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Abstract: Robust pole-placement based on convex DR-regions belongs to the efficient control design
techniques for real systems, providing computationally tractable pole-placement design algorithms.
The problem arises in the discrete-time domain when the relative damping is prescribed since the
corresponding discrete-time domain is non-convex, having a “cardioid” shape. In this paper, we
further develop our recent results on the inner convex approximations of the cardioid, present
systematical analysis of its design parameters and their influence on the corresponding closed loop
performance (measured by standard integral of absolute error (IAE) and Total Variance criteria).
The application of a robust controller designed with the proposed convex approximation of the
discrete-time pole region is illustrated and evaluated on a real laboratory magnetic levitation plant.

Keywords: robust control; discrete-time system; pole placement; magnetic levitation; performance
indicators; linear matrix inequalities; pole regions

1. Introduction

Robust control belongs to widely used control strategies implemented in real applica-
tions, since the real world plants always include uncertainties due to modeling errors, non-
linearities and other influences. Real plants are mostly nonlinear; however, to simplify the
analysis and control, often the linearized model is used together with robust, adaptive or
other control design techniques appropriate for uncertain linear systems; an excellent
survey of various robust control approaches can be found in [1]. The important type of
uncertain system model is a polytopic one, which can be advantageously used to formulate
the robust control problem in the computationally tractable Linear Matrix Inequality (LMI)
form [2]; related recent results based on the so-called S-variable approach are presented
in [3]. Besides stability for all uncertain parameter values, a closed loop performance
is an important factor in successful robust control design. Various approaches exist to
consider performance both in state space and frequency domains; pole-placement belongs
to efficient techniques for achieving the prescribed closed-loop dynamics, [4–8] and others.

In real plant control design, it is often desirable to place the closed-loop poles into
the prescribed region of the complex plane instead of prescribing their exact position,
for example, to achieve the determined stability degree or relative damping. The pole
region approach is also appropriate for robust control of uncertain systems, where the
exact pole placement is impossible. Significant results have been obtained in this field
during the past two decades when the so-called LMI, or more generally, the DR region
approaches have been established and used for robust control design in state space [3,4,9].
When used in robust control, DR regions are formulated as convex domains in the complex
plane, symmetric about the real axis, corresponding to the specific subset of the stable
domain defined to achieve the determined performance (closed-loop dynamics). The LMI
formulation of generalized DR stability condition enables efficient computation of the
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corresponding feedback controller gains [2–4,10]. There is a tight connection between
closed-loop poles and other performance indices, such as settling time and stability mar-
gin [5–7]. A major part of the published results on LMI based pole-placement; however,
considers the continuous-time case, where standard pole regions for prescribed stability de-
gree and relative damping are convex and can be directly applied to the developed robust
state feedback control design schemes, [3,7,8,11]. For the discrete-time systems, however,
the pole region for the prescribed relative damping is no longer convex, which causes
a specific problem and can be sensed as a kind of asymmetry with the continuous-time
counterpart. To simplify the controller design, some variants of a convex approximation
of the non-convex cardioid pole-region have been presented [12–16]. In [12], an inner
circle is proposed, which in [15] is enlarged to an inner ellipse. These approximations are
relatively simple, however, they do not include the neighborhood of point [1, 0], which can
cause problems in some real system applications, as will be demonstrated in this paper.
Other inner approximations of the non-convex discrete-time pole region are developed
in [13,16]. In [13], a cross-section of two cones is proposed, and in our recent paper [16],
several inner approximation possibilities are presented together with the corresponding
matrices defining the respective DR region. In this paper, the above results on discrete-time
DR pole-regions are further developed and thoroughly studied on the laboratory magnetic
levitation plant.

Magnetic levitation belongs to challenging plants to control, due to its nonlinear-
ity, instability and fast dynamics, with broad application area. Many authors devoted
their research to modeling and control of a magnetic levitation system, [17–24]. In [17,21],
a linearized model of magnetic levitation is derived based on first principles, the for-
mer uses Jacobian linearization, while the latter applies a general linearization technique.
Various continuous-time control schemes for magnetic levitation can be found, for exam-
ple, feedback linearization approach in [18], CDM based design in [19], adaptive state
feedback [20]; in all these papers, the results were verified by simulation. To the au-
thors’ best knowledge, there are no papers on discrete-time pole-placement for magnetic
levitation, besides our recent results [16,23,24]. In [23,24], we designed a discrete-time
pole-placement controller for prescribed relative damping using inner approximation of
the non-convex pole domain by an ellipse in the former and by angle-ellipse domain in the
latter case. In [16], the computations of the matrices defining the DR regions appropriate
for discrete-time pole-placement are presented.

In this paper we further extend our previous results. A comprehensive study of
discrete-time robust controller design for magnetic levitation laboratory plant is presented.
The main contribution is a thorough systematic analysis of design parameters, their in-
fluence on achieved closed-loop pole position and closed-loop performance measured
by standard performance criteria: integral of absolute error (IAE) and Total Variances for
input and output variables. In addition, the relationship between pole-placement design
parameters and the above performance criteria is studied. The proposed discrete-time pole-
placement approach is systematically evaluated for changing design parameters on a real
laboratory plant. Comparison of the received results with standard robust controller design
using a D-partition method is provided as well. The results obtained from the real plant
show the efficiency of the presented discrete-time pole-placement robust controller design.

2. Preliminaries and Problem Formulation

As a model of a controlled system, we will consider an uncertain dynamic system
described in state space by its linearized discrete-time model

x(k + 1) = A(ξ)x(k) + B(ξ)u(k), (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, ξ ∈ RN denotes the
vector of uncertainty parameters corresponding to polytopic uncertainties. Polytopic
uncertainties of state model matrices are described as
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(A(ξ), B(ξ)) ∈ {
N

∑
i=1

(Ai, Bi)ξi,
N

∑
i=1

ξi = 1, ξi ≥ 0} (2)

where Ai, Bi are constant matrices of corresponding dimensions. We assume that all state
variables are at disposal for a state feedback control

u(k) = Kx(k). (3)

The resulting closed-loop system is then given by

x(k + 1) = (A(ξ) + B(ξ)K)x(k) = ACL(ξ)x(k). (4)

The aim of a controller design is to modify the dynamics of the controlled uncertain
system (1), (2) so that the corresponding closed-loop system (CLS) (4) is stable and meets
the prescribed performance requirements.

Various performance specifications can be used to determine appropriate CLS (4)
behavior. The CLS dynamics is basically determined by the CLS poles. Basic performance
measures, such as overshoot, settling time, relative damping, decay rate, strongly depends
on CLS poles. When an uncertain system is considered, the system model belongs to the
whole set of system models and the poles cannot be placed into certain points for the whole
uncertainty domain, therefore in this case the required pole region is defined where the
CLS poles should lie. The convex region approaches for pole placement using LMI or
DR ones, have been developed in past decades to simplify the computation load, [4,9].
The basic definition of a general DR region is in the next subsection.

2.1. DR Regions

A DR region of the complex plain is defined, [9], as

DR = {z ∈ C : R11 + R12z + RT
12z∗ + R22zz∗ < 0}. (5)

With the assumption that R22 is positive definite (semidefinite), the DR region is
convex and can be equivalently described by LMI. Matrix ACL(.) is said to be DR stable if
and only if all its eigenvalues lie in the DR region defined by (5).

Lemma 1 ([9]). Closed-loop matrix ACL(ξ) ∈ Rn×n is DR stable if and only if there exists a
positive definite matrix P(ξ) ∈ Rn×n such that

R11 ⊗ P(ξ) + R12 ⊗ (P(ξ)ACL(ξ)) + RT
12 ⊗ (ACL(ξ)

T P(ξ)) + R22 ⊗ (AT
CL(ξ)P(ξ)ACL(ξ)) < 0. (6)

Remark 1. It should be noted that (6) can be for an uncertain polytopic system (1), (2) with a
state feedback control (3) reformulated as a linear matrix inequality and then solved by some LMI
solver, [2–4,9] and others. Since solving LMIs is a numerically tractable problem, using DR regions
provide a computationally attractive approach for robust control design.

Standard domains for stable poles and matrices Rij defining the corresponding DR
regions (5) can be listed as:

• Open left-half plane of the complex plane, R11 = 0, R12 = 1, R22 = 0 (continuous-time
systems),

• Interior of the unit circle, R11 = −1, R12 = 0, R22 = 1 (discrete-time systems),
• Shifted left-half plane of the complex plane corresponding to stability degree λ,

R11 = 2λ, R12 = 1, R22 = 0 (continuous-time systems),
• Interior of the circle centered in [0,0] with radius r = 1/sqrt(α) corresponding to

stability degree sqrt(α), R11 = −1/α, R12 = 0, R22 = 1 (discrete-time systems),
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• Interior of the convex cone with vertex angle 2ϕ, corresponding to the relative damping
(given by a ratio of the imaginary and real part of the complex pole in continuous-time
systems)

R11 = R22 =

[
0 0
0 0

]
, R12 =

[
sin(ϕ) cos(ϕ)
−cos(ϕ) sin(ϕ)

]
.

Below, for better readability, we use for angle ϕ denotation angle.
Though the relative damping belongs to basic closed-loop (CL) performance require-

ments, in this case, the corresponding discrete-time region is no longer convex, and has
a cardioid shape as depicted in Figure 1. Recently, we developed a new convex inner
approximation of the non-convex cardioid domain [16]. This approximation is referred to
as angle-ellipse (AE) and is defined as an intersection of the cone end ellipse, see the right
hand part of Figure 1. The cone is defined by its vertex [1, 0] and the intersection point
with cardioid [xe, ye]; the ellipse is centered in the middle of the cardioid x-axis, with the
y-semi-axis derived so that the ellipse intersects the cardioid in [xe, ye]. The corresponding
DR region matrices for AE inner approximation are

R11 =

[
R11e Z

Z R11v

]
, R12 =

[
R12e Z

Z R12v

]
, R22 =

[
R22e Z

Z R11v

]
. (7)

where Z is 2 × 2 zero matrix; matrices R11e, R12e, R22e correspond to the ellipse cen-
tred in xse with semiaxes ak, bk given as xse = (1 + x0)/2, ak = (1− x0)/2, bk = ye ∗
ak/sqrt(ax2 − (xe− xse)2)

R11e =
[
−1 −xse/ak

−xse/ak −1

]
, R12e =

[
0 (1/ak− 1/bk)/2

(1/ak + 1/bk)/2 0

]
, R22e =

[
0 0
0 0

]
; (8)

matrices R11v, R12v, R22v correspond to the cone (shifted angle) given as γ = atan(ye/(1− xe))

R11v =

[
−2 ∗ xv ∗ sin(γ) 0

0 −2 ∗ xv ∗ sin(γ)

]
, R12v =

[
sin(γ) cos(γ)
−cos(γ) sin(γ)

]
, R22v =

[
0 0
0 0

]
. (9)
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Discrete domain: angle and ellipse 

 x
e

  y
e

  x
v

  x
0

  

Figure 1. Continuous-time domain for the relative damping given by angle ϕ (left hand) and its discrete-time counterpart
(right hand) approximated by the intersection of the angle and ellipse for angle = 65◦ and xe = 0.6 with extreme points of
a logarithmic spiral with negative real axis x0 and with the vertex in [1, 0] and the crossing point [xe, ye]—intersection of
angle and ellipse on a cardioid.
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All the detailed developments of the above approximation we provided in [16], the cor-
responding software package to calculate DR region matrices in the Matlab environment is
available in [25].

As noted in Remark 1, once the DR region and the corresponding matrices R11, R12, R22
are defined, the robust controller for an uncertain polytopic system can be computed by
solving the corresponding LMIs. In Section 4, we use LMI formulation from our previous
work [15,16] and a Sedumi solver.

2.2. Performance Evaluation

To assess closed loop step responses, the appropriate performance measures are
inevitable to quantify the CL system qualities. An important place among standard,
frequently used performance measures belongs to Integrated Absolute Error (IAE), [26].

IAE =
∫ ∞

0
|e(t)|dt ; e = w− y. (10)

The shapes of transient responses can be quantified concerning deviations from
their ideal shapes—a piece-wise monotonicity—in terms of a modified total variation TV
(see e.g., [27]). TV performance measures can be applied to evaluate both the input (control)
and output variables. Total Variance (TV) can be defined as

TV0(y) =
∫ ∞

0

(∣∣∣∣dy
dt

∣∣∣∣− sign(y∞ − y0)
dy
dt

)
dt ≈

≈ ∑i|yi+1 − yi| − |y∞ − y0|.
(11)

Consider now the setpoint step response, and two monotonic intervals as a corre-
sponding ideal input (control) variable shape, with um /∈ (u0, u∞) representing an extreme
control value, which separates two nearly monotonic input intervals [u0, um] and [um, u∞).
Then the control variable performance can be evaluated by a deviation of real control input
from two monotonic intervals and quantified by

TV1(u) = ∑
i
|ui+1 − ui| − |2um − u∞ − u0|. (12)

In Section 4, IAE together with TV performance indices TV0, TV1 are used to evaluate
and compare several designed robust pole-placement controllers. These performance
measures will also serve to analyze the control design parameter influences on the closed-
loop performance.

3. Magnetic Levitation Plant

The magnetic levitation laboratory plant (ML), Figure 2, serves as a challenging
physical model, which is unstable and has rather fast dynamics [28]. The control aim is to
position the levitating ferromagnetic ball within the air-space between two electromagnets.
In this paper, we consider the upper electromagnet as an actuator, which compensates the
ball (sphere) gravity and determines the ball vertical position.

The nonlinear mathematical model of the laboratory ML can be formulated in state
space using three state variables: x1(t)—position of the ball, x2(t)—velocity of the ball,
x3(t)—current in the upper electromagnet coil. ML input u(t) is the voltage on the upper
coil, output is the position of the ball x1(t) measured from the upper coil.

The corresponding nonlinear model below can be derived using a Lagrange function,
see [21]; we omit argument t to improve readability.

dx1

dt
= x2

dx2

dt
= − Fem1

2m
+ g
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dx3

dt
=

1
fi(x1)

(kiu + ci − x3) (13)

where
Fem1 = x2

3
FemP1

FemP2
exp(− x1

FemP2
), fi(x1) =

fiP1

fiP2
exp(− x1

fiP2
),

values for FemP1, FemP2, fiP1, fiP2, ki, ci are inherent plant parameters, m is a ball mass, g is
acceleration of gravity. All ML parameters are summarized in Table 1.

Figure 2. Magnetic Levitation Plant from INTECO, [28] with two electromagnets (coils) and a
levitating sphere ball in the air-space between them.

Table 1. Magnetic levitation (ML) laboratory plant parameters used in the nonlinear state model.

Parameters Values Units

m 0.023 kg
g 9.81 m/s2

FemP1 0.017521 H
FemP2 0.0058231 m
fiP1 1.4142 × 10−4 ms
fiP2 4.5626 × 10−3 m
ci −0.4 A
ki 4.4 A
iMIN 0.03884 A
uMIN 0.00498 MU

The ML plant has a discrete-time embedded controller, therefore the robust pole-
placement controller is designed from the discretized plant model. The nonlinear continuous-
time model (13) can be linearized around the determined working points and then dis-
cretized with appropriate sampling period Ts = 0.001 s. The resulting discretized model is
described by (1), where matrices A(ξ), B(ξ) have the following form

A(ξ) =

1.0008 0.001 0
1.6851 1.0008 a2di

0 0 a3di

, B(ξ) =

 0
b2di
b3di

 (14)

Elements a2di, a3di, b2di, b3di vary with position of the ball, in Table 2. In the next Section,
the following three working points, denoted as WP1, WP2, WP3, and the corresponding
discrete-time linearized models are considered for robust pole-placement controller design
as the polytope vertices in system model (1) and (2).
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Table 2. Parameters of discrete-time model matrices (14) for three working points.

WP x10 x30 a2d1 a3d1 b2d1 b3d1

WP1 0.008 0.7697 −0.0233 0.8300 −0.0098 0.7479
WP2 0.010 0.9139 −0.0187 0.7492 −0.0124 1.1036
WP3 0.012 1.0852 −0.0146 0.6391 −0.0154 1.5878

4. Robust Controller Design for Magnetic Levitation

In this section we further develop our recent results on discrete-time robust pole-
placement controller design, evaluate the design parameters of the proposed approach and
compare the results with several other robust controllers. We also analyze the relationship
between closed-loop pole position and closed-loop performance measured by IAE and TV
defined in Section 2.2.

The robust pole-placement controller is designed for the magnetic levitation described
in Section 3, considering linearized uncertain models (1) and (2) for the polytopic domain
defined by three working points, as shown in Table 2. The results for the prescribed
damping and stability degree based on the inner convex AE approximation of the non-
convex domain introduced in Section 2.1 are presented and compared with other results
from the literature. The main results can be summarized as follows.

• The influence of AE domain design parameters: angle, xe, and r (defining the stability
degree), is systematically analyzed and evaluated on a real laboratory magnetic lev-
itation plant. For each parameter, we design several controllers, measure their step
responses for three working points (Table 2) and assess their closed-loop performance
using performance measures IAE, TV0 a TV1 (described in Section 2.2), the corre-
sponding analysis of design parameters influence on CL performance is presented.
Based on the above performance measures, the best controller is chosen.

• Superior controllers received for the AE region are then compared with robust con-
trollers received by alternative approaches: simple robust stability controller placing
the poles into a unit circle (UC), [29]; ellipse approximation for the prescribed damping
angle = 87◦, [23] and with robust continuous-time controllers based on the D-partition
approach, [22]; three representative controllers with the smallest overshoot were cho-
sen from the latter approach.

• The last subsection is devoted to analysis of the closed-loop pole position. The pre-
scribed poles are confronted with the obtained closed-loop poles for linearized sys-
tem; to enable comparison with the continuous-time controller (based on D-partition
method), the continuous-time closed-loop poles are recalculated to the corresponding
discrete-time ones.

It should be noted that the Magnetic Levitation Plant is a challenging unstable system
with fast dynamics. Its dynamics inherently include fast parts corresponding to electrical
processes and relatively slower parts corresponding to the ball movement. It is important
to consider these characteristics and great care must be taken in determining a realistic
required closed-loop pole region. The neighborhood of the stability border, in the discrete-
time domain namely vicinity of point [1, 0], must be included otherwise the control variable
can trespass feasible intervals; more details are in Section 4.2.1.

4.1. Discrete-Time Robust Pole-Placement State Feedback Controller Design Based on
LMI Solution

Robust pole-placement controller for the uncertain polytopic systems (1) and (2) and
the DR region defined by (5) can be directly computed from the LMI corresponding to the
respective DR stability condition (6); see for example, [23]. A corresponding state feedback
matrix defining the control law (3) is obtained by a solution to the following LMI[

M11i M12i
MT

12i M22i

]
< 0 i = 1, . . . , N (15)
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where

M11i = R11 ⊗ Pi + R12 ⊗ (Ai H + BiS) + RT
12 ⊗ (Ai H + BiS)T

M22i = R22 ⊗ (Pi − H − HT)

M12i = RT
12 ⊗ (Pi − HT) + R22 ⊗ (Ai H + BiS),

(16)

Pi ∈ Rnxn are positive definite matrices and H ∈ Rnxn, S ∈ Rmxn are any matrices. If R22 is
zero matrix, to keep the positive definiteness of matrix M22i we consider R22 = εI, where
is a small positive number. The resulting state feedback controller matrix is then

K = SH−1. (17)

The above state feedback controller design scheme can be directly used also for a
PI controller design, the state space plant model is then augmented by the PI controller
dynamics. The augmented system is then in the form:

Aiaug =

[
Ai 0
C I

]
, Biaug =

[
Bi
0

]
, i = 1, . . . , N (18)

where matrix C corresponds to the outputs that should be integrated. The resulting state
feedback gain matrix K is then structured as follows

K =
[
Kp KI

]
, (19)

matrices Kp and KI corresponds to proportional and integral gain of the PI controller.
More details can be found in [23].

The main aim of the integration part is to eliminate steady state control error. In mag-
netic levitation, the ball position should follow the reference value, therefore the state x1
enters the integration term and C = [1 0 0].

4.2. Discrete-Time Robust Pole-Placement Controller Design Using AE Approximation

In this section we design the state feedback robust controller by solving LMI (15)
and (17) for the AE region defined by matrices (7)–(9), adding the stability degree require-
ment. We systematically changed the AE design parameters:

• angle defining the relative damping, see the left hand side of Figure 1,
• Intersection of angle and ellipse xe, see the right hand side of Figure 1,
• Radius r defining the prescribed stability degree.

The evaluation of the corresponding closed-loop performance of the real plant for changing
design parameters is presented and the respective step responses are compared.

4.2.1. Design Results for Damping Angle Parameter Changes

The first studied parameter was angle, defining the relative damping. Parameters xe
and r were chosen considering the closed-loop pole position from our recent results on
robust controller design for magnetic levitation: D-partition based design (continuous-time
case) [22] and initial controller from ML system documentation [28]. The closed-loop
poles for existing controllers implemented also for a real plant are in the neighborhood
of stability border—point [1, 0]. Their maximum modulus is about 0.9985, γ is above 70◦,
see Figure 3, however, the closed-loop performance is too oscillating, which is caused
by insufficient damping. Our design aim was to improve performance by improving
the stability degree and damping to reduce the oscillations. Since the realizable control
variable has limited value and the experiments provided sensitivity of the original plant to
performance demands that were too strong, we shifted the stability degree and damping
only slightly.

Based on this experience, values xe = 0.83 and r = 0.99 were chosen. In Figures 4 and 5,
comparison of real plant step responses is shown for different angles for three consid-
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ered working points. The closed-loop performance was evaluated for all three WPs, and
the results are summarized in Table 3. We also included the mean values and standard
deviations of performance measures for all three WP for each parameter configuration,
denoted by mean(WP) and stdev(WP), respectively. The best (lowest) values of individual
performance measures are marked in green, the best values of mean(WP) are marked in
yellow. Standard deviations indicate that the differences between mean values for different
angles are statistically significant. Based on the obtained results—step responses and
performance measures, the best controllers were chosen for angle = 60◦ and angle = 70◦.
Performance criterion TV for output variable clearly indicates that higher damping (lower
angle) evidently improves output variable step response monotonicity (the damping is
physically limited, therefore the best value of yTV0 was received for angle = 60◦).

Table 3. Evaluated performance measures for changed parameter angle, where: yIAE stands for IAE
value (10) of system output for the setpoint step; uTV1 represents the deviation of the control signal
from ideal shape (12) for the setpoint step; yTV0 represents the deviation of the system output (11)
from the ideal monotonic transient of system output for the setpoint step.

AE Angle-Legend, xe = 0.83, r = 0.99 WP yIAE uTV1 yTV0

angle = 50°

1 0.2183 0.4413 1.4318
2 0.2130 0.2937 1.3766
3 0.2161 0.3528 1.4955
mean(WP) 0.2158 0.3626 1.4346
stdev(WP) 0.0027 0.0743 0.0595

angle = 60°

1 0.2171 0.4512 1.3684
2 0.2205 0.3479 1.4046
3 0.2084 0.3942 1.3992
mean(WP) 0.2153 0.3978 1.3907
stdev(WP) 0.0063 0.0517 0.0195

angle = 70°

1 0.2090 0.3321 1.4828
2 0.2048 0.2607 1.3848
3 0.2070 0.2798 1.6814
mean(WP) 0.2069 0.2909 1.5164
stdev(WP) 0.0021 0.0370 0.1511

angle = 80°

1 0.2069 0.2842 1.4586
2 0.2048 0.2206 1.5102
3 0.2192 0.5039 2.3119
mean(WP) 0.2103 0.3363 1.7602
stdev(WP) 0.0077 0.1487 0.4785

angle = 87°

1 0.2063 0.2839 1.4710
2 0.2075 0.2365 1.5319
3 0.2102 0.2742 1.8276
mean(WP) 0.2080 0.2649 1.6102
stdev(WP) 0.0020 0.0250 0.1907
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Figure 3. Closed loop discrete poles position recalculated with sampling period Ts = 0.001 s for all
working points for controllers designed by D-partition with various phase margin (PM) and GM
and with unit circle (UC) and angle-ellipse (AE) regions where angle = 70◦, xe = 0.83 and r = 0.99.
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Figure 4. Step responses of real plant with the proposed pole-placement controller (AE) in WP1—(left hand) and
WP2—(right hand) where angle is in the legend, xe = 0.83 and r = 0.99.
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Figure 5. Step responses of real plant with the proposed pole-placement controller (AE) in WP3,
where angle is in the legend, xe = 0.83 and r = 0.99.

4.2.2. Design Results for Intersection xe Parameter Changes

This subsection studies the influence of changing parameter xe for the fixed values of
other design parameters: angle = 60◦ and r = 0.99.
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Figures 6 and 7 show step responses of the real plant for the considered three working
points. Analogically to the previous subsection, the closed-loop performance was evalu-
ated for all three WPs, and the results are summarized in Table 4. We also included the
mean values and standard deviations of performance measures for all three WP for each
parameter configuration, denoted by mean(WP) and stdev(WP), respectively. The best
(lowest) values of individual performance measures are marked in green, the best values
of mean(WP) are marked in yellow. Based on the obtained results—step responses and
performance measures for 3 WP, the best controllers were chosen for xe = 0.83 and xe = 0.7.
Note that the relatively small standard deviations indicate that there are statistically signif-
icant differences between mean values for the considered xe. The corresponding real plant
responses in Figures 6 and 7 confirm superiority of the chosen controller.

Table 4. Evaluated performance measures for changed parameter xe, where: yIAE stands for IAE
value (10) of system output for the setpoint step; uTV1 represents the deviation of the control signal
from ideal shape (12) for the setpoint step; yTV0 represents the deviation of the system output (11)
from the ideal monotonic transient of system output for the setpoint step.

AE Angle = 60°, xe-Legend, r = 0.99 WP yIAE uTV1 yTV0

xe = 0.5

1 0.2171 0.4512 1.3684
2 0.2205 0.3479 1.4046
3 0.2084 0.3942 1.3992
mean(WP) 0.2153 0.3978 1.3907
stdev(WP) 0.0063 0.0517 0.0195

xe = 0.6

1 0.2172 0.4154 1.3803
2 0.2066 0.3369 1.3082
3 0.2026 0.3795 1.3976
mean(WP) 0.2088 0.3773 1.3620
stdev(WP) 0.0075 0.0393 0.0474

xe = 0.7

1 0.2119 0.3719 1.3759
2 0.2090 0.2802 1.3482
3 0.2013 0.3230 1.4352
mean(WP) 0.2074 0.3250 1.3864
stdev(WP) 0.0055 0.0459 0.0444

xe = 0.8

1 0.2114 0.3137 1.4014
2 0.2292 0.2743 1.5324
3 0.2221 0.2924 1.6088
mean(WP) 0.2209 0.2935 1.5142
stdev(WP) 0.0090 0.0197 0.1049

xe = 0.83

1 0.2139 0.3092 1.4245
2 0.2073 0.2491 1.3739
3 0.2169 0.3049 1.6605
mean(WP) 0.2127 0.2877 1.4863
stdev(WP) 0.0049 0.0335 0.1530

xe = 0.9

1 0.2124 0.2964 1.4170
2 0.2108 0.2485 1.4673
3 0.2099 0.2781 1.7917
mean(WP) 0.2110 0.2743 1.5587
stdev(WP) 0.0013 0.0242 0.2034
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Figure 6. Step responses of real plant with the proposed pole-placement controller (AE) in WP1—(left hand) and
WP2—(right hand) where angle = 60◦, xe is in the legend and r = 0.99.
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Figure 7. Step responses of real plant with the proposed pole-placement controller (AE) in WP3,
where angle = 60◦, xe is in the legend and r = 0.99.

4.2.3. Design Results for Changing Stability Degree Radius r

This subsection studies possibilities and influences of changing parameter r for the
fixed values of other design parameters: angle = 60◦ and xe = 0.83.

Figures 8 and 9 show step responses of real plants for the considered three working
points for varying r. Analogically to the previous subsection, the closed-loop performance
was evaluated for all three WPs, the results are summarized in Table 5, and the mean values
and standard deviations of performance measures for all three WP for each parameter con-
figuration are denoted by mean(WP) and stdev(WP), respectively. The best (lowest) values
of individual performance measures are marked in green, the best values of mean(WP)
are marked in yellow. Based on the obtained results—step responses and performance
measures for 3 WP, the best controllers were chosen for r = 0.99. Note that the relatively
small standard deviations indicate that there are statistically significant differences between
mean values for the considered r. The results show that the ML system is very sensitive
to the stability degree. Slightly decreased r leads to oscillations since the physical limit
of the plant (control variable) is hit. This quality indicates that to improve performance,
it is important to engage other design parameters. AE approximation provides relative
damping defined by angle and also the intersection xe limiting the imaginary parts of the
CL poles in the neighborhood of point [1, 0].
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Figure 8. Step responses of real plant with the proposed pole-placement controller (AE) in WP1—(left hand) and
WP2—(right hand) where angle = 60◦, xe = 0.83 and r is in the legend.
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Figure 9. Step responses of real plant with the proposed pole-placement controller (AE) in WP3,
where angle = 60◦, xe = 0.83 and r is in the legend.

Table 5. Evaluated performance measures for changed parameter r, where: yIAE stands for IAE
value (10) of system output for the setpoint step; uTV1 represents the deviation of the control signal
from ideal shape (12) for the setpoint step; yTV0 represents the deviation of the system output (11)
from the ideal monotonic transient of system output for the setpoint step.

AE Angle = 60°, xe = 0.83, r-Legend WP yIAE uTV1 yTV0

r = 1

1 0.3115 0.2214 1.5068
2 0.3141 0.1801 1.6399
3 0.3371 0.2035 2.2280
mean(WP) 0.3209 0.2017 1.7916
stdev(WP) 0.0141 0.0207 0.3838

r = 0.99

1 0.2139 0.3092 1.4245
2 0.2073 0.2491 1.3739
3 0.2169 0.3049 1.6605
mean(WP) 0.2127 0.2877 1.4863
stdev(WP) 0.0049 0.0335 0.1530

r = 0.98

1 0.1818 0.4030 1.5000
2 0.1815 0.3205 1.6506
3 0.2090 0.4176 3.0320
mean(WP) 0.1907 0.3803 2.0608
stdev(WP) 0.0158 0.0523 0.8444
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4.3. Comparison of Robust Controllers: AE with Other Convex Approximations and
Continuous-Time Controllers

In this section, we compare the best robust discrete-time pole-placement controllers
designed in the previous subsection using the AE region, with robust controllers designed
for magnetic levitation by other approaches

• Stabilizing controllers (closed-loop poles in unit circle), [29]
• Pole-placement controllers for the prescribed relative damping, based on ellipse inner

approximation of the non-convex cardioid domain, [23]
• Continuous-time robust controllers based on D-partition, [22].

Parameters of all considered discrete- and continuous-time controllers are listed in
Tables 6 and 7.

Table 6. Discrete state feedback PI controller parameters for the considered DR regions.

Discrete Controller Kp KI

UC 106.7382 2.4693 −0.6172 0.3527
Ellipse: angle = 87° 952.3722 9.7547 −0.6533 26.8816
AE: angle = 70°, xe = 0.83, r = 0.99 91.5534 1.9303 −0.2448 0.5237
AE: angle = 60°, xe = 0.7, r = 0.99 110.4822 2.3323 −0.3093 0.6308
AE: angle = 60°, xe = 0.83, r = 0.99 96.5089 2.0400 −0.2677 0.5406

Table 7. Continuous PID controller parameters designed by the D-partition method for various
desired gain margins (GM) and phase margins (PM).

Continuous Controller P I D

D-partition: PM = 45°, GM = 5 33.2660 61.0400 4.5320
D-partition: PM = -, GM = 5 33.3380 69.0000 4.0220
D-partition: PM = 40°, GM = - 58.1155 141.3250 5.8074

The corresponding real plant step responses in all three WP are shown in Figures 10–12
both for output and control variables. Overall performance evaluation is summarized in
Table 8. The performance evaluation is calculated for individual WP and the mean value
for all three WP (mean(WP)) is included in the fourth row for each designed controller.
The best performance for individual WP is marked in green, the best value of mean(WP) is
marked in yellow.

The obtained results illustrate the performance superiority of the proposed AE
based controllers.
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Figure 10. Step responses of real plant with the proposed robust controllers (left hand) and manipulated variables
(right hand) in WP1.
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Figure 11. Step responses of real plant with the proposed robust controllers (left hand) and manipulated variables
(right hand) in WP2.
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Figure 12. Step responses of real plant with the proposed robust controllers (left hand) and manipulated variables
(right hand) in WP3.

4.4. Closed-Loop Pole Analysis

This section analyzes and compares the closed-loop pole position for the controllers
presented in Section 4.3. In all cases, the closed-loop poles (CLP) are shown for all three
considered working points.

We start with the CLP for the continuous-time robust controller. In Figure 13, CLP
are depicted corresponding to controllers designed by the D-partition with various phase
and gain margins, [22]. We transformed the CLP for the continuous-time system into a
discrete-time domain for the above defined sampling time Ts = 0.001 s, these recalculated
discrete-time CLP are shown in Figure 14. The neighborhood of boundary point [1, 0] is
shown in detail, notice that there are poles rather close to stability boundary. Figure 15
displays CLP obtained for the discrete-time robust controllers, the pole regions considered
in design are depicted as well. Again, the neighborhood of [1, 0] is shown in detail. It can
be seen that the obtained CLP are inside the prescribed domains, therefore in Table 9 we
summarize the achieved stability degree and γreal—the angle of the discrete-time region
(see the right hand side picture in Figure 1). For comparison, in Table 10 we summarize the
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achieved stability degree and maximal ϕreal angle (see the left hand side picture in Figure 1),
for CLP corresponding to the continuous-time D-partition controllers. For comparison with
the discrete-time robust controllers, we also include the parameters for CLP recalculated
into the discrete-time domain.

Table 8. Evaluated performance measures for changed parameter r, where: yIAE stands for IAE
value (10) of system output for the setpoint step; uTV1 represents the deviation of the control signal
from ideal shape (12) for the setpoint step; yTV0 represents the deviation of the system output (11)
from the ideal monotonic transient of system output for the setpoint step.

Controller WP yIAE uTV1 yTV0

UC

1 0.3333 0.4767 2.6340
2 0.3922 0.3602 3.8896
3 11.9563 5.0270 166.3964
mean(WP) 4.2272 1.9546 57.6400

Ellipse: angle = 87°

1 0.1380 3.0493 2.0134
2 0.1343 1.6811 1.3212
3 0.1364 1.9510 1.6248
mean(WP) 0.1362 2.2271 1.6532

AE angle = 70°, xe = 0.83, r = 0.99

1 0.2090 0.3321 1.4828
2 0.2048 0.2607 1.3848
3 0.2070 0.2798 1.6814
mean(WP) 0.2069 0.2909 1.5164

AE angle = 60°, xe = 0.7, r = 0.99

1 0.2119 0.3719 1.3759
2 0.2090 0.2802 1.3482
3 0.2013 0.3230 1.4352
mean(WP) 0.2074 0.3250 1.3864

AE angle = 60°, xe = 0.83, r = 0.99

1 0.2139 0.3092 1.4245
2 0.2073 0.2491 1.3739
3 0.2169 0.3049 1.6605
mean(WP) 0.2127 0.2877 1.4863

D-partition: PM = 45°, GM = 5

1 0.4940 0.4158 3.3857
2 0.5453 0.3323 3.6695
3 0.6657 0.3684 4.7647
mean(WP) 0.5684 0.3722 3.9400

D-partition: PM = - , GM = 5

1 0.4349 0.3978 3.3848
2 0.4557 0.2932 3.5281
3 0.5505 0.3223 4.3085
mean(WP) 0.4804 0.3377 3.7405

D-partition: PM = 40°, GM = -

1 0.2251 0.6747 2.0834
2 0.2278 0.4505 1.9199
3 0.2450 0.4846 2.0367
mean(WP) 0.2326 0.5366 2.0133

The obtained results show the importance of including the relative damping into
consideration when the required CLP region is defined. Comparison of the received
CLP position and Tables evaluating the performance measures IAE and TV demonstrate
that poles with less relative damping deteriorate the closed-loop performance. On the
other hand, the studied magnetic levitation system shows that real plants can in principle
demand CLP location in the neighborhood of the stability border, in our case, point [1, 0].
In such case, the proposed AE region provides an efficient tool for the adequate robust
discrete-time controller design.
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Figure 13. Closed loop continuous poles position for all working points for controllers designed by
D-partition with various PM and GM.

Figure 14. Closed loop discrete poles position recalculated with sampling period Ts = 0.001 s for all
working points for controllers designed by D-partition with various PM and GM.

Figure 15. Prescribed pole regions and corresponding closed loop poles for tested variants: The over-
all regions (left) and the detail on pole location near the right-hand side border of DR regions (right).
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Table 9. The real stability degree of the closed-loop control with the individual discrete controllers
(rreal) and the real relative damping corresponding to a ration of the imaginary and real part of the
pole (γreal).

Discrete Controller rreal γreal [°]

UC 0.9950 68
Ellipse: angle = 87° 0.9403 39
AE: angle = 70°, xe = 0.83, r = 0.99 0.9864 41
AE: angle = 60°, xe = 0.7, r = 0.99 0.9873 34
AE: angle = 60°, xe = 0.83, r = 0.99 0.9869 39

Table 10. The real stability degree of the closed-loop control with the individual continuous controllers in the continuous
domain and in the recalculated discrete domain and the real relative damping corresponding to a ration of the imaginary
and real part of the pole in the continuous domain and in the recalculated discrete domain.

Continuous Controller Continuous Domain
ϕreal [°] Discrete Domain

γreal [°]Real Stability Degree Real Stability Degree

D-partition: PM = 45°, GM = 5 1.3388 73 0.9987 69
D-partition: PM = -, GM = 5 1.5169 71 0.9985 69
D-partition: PM = 40°, GM = - 3.2248 75 0.9968 66

The advantages of using the AE region for a robust pole-placement can be summa-
rized as

• Tunable parameters: angle corresponding to relative damping, intersection of inner
AE approximation and cardioid xe, stability degree represented by radius r—as shown
in Sections 4.2.1–4.2.3;

• AE region basically includes the neigbourhood of the stability border, namely critical
point [1, 0] and simultaneously provides the prescribed relative damping, which pre-
vents oscillations; this feature appears as rather advantageous in magnetic levitation
control as can be seen from the results presented in this section, where the corre-
sponding closed-loop performance is quantified by IAE and Total Variance measures;
as can be seen from Figures 14 and 15 some of the closed-loop poles for magnetic
levitation are inherently in the neighbourhood of stability border—point [1, 0]; since
the realizable control variable has a limited value, the stability degree and damping
can be shifted only slightly (not too far from stability border);

• The application on a real inherently nonlinear and unstable magnetic levitation plant
shows the great application potential of the proposed AE region for discrete-time
pole-placement controller design;

• The AE region is described by LMIs, which significantly simplifies the robust controller
design for systems described in state space by an uncertain linear polytopic system
and converts it to an LMI solution.

The results presented in this section favor the proposed AE approximation approach,
which provides significantly better real plant performance than the other considered design
methods and illustrate the efficiency of the AE based discrete-time robust pole-placement
controller design.

5. Conclusions

The main aim of this paper was to present and demonstrate the efficiency and applica-
tion potential of the discrete-time robust pole-placement state feedback design based on
the recently introduced AE convex pole region. The AE region guarantees the prescribed
relative damping and provides a relatively simple controller design technique with tuning
possibilities through the design parameters. A comprehensive study of the influence of
design tunable parameters—angle corresponding to relative damping; intersection of inner
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AE approximation and cardioid xe; stability degree represented by radius r—is presented
to illustrate possibilities of their tuning to improve the closed-loop performance. The major
advantages of the proposed approach are computational tractability due to LMI formula-
tion, and flexibility, since through tuning parameters, the real limits of the considered plant
can be taken into consideration. The latter issue is illustrated by the provided magnetic
levitation application, where the closed loop poles cannot be shifted far from the stability
border due to the plants physical limitations, still the performance can be apparently
improved by tuning AE parameters corresponding to relative damping. In this case, the ad-
vantage of AE is that it includes the neighbourhood of stability border point [1, 0]. This
feature enables to place the poles close to [1, 0], keeping the relative damping limit, which
reduces oscillations. It can be concluded that the AE region reduces the conservatism of the
previous inner convex approximations (circle, ellipse) for the discrete-time pole region with
a limited relative damping. The results obtained by AE outperform the other considered
controllers, as shown by closed-loop responses as well as IAE and TV performance criteria.

The application of this approach to a real magnetic levitation plant resulted in a high
quality performance and indicated the application potential of the presented approach to
real system control. The proposed AE region approach can also be used for applications,
even outside robust control, where the performance limits that are required can be described
by stability degree and relative damping, without the necessity to specify exact pole
positions. This can contribute to provide space to also consider other requirements such as
control or other variable limitations. Further applications of pole-placement using the AE
region for gain-scheduling and decentralized control are currently being researched.
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