2) below) is integrable in the
sense of the soliton theory [6] and, indeed, such modern formulation of this problem was
found [7], which started new developments in this field [8–12]. It is worthwhile to mention
that isothermic immersions are invariant with respect to conformal transformations of
the ambient space and can be naturally described in terms of conformal geometry (then
Darboux transformations correspond to Ribaucour congruences [13]). Studies on isothermic
surfaces are still active, see, e.g., [14–19]. In this paper we develop an approach based on
using Clifford algebras and Spin groups [20,21] (different from the approach of [12,22]). We
re-derive the construction of “multisoliton” surfaces by iterated Darboux transformation.
In particular, we present detailed computation of the two-fold Darboux transform.

2. Isothermic Surfaces in R3

Isothermic surfaces (or, more precisely, isothermic immersions) are characterized
as surfaces immersed in E3 with curvature lines admitting conformal parameterization.
It means that there exist coordinates (u, v) in which the isothermic immersion has the
following fundamental forms:

I = e2ϑ(du2 + dv2) ,

I I = e2ϑ(k1du2 + k2dv2) ,
(1)
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where ϑ, k1, k2 are functions of u, v, which have to satisfy the following system of nonlinear
partial differential equations known as Gauss–Mainardi–Codazzi equations:

ϑ,uu +ϑ,vv +k1k2e2ϑ = 0 ,

k2,u +(k2 − k1)ϑ,u = 0 ,

k1,v +(k1 − k2)ϑ,v = 0 ,

(2)

where comma denotes partial derivtive. Geometrically, k1 and k2 are principal curvatures,
and their product k1k2 yields the Gaussian curvature. The above nonlinear system can be
obtained (see [7]) as compatibility conditions for the following linear problem (or Lax pair):

Ψ,u = 1
2 e1(−ϑ,v e2 + k1eϑe3 + λ sinh ϑe4 + λ cosh ϑe5)Ψ ,

Ψ,v = 1
2 e2(−ϑ,u e1 + k2eϑe3 + λ cosh ϑe4 + λ sinh ϑe5)Ψ ,

(3)

where e1, . . . , e5 are 4× 4 complex matrices (for their exact form see [7] or [23]) that satisfy
the relations

e2
1 = e2

2 = e2
3 = e2

4 = −e2
5 = 1 , ejek = −ekej (j 6= k) . (4)

We point out that using a suitable extension of the famous Sym formula (see, e.g., [24])
we can reconstruct the radius vector of the isothermic surface implicitly determined by the
fundamental forms (1), for more details see Section 4 and Theorem 1.

3. Clifford Algebras

The matrices e1, . . . , e5 satisfying (4) can be interpreted as elements of a Clifford
algebra, see below. Their exact matrix form is not needed. From technical point of view,
it is even easier to use Clifford numbers instead of particular matrix representations [21].

We recall the definition of a Clifford algebra generated by vectors of a Euclidean
or pseudo-Euclidean inner product space. Let V be a vector space endowed with a
non-degenerate (but not necessarily positive definite) quadratic form Q, see, e.g., [25,26].
If Q is positive definite (the Euclidean case), then Q(v) is the square of the length of v.
The associated bilinear form (scalar product) will be denoted by brackets. In particular,
Q(v) ≡ 〈v | v〉. The Clifford algebra C(V, Q) is generated by products (“Clifford products”)
of vectors (elements of V). The Clifford product is defined by the following relation:

vw + wv = 2〈v | w〉1 (5)

where 1 denotes the unit of the Clifford algebra.
Let {e1, . . . , en} be an orthonormal basis of V, i.e., 〈ej | ek〉 = 0 for j 6= k, and

〈ek | ek〉 = ±1. The dimension of the Clifford algebra is 2n. Its standard basis consists of

1, ek, ejk (j < k), eiejek (i < j < k), . . .

If the signature of Q is (m, p) (i.e., among e1, . . . , en there are m vectors such that
e2

j = 1 and p vectors such that e2
j = −1, and m + p = n), then we denote C(V, Q) ≡ Cm,p.

The Clifford group (or Lipschitz group) Γ(V, Q) is the multiplicative group (with
respect to the Clifford product) generated by the non-isotropic vectors (we recall that
w ∈ V is isotropic (or null) vector if 〈w | w〉 = 0 ). The spinor norm of an element
X ∈ Γ(V, Q) is defined as

N(X) := β(X)X , (6)
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where β is a reversion, i.e., β(v1v2 . . . vM) = vMvM−1 . . . v2v1. One can easily see that the
spinor norm of a vector is its scalar square, N(v) = 〈v | v〉, and for any element of Γ(V, Q)
we have

N(v1v2 . . . vM) = 〈v1 | v1〉〈v2 | v2〉 . . . 〈vM | vM〉 . (7)

The group Pin(V, Q) is a subgroup of Γ(V, Q) consisting of elements X such that
N2(X) = ±1 (i.e., Γ(V, Q) contains products of unit vectors), and the group Spin(V, Q)
(a subgroup of Pin(V, Q)) consists of products of even number of unit vectors [26].

4. Spin-Valued Lax Pairs

Our approach to the construction of Darboux transformation consists of two steps.
First, we characterize the structure of the Lax pair. Second, we are looking for a transforma-
tion preserving the structure [27].

The structure of the Lax pair is characterized by the dependence on λ (e.g., divisor
of poles) [6,28], reduction group (loop group) [29] and, possibly, by other invariants of
Darboux transformations, like linear and multilinear constraints on coefficients of the
Laurent expansion around poles [30].

In this section we present the characterization of the Lax pair (3), see [20,31]. First of
all, we consider Clifford numbers instead of matrices. Then, we notice that both matrices
of this Lax pair are Clifford bi-vectors linear in λ such that

Ψ,µ = UµΨ , Uµ =
1
2

eµ(λaµ + bµ) (µ = 1, 2) (8)

where Ψ = Ψ(u, v), Ψ,1≡ Ψ,u, Ψ,2≡ Ψ,v, aµ = aµ(u, v) ∈ W, bµ = bµ(u, v) ∈ V, V and
W are real vector spaces, V is spanned by e1, e2 and e3, and W is spanned by e4 and e5.
We assume relations (4), which means that form now on the quadratic form Q, defined on
V ⊕W, is assumed to have signature (4, 1).

The compatibility conditions for the linear system (8) imply that a1 and a2 form an
orthogonal basis in W. We can confine ourselves to the particular case (3) without loss of
the generality. Indeed, both linear problems are equivalent up to a re-parameterization of
independent variables and a discrete transformation in the space W.

The form (8) of the spectral problem can be described in terms of some group con-
straints (“reduction group”, compare [27,29]). First, Uµ are linear combinations of Clifford
bi-vectors. In other words, Uµ take values in the Lie algebra of the group Spin(V ⊕W, Q).
In principle, Ψ could be a spinor, but here and in the sequel we assume that it is an element
of the Clifford algebra. Without loss of the generality we can confine ourselves to solutions
Ψ ∈ Γ(V, Q). The next observation is βββ(Uµ) = −Uµ.

Lemma 1. If βββ(Uµ) = −Uµ (for µ = 1, 2), and Ψ satisfies Ψ,µ = UµΨ, then

N(Ψ) ≡ Ψβββ(Ψ) = const , (9)

Proof. It is sufficient to differentiate N(Ψ):

(N(Ψ)),µ = Ψ,µ βββ(Ψ) + Ψβββ(Ψ,µ ) = (Uµ + βββ(Uµ))N(Ψ) = 0 , (10)

where one has to remember that N(Ψ) is a scalar, so it commutes with any elements.

Therefore, Ψ ∈ Spin(V ⊕W, Q) (for any u, v) provided that Ψ is Spin-valued at some
initial point (u0, v0). In an analogous way one can show the following loop group condi-
tions:

Ψ(−λ) = e4e5Ψ(λ)e4e5 , Ψ(λ) = Ψ(λ) (11)

(where the bar denotes complex conjugate and, by definition, ej = ej). They follow from

e4e5Uµ(λ) = Uµ(−λ)e4e5 , Uµ(λ) = Uµ(λ̄) . (12)
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The properties βββ(Uµ) = −Uµ and (12) hold for the Lax pair (8), which can be easily
verified using commutation relations (4).

The Sym-Tafel formula F = 2Ψ−1Ψ,λ [24], evaluated in λ = 0, yields a surface
immersed into the 6-dimensional space spanned by bi-vectors of the form ekeα (k = 1, 2, 3;
α = 4, 5). Projecting this surface on especially chosen 3-dimensional subspaces we obtain
the original isothermic surface as a linear combination of ek(e4 + e5) (k = 1, 2, 3) and its
dual (or Christoffel transform) as a combination of ek(e4 − e5) (k = 1, 2, 3) [23].

Here we present some details of calculations involving Clifford numbers instead
of matrices. They are closely related but not identical to the approach of our earlier
papers [20,23,32].

We use the projection P : C(V ⊕W)→ C(V) defined as a homomorphism of Clifford
algebras such that

P(e4) = P(e5) = 1 . (13)

Note that

P

(
3

∑
j=1

5

∑
α=4

cjαejeα

)
=

3

∑
j=1

(cj4 + cj5)ej (14)

This projection yields an original isothermic surface (the dual surface is a result of
another homomorphism P′, defined by P′(e4) = −P′(e5) = 1).

Theorem 1. We assume that Ψ satisfies the linear system (3) and

F := 2 Ψ−1Ψ,λ
∣∣∣
λ=0

. (15)

Then r := P(F) yields the original isothermic immersion (up to a Euclidean motion), provided
that we identify span{e1, e2, e3} with the space E3.

Proof. The crucial property of the Sym-Tafel formula (15) is a compact form of its derivative
(compare [24]):

F,µ = 2Ψ−1
0 Uµ,λ (0)Ψ0 = Ψ−1

0 eµaµΨ0 , (16)

where Ψ0 := Ψ(0) (i.e., Ψ evaluated at λ = 0), and we use the slightly more general form (8)
of the Lax pair (3). Then

r,µ = eθΨ−1
0 eµΨ0 . (17)

Therefore
Eµ = Ψ−1

0 eµΨ0 (18)

(for µ = 1, 2) form an orthonormal basis in the tangent space and, therefore, the corre-
sponding metric is given by the first equation of (1). Obviously, E3 (defined by (18) for
µ = 3) is orthogonal to E1 and E2; hence, it can be identified with the normal vector.
In order to derive the second fundamental form we differentiate (17). Taking into account
Ψ0,µ = 1

2 eµbµΨ0, we obtain

r,11 = eθ(θ,1 E1 + 〈b1 | e2〉E2 + 〈b1 | e3〉E3) = eθ
(
θ,1 E1 − θ,2 E2 + k1eθE3

)
,

r,12 = eθ(θ,2 E1 − 〈b2 | e1〉E2) = eθ(θ,2 E1 + θ,1 E2) ,

r,21 = eθ(−〈b1 | e2〉E1 + θ,1 E2) = eθ(θ,2 E1 + θ,1 E2) ,

r,22 = eθ(〈b2 | e1〉E1 + θ,2 E2 + 〈b2 | e3〉E3) = eθ
(
−θ,1 E1 + θ,2 E2 + k2eθE3

)
.

(19)

Therefore, coefficients of the second fundamental form (given by 〈r,ij| E3〉) yield the
second formula of (1). The proof is completed by applying the Bonnet theorem.
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5. The Darboux-Bäcklund Transformation in the Case of Spin Groups

The Darboux transformation is a gauge-like transformation using the Darboux matrix
D (we will keep using the name “matrix” even for D given in terms of Clifford numbers
without referring to any matrix representation):

Ψ̃ = DΨ, Ψ̃,µ = ŨµΨ̃, Ũµ = D,µ D−1 + DUµD−1 , (20)

provided that Ũµ has the same dependence on dependent variables as Uµ, see, e.g., [6,33].
In Section 4 we have shown that the form (3) can be derived by imposing a set of constraints
on a general linear problem (Uµ are Clifford bi-vectors, linear in λ and belong to the
appropriate loop algebra). Then the Darboux transformation has to preserve this structure,
which means, in particular, that D should belong to the same group as Ψ.

Different methods of constructing the Darboux matrix need different form of
λ-dependence of D (these forms are equivalent up to a λ-dependent scalar factor [30]). In
particular, one can assume D as polynomial in λ (eigenvalues, corresponding to solitons, are
zeros of det D) [34], sum of simple fractions (eigenvalues: poles of D and D−1) [6,29], or a
“realization” (D = N + F(λ− A)−1G) [35,36].

Our motivation for dealing with the case of Spin groups came from yet another
approach [31]. Multiplying (20) by D2(λ) we get

D,µ D + DUµD = ŨµD2 . (21)

It is a crucial point that the right-hand side vanishes for λ+ and λ− such that
D2(λ±) = 0. Then, we obtain a solution of the remaining equation: D(λ±) = ρ±Ψ(λ±)d±
Ψ(λ±)−1, where d± = const, (d±)2 = 0 and ρ± are two scalar functions. Finally, D(λ) is
given as a linear combination of D(λ+) and D(λ−) with coefficients linear in λ [31], which
yields one-soliton Darboux matrix. This approach was extended on the multi-soliton case
for 2× 2 matrix problems [37].

Generalization of this approach on Spin-valued linear problems is quite natural.
Instead of multiplying both sides of (20) by D2 we multiply them by Dβββ(D):

D,µ βββ(D) + DUµβββ(D) = ŨµDβββ(D) . (22)

Note that βββ(D) = D if D is a Clifford vector (which has been usually assumed in
earlier papers, like [31]), and in this case Equation (22) assumes the form (21).

Lemma 2. If an isotropic Clifford vector D′ satisfies Equation (22), and G is any Clifford number
G (not necessarily constant), then D = GD′ satisfies Equation (22) as well.

Proof. Lemma can be shown by straightforward calculation. First, we have

Dβββ(D) = GD′βββ(D′)βββ(G) = G(D′)2βββ(G) = 0 , (23)

so the right-hand side of (22) vanishes. Then

D,µ βββ(D) + DUµβββ(D) = G,µ D′βββ(D′)βββ(G) + G
(

D′,µ βββ(D′) + D′Uµβββ(D′)
)
βββ(G) = 0 , (24)

which ends the proof.

In this paper we confine ourselves to iterations of the simplest Darboux transforma-
tions (defined by D linear in λ). Then we can use the results of [31], where the case of
the Clifford vector (here denoted by D′) was considered, and the following form of the
Darboux transformation was derived:

D′(λ) =
λ− λ−

λ+ − λ−
D′(λ+) +

λ− λ+

λ− − λ+
D′(λ−) , (25)
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and D′(λ±) can be expressed as

D′(λ±) = ρ±Ψ(λ±)d±Ψ(λ±)
−1 (26)

where ρ± are (arbitrary) scalar functions and d± are constant elements such that d2
± = 0.

Reductions (12) impose constraints on λ±, ρ±, and d± (see [31]):

λ+ = iκ , λ− = −iκ (κ ∈ R) , ρ+ = ρ− ≡ ρ ∈ R , d± = κ(p0 ± in0) . (27)

Moreover we denote (compare [21])

p + in := Ψ(iκ)(p0 + in0)Ψ−1(iκ) (28)

We assume
p2

0 = n2
0 = 1

(in the Clifford algebra p2 = 〈p | p〉 etc.). Therefore computing the Clifford square of both
sides of (28) and taking into account that p, p0 anticommute with n, n0 we get p2 = n2.

It is convenient to introduce unit vectors p̂ and n̂

p̂ :=
p√
〈p | p〉

, n̂ :=
n√
〈n | n〉

, (29)

such that p̂2 = n̂2 = 1. Then the Darboux matrix assumes the form D′(λ) = λn̂ + κ p̂. In
order to get a Spin-valued D we can take, for instance, G = e4, obtaining

D(λ) := e4(λn̂ + κ p̂) (30)

Note that
D(λ)βββ(D(λ)) = λ2 + κ2 (31)

Remark 1. It is important to remember that the obtained Darboux matrix D depends on the
function Ψ (an exact solution of the linear problem (3)) and constant parameters: κ, p0, n0.
The notation D = D[Ψ,κ,p0,n0]

would be very awkward, so in the sequel we omit the dependence on
p0 and n0, writing D = D[Ψ,κ].

Theorem 2. The transformation Ψ̃(λ) = e4(λn̂ + κ p̂)Ψ(λ), where n̂ and p̂ are given by (29) and

p :=
1
2

(
Ψ(iκ)(p0 + in0)Ψ−1(iκ) + Ψ(−iκ)(p0 − in0)Ψ−1(−iκ)

)
n :=

1
2i

(
Ψ(iκ)(p0 + in0)Ψ−1(iκ)−Ψ(−iκ)(p0 − in0)Ψ−1(−iκ)

)
,

(32)

transforms the linear problem (3) into the linear problem of the same form with θ, k1 and k2
replaced by

θ̃ = θ − 2γ ,

k̃1 = e2γ
(
k1 − 2κ〈p | e3〉eθ sinh(θ − γ)

)
,

k̃2 = e2γ
(
k2 − 2κ〈p | e3〉eθ cosh(θ − γ)

)
,

(33)

where γ is a function parameterizing n̂, namely: n̂ = cosh γe4 + sinh γe5.

We omit the proof, which consists in splitting the equation D,µ +DUµ = ŨµD into
a system of equations by equating coefficients by powers of λ and basis elements of the
Clifford algebra.
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Theorem 3. The Darboux transformation for soliton submanifolds (15) reads

F̃ = F +
2
κ

p̂−1n̂ , r̃ = r +
2eγ

κ
p̂ . (34)

Proof. Directly applying the Sym formula we get

F̃ = 2(DΨ)−1(DΨ),λ |λ=0 = 2Ψ−1Ψ,λ |λ=0 + 2Ψ−1
0 (D−1D,λ )|λ=0Ψ0 . (35)

Substituting D,λ = n̂ and D−1(0) = κ−1 p̂−1, we get the first formula of (34). To obtain
the second formula we take into account that p̂2 = 1 and P(n̂) = eγ.

In the context of soliton surfaces the Darboux transformation is often called the
Darboux-Bäcklund transformation [21,31] or the Darboux–Bianchi transformation [23].

6. Iterated Darboux Transformation

The Darboux transformation can be iterated in a natural way. Using the notation
introduced in Remark 1 we have the following sequence of solutions to the considered
linear problem:

Ψ[1](λ) = D[Ψ[0] ,κ1]
(λ)Ψ[0](λ) ,

Ψ[2](λ) = D[Ψ[1] ,κ2]
(λ)Ψ[1](λ) ,

. . . . . . . . . . . . . . . . . ,

Ψ[K](λ) = D[Ψ[K−1] ,κK ]
(λ)Ψ[K−1](λ) .

(36)

The last equation can be rewritten in the following, more explicit, way:

Ψ[K](λ) = D[Ψ[K−1] ,κK ]
(λ)D[Ψ[K−2] ,κK−1]

(λ) . . . D[Ψ[1] ,κ2]
(λ)D[Ψ[0] ,κ1]

(λ)Ψ[0](λ) , (37)

where we have to remember that Ψ[1], Ψ[2], . . . , Ψ[K−1] can (and should) be expressed by
Ψ[0] and constants κ1, . . . , κK−1. Thus we can use a more compact notation:

Ψ[K](λ) = D[K]
[Ψ[0] ,κ1,κ2,...,κK−1]

(λ) , (38)

but the explicit expression for D[K] is extremely complicated. The above notation can be
shortened into the following, more compact, form:

Ψ[1](λ) = D[0]1(λ)Ψ[0](λ) ,

Ψ[2](λ) = D[1]2(λ)Ψ[1](λ) ,

. . . . . . . . . . . . . . . ,

Ψ[K](λ) = D[K−1]K(λ)Ψ[K−1](λ) .

(39)

The index [0] may be often omitted. We have, for example:

Ψ[0](λ) ≡ Ψ(λ) ,

Ψ[1](λ) = D[0]1(λ)Ψ[0](λ) = D(λ)Ψ(λ) = D[1](λ)Ψ[0](λ) ,

Ψ[2](λ) = D[1]2(λ)Ψ[1](λ) = D[1]2(λ)D[0]1(λ)Ψ[0](λ) = D[2](λ)Ψ[0](λ) ,

Ψ[3](λ) = D[2]3(λ)D[1]2(λ)D[0]1(λ)Ψ[0](λ) = D[3](λ)Ψ[0](λ)

(40)

where
D(λ) = D[0]1(λ) = e4(λn̂1 + κ1 p̂1) (41)
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and p̂j, n̂j are defined by

pj + inj := Ψ(iκj)(p0j + in0j)Ψ−1(iκj) (j ∈ N) . (42)

Theorem 4. Two-fold Darboux transformation of the function Ψ(λ) is given by Ψ[2](λ) =
D[2](λ)Ψ(λ), and D[2] can be expressed by κ1, κ2, p̂1, p̂2, n̂1 and n̂2 in the form explicitly symmetric
with respect to exchange of indices:

D[2](λ) =
C(λ)− (κ2

1 − κ2
2)D[0]1(λ) ∧ D[0]2(λ)

M
, (43)

where D[0]j(λ) = e4(λn̂j + κj p̂j) (j = 1, 2) and

M2 := 4κ2
1κ2

2(cos2 ϕ + cos2 ψ)− 4κ1κ2(κ
2
1 + κ2

2) cos ϕ cos ψ + (κ2
1 − κ2

2)
2 ,

C(λ) := κ1κ2 cos ϕ(2λ2 + κ2
1 + κ2

2)− cos ψ(2κ2
1κ2

2 + λ2(κ2
1 + κ2

2)) .
(44)

Proof. We are going to express in a symmetric form D[2](λ) = D[1]2(λ)D[0]1(λ). Note that

Ψ[1](iκ2) = D[0]1(iκ2)Ψ(iκ2) = e4(iκ2n̂1 + κ1 p̂1)Ψ(iκ2) , (45)

and
(D[0]1(λ))

−1 =
λn̂1 + κ1 p̂1

λ2 + κ2
1

e4 (46)

Then
D[1]2(λ) = e4(λn̂ + κ2 p̂) , (47)

where we still use notation (29), but (within this proof) n and p are associated with the
matrix D[1]2, i.e.,

p + in = Ψ[1](iκ2)(p02 + in02)(Ψ[1](iκ2))
−1 . (48)

Therefore, substituting (45),

p + in = e4(κ1 p̂1 + iκ2n̂1)Ψ(iκ2)(p02 + in02)Ψ(iκ2)
−1

(
κ1 p̂1 + iκ2n̂1

κ2
1 − κ2

2

)
e4 , (49)

which can be rewritten as (compare (29))

p + in =

√
p2

2

κ2
1 − κ2

2
e4(κ1 p̂1 + iκ2n̂1)( p̂2 + in̂2)(κ1 p̂1 + iκ2n̂1)e4 , (50)

or
p + in =

√
p2

2e4(κ1 p̂1 + iκ2n̂1)( p̂2 + in̂2)(κ1 p̂1 + iκ2n̂1)
−1e−1

4 , (51)

which is a similarity transformation and can be interpreted as an orthogonal transformation
in the (complexified) Clifford algebra. Note that for any Clifford vectors v, w we have

vwv−1 = (2〈v | w〉 − wv)v−1 = −w + 2
〈v | w〉
〈v | v〉 v . (52)

Therefore

p + in =
√

p2
2e4

(
2(κ1〈 p̂1 | p̂2〉 − κ2〈n̂1 | n̂2〉)

κ2
1 − κ2

2
(κ1 p̂1 + iκ2n̂1)− ( p̂2 + in̂2)

)
e4 . (53)
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p =

√
p2

2

κ2
1 − κ2

2

(
(2κ2

1〈 p̂1 | p̂2〉 − 2κ1κ2〈n̂1 | n̂2〉) p̂1 − (κ2
1 − κ2

2) p̂2

)
, (54)

n =

√
p2

2

κ2
1 − κ2

2
e4

(
(2κ1κ2〈 p̂1 | p̂2〉 − 2κ2

2〈n̂1 | n̂2〉)n̂1 − (κ2
1 − κ2

2)n̂2

)
. (55)

Now we can easily compute p2, n2 and then p̂, n̂. Let us denote

cos ϕ := 〈 p̂1 | p̂2〉 , cos ψ := 〈n̂1 | n̂2〉 . (56)

Then

p2 = n2 =
p2

2M2

(κ2
1 − κ2

2)
2

(57)

where M2 is computed in the straightforward way (taking into account 〈 p̂j | n̂k〉 = 0):

M2 := 4κ2
1κ2

2(cos2 ϕ + cos2 ψ)− 4κ1κ2(κ
2
1 + κ2

2) cos ϕ cos ψ + (κ2
1 − κ2

2)
2 . (58)

Therefore

p̂ =
κ2

1 − κ2
2

M
√

p2
2

p , n̂ =
κ2

1 − κ2
2

M
√

p2
2

n , (59)

Mp̂ = 2(κ1 cos ϕ− κ2 cos ψ)κ1 p̂1 − (κ2
1 − κ2

2) p̂2 ,

Mn̂ = 2(κ1 cos ϕ− κ2 cos ψ)κ2n̂1 − (κ2
1 − κ2

2)n̂2 .
(60)

Thus

D[1]2(λ) =
2κ2e4(κ1 cos ϕ− κ2 cos ψ)(λn̂1 + κ1 p̂1)

M
−

e4(κ
2
1 − κ2

2)(λn̂2 + κ2 p̂2)

M
, (61)

i.e.,

D[1]2(λ) =
2κ2(κ1 cos ϕ− κ2 cos ψ)

M
D[0]1 −

(κ2
1 − κ2

2)

M
D[0]2 . (62)

Now, we can compute D[2] = D[1]2D[0]1:

D[2](λ) =

(
2κ2(κ1 cos ϕ− κ2 cos ψ)

M
D[0]1 −

(κ2
1 − κ2

2)

M
D[0]2

)
D[0]1 . (63)

Using a general property of the Clifford product of vectors

vw = 〈v | w〉+ v ∧ w (64)

(where the wedge denotes the skew product) we get (43).

Corollary 1. The symmetric form of two-fold Darboux transformation can be considered as yet
another proof of Bianchi’s permutability theorem [5].

7. Seed Solutions

In order to produce exact solution by iterating the Darboux transformation we need
some starting point: a seed solution. Below we give two simple examples.
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7.1. The Trivial Background (Plane)

The data ϑ = 0, k1 = k2 = 0 correspond to the trivial background, i.e., to the plane.
The linear system (3) assumes the form

Ψ,u =
1
2

λe1e5Ψ , Ψ,v =
1
2

λe2e4 . (65)

Hence
Ψ = e

1
2 λue1e5 e

1
2 λve2e4 (66)

Finally
2Ψ−1Ψ,λ |λ=0 = ue1e5 + ve2e4 , (67)

Performing the projection (13) we get

r = P(Ψ−1Ψ,λ |λ=0) = ue1 + ve2 , (68)

7.2. Cylinder

One can easily see that ϑ = 0, k2 = 0, k1 ≡ k = const satisfy the system (2). The linear
system (3) assumes the form

Ψ,u = 1
2 λe1e5Ψ ,

Ψ,v = 1
2 e2(λe4 − ke3) .

e1e5 commutes with λe2e4 − ke2e3 and they do not depend on u, v. Therefore Ψ can
be easily computed

Ψ = e
1
2 λue1e5 e

1
2 v(λe2e4−ke2e3) (69)

Then
(λe2e4 − ke2e3)

2 = −(λ2 + k2)

Therefore

Ψ =

(
cosh

λu
2

+ e1e5 sinh
λu
2

)(
cos

v
√

λ2 + k2

2
+

e2(e4λ− e3k)√
λ2 + k2

sin
v
√

λ2 + k2

2

)

Ψ−1(0) = cos
kv
2

+ e2e3 sin
kv
2

Ψ,λ (0) =
1
2

ue1e5

(
cos

kv
2
− e2e3 sin

kv
2

)
+

1
k

e2e4 sin
kv
2

Then

2Ψ−1Ψ,λ |λ=0 = ue1e5 +
2
k

sin
kv
2

cos
kv
2

e2e4 −
2
k

e3e4 sin2 kv
2

Finally, using the projection (13), we get the cylinder immersed in R3

r = ue1 −
1
k

e3 +
1
k
(e3 cos kv + e2 sin kv) (70)

8. Conclusions

We constructed an iterated Darboux transformation for isothermic surfaces using
the Clifford algebra approach. Our main result is a symmetric representation of two-fold
Darboux transformation (Theorem 4). Thus we made some progress in the direction of
constructing symmetric compact formulas for “multi-soliton” isothermic surfaces, what
reduces to transforming Ψ[K] (given by (38)) into a form that is explicitly invariant with
respect to permutations of real eigenvalues κ1, . . . , κK. Another open problem, more chal-
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lenging, is to find analogous formulas in a direct way and with more general set of complex
eigenvalues. We also expect to extend our approach on related multidimensional problems
(see, e.g., [32]).
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