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Abstract: This article investigates the spectral theory of the problem of the Regge-type with transmis-
sion conditions and discontinuous coefficients. We formulate a new linear operator, by which we can
deal with simplicity and boundedness of the eigenpairs of the problem. The aim of this work is to
conduct that the problem has an infinite number of simple positive eigenvalues.
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1. Introduction

A variety of scholars have studied the process of seeking eigen-pairs of the topic of
spectral problem. Naimark [1] examined the general linear differential operator of nth
order. He has derived an approximate formula for fundamental solutions, eigen-pairs to
the problem. Eventually, a second order differential operator was investigated by Kerimov
and Mamedov [2]. They have obtained valid approximate formulas for self-value and
self-function. The Regge problem arises in the development of quantum scattering when
the potential is present a finite support for interaction. The S-wave radial Schrödinger
equation in physics, which occurs after separation of variables in the three-dimensional
Schrödinger equation with radial symmetric potential, is just the Sturm–Liouville equation
on the semiaxis (for more details about Regge problem, see Reference [3]):

− y
′′
(x, λ) + q(x)y(x, λ) = λ2y(x, λ). (1)

At x = 0, the boundary condition is:

y(0, λ) = 0. (2)

Although the type of interaction in nuclear physics is unclear, various models have
been suggested. Regge’s assertion was that the potential has finite support, for a positive
number a, then boundary condition is:

y
′
(a, λ) + iλy(a, λ) = 0, (3)

Móller and Pivovarchik [4] claimed the quantum mechanics problem that q(x) ∈
L2(0, a) must be real. It should be observed that different authors look for different classes
of potentials, e.g., L1(0, a) or C(0, a). The problem (1)–(3) on L2(0, a) is referred to the
Regge problem.

Lately, the investigation of the problem of finding eigenvalue has the line of dis-
continuity on the solutions or coefficients of the differential operator [5–9]. In their arti-
cle [10], Yang and Wang studied the class of Sturm–Liouville operators with their spectral
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parameter-dependent boundary conditions and transmission conditions at finite interior
points. By manipulating the inner product in the appropriate Krein space associated with
the problem, a new self-adjoint operator is generated in such a way that the eigenvalues of
such a problem correspond with those of the operator, for more information on about linear
operators in Hilbert and Krein spaces, we recommend reference [11]. Many authors work
on Regge-type problems for different cases [12–14], but there is no specific working for the
Regge problem with transmission conditions. Stimulated by Reference [15], we examine
the problem of the Regge-type with transmission conditions and discontinuous coefficient.
In this paper, we analyze the spectral properties and the approximate properties of the
problem. Next, we construct the problem as follows:

L[y] = −y
′′
(x, λ) + q(x)y(x, λ) = λy(x, λ) (4)

on the interval [0, r) ∪ (r, a], where a is a positive real number, and 0 < r < a, with the
boundary condition at x = 0:

L1[y] = y(0, λ) = 0, (5)

with the transmission conditions at x = r:

L2[y] = y(r+, λ)− y(r−, λ) + λδ1y
′
(r−, λ) = 0, (6)

L3[y] = y
′
(r+, λ)− y′(r−, λ) + λδ2y(r−, λ) = 0, (7)

and the boundary condition at x = a:

L4[y] = y
′
(a, λ) + iλy(a, λ) = 0, (8)

where λ is the complex spectral parameter; δ1, δ2 are real constants with |δ1|+ |δ2| 6= 0,
and q(x) is a discontinuous function defined on [0, r) ∪ (r, a] as follows:

q(x) =

{
q1(x); x ∈ [0, r)
q1(x); x ∈ (r, a].

(9)

The functions q1(x), q2(x) are continuous on the interval [0, r), (r, a], respectively,
q1 ∈ C2[0, r), q2 ∈ C2(r, a], and they have finite limits, q1(r±) = limx→r± q1(x),
q2(r±) = limx→r± q2(x).

This work is structured as follows: Firstly, we give some preliminaries on problem’s
converted linear operator. In section 3, we are focused on estimating formulas for linearly
independent solutions of (4). We also measure the upper limit for the solution. The last
part of this paper is devoted to formulate the approximate formulas for the eigen-pairs
of problems (4)–(8). As for Theorem 4, the problem (4)–(8) has an infinite number of
eigenvalues. Theorem 5 has then shown that the zeros of W1(λ) are the peculiar values of
the query.

2. The Operator Formulation for the Problem

In this section, we investigate the properties of the Regge-type problem (4)–(8) in terms
of a linear operator U that introduced in a special Hilbert space H := L2((0, r) ∪ (r, a))⊕
C⊕ Cδ1 ⊕ Cδ2 . First of all, we reconstruct an inner product 〈., .〉 in the linear space H.
The linear operator U is defined by means of this inner product 〈., .〉. As a special case,
the problem (4)–(8) can be rewritten as the spectral problem for U. To begin with, we
introduce the inner product 〈., .〉1 on L2((0, r) ∪ (r, a)), for any f , g ∈ L2((0, r) ∪ (r, a))
as follows:

〈 f , g〉1 =
∫ r

0
f1 ḡ1dx +

∫ a

r
f̄2g2dx, (10)
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where f1 = f (x)|[0,r), and f2 = f (x)|(r,a]. It is easy to show that (L2((0, r) ∪ (r, a)), 〈·〉1)
form a Hilbert space. Suppose that [., .] is defined in H as:

[F, G] = 〈 f , g〉1 + 〈h1, k1〉+ 〈h2, k2〉+ 〈h3, k3〉, (11)

for any F = ( f , h1, h2, h3) and G = (g, k1, k2, k3) in the space H. Now, the inner product
(., .) defined by means of [., .] as:

( f , g) = [J f , g],

where J is the fundamental symmetry of the Krein space H. Now, we want to formulate
the process of finding the eigenvalues of problem (4)–(8). This method has been studied by
many authors [6–8,16,17]: If J0 : L2(I)→ L2(I) is defined by (J0 f )(x) = f (x), then

J =


J0 0 0 0
0 1 0 0
0 0 sgnδ1 0
0 0 0 sgnδ2

.

It is clear that 〈., .〉 = [J., .] is a positive definite on H. This means that H is a Hilbert
space with the inner product 〈.〉 = [J., .] as specified by H0 := (H, 〈., .〉). Let U be a linear
operator defined according to the conditions of our problem (4)–(8):

D(U) := {( f , h1, h2, h3) ∈ H| f (i)1 ∈ ACloc((0, r)), f (i)2 ∈ ACloc((r, a)), i = 1, 2,

L f ∈ L2((0, r) ∪ (r, a)), Lk f = 0, k = 1, 2, h1 = −δ1 f
′
(r), h2 = −δ2 f (r),

h3 = i f (a)}

Then, for any F = ( f ,−δ1 f
′
(r),−δ2 f (r), i f (a)) ∈ D(A), we have

UF = (L f , f (r+)− f (r−), f
′
(r+)− f

′
(r−), f

′
(a)). (12)

Hence, we can represent problem (4)–(8) in the following form:

UF = λF.

Note that the eigenvalues of the Regge-type problem (4)–(8) and the linear operator
U defined on H are the same. This allows one to address the problem in the direction of
operator theory. We will interact with the properties of this operator at a higher stage in
the Krein or Hilbert spaces. The G subset of the normalized linear space X is said to be
dense in X, if each element x of G is the limit for the series in X. In the following Theorem,
we analyze the domain density of the operator U, which was established in H0 due to
problem (4)–(8). As a consequence, we show that U is self-adjoint in H0.

Theorem 1. The linear operator U, that is defined in (12), is densely defined in the Hilbert space H0.

Proof. If φ(x) is introduced as:

φ(x) =

{
φ1(x) : x ∈ [0, r)
φ2(x) : x ∈ (r, a]

, (13)

where φ1(x) ∈ C∞(0, r) and φ2(x) ∈ C∞(r, a). If W is the set of all functions of the form
φ(x), then W is dense in H0, (see Reference [16], Lemma 2.1). Hence, D(U) is dense set
in H0.

Theorem 2. The operator U, defined in (12), is self-adjoint in H0.

Proof. The proof is similar to Reference [16], Theorem 2.2.



Symmetry 2021, 13, 139 4 of 11

Let A be a linear map on a subspace of a Hilbert space H, which it is known as the
“domain” of A. We assume that Dom(A) is a dense subspace of H. Then, A is said to be
symmetric if

〈Ax, y〉 = 〈x, Ay〉

for all elements x and y in D(A).

Theorem 3. The linear operator U, that is defined in (12), is symmetric in the Hilbert space H0.

Proof. It is similar to Reference [15], Theorem 2.2.

Theorem 4. The set of eigenvalues of the operator U, that is defined in (12), containing infinity
positive eigenvalues.

Proof. For the proof, see Reference [18], Proposition 1.8.

Lemma 1. For any λ ∈ C and b ∈ [0, r) ∪ (r, a], the differential equation

y
′′
(x, λ) + qi(x)y(x, λ) = λy(x, λ), f or i = 1, 2

has a unique solution, which satisfies the initial conditions

y(b, λ) = C1(λ), y
′
(b, λ) = C2(λ),

where q1(x), q2(x) are continuous functions on the interval [0, r), (r, a], respectively, defined in (9)
and Ci(λ), (for i = 1, 2) are entirely on C.

Proof. When the functions q1(x) and q2(x) are continuous functions on the domain [0, r),
(r, a], respectively, the proof is obtained directly by using the Existence and Uniqueness
Theorem.

Because b = 0, therefore, the solution ξ11(x, λ) of the differential Equation (4) on [0, r)
occurs by Lemma 1, such that the initial conditions were met.

ξ11(0) = 0, ξ
′
11(0) = −1. (14)

Owing to this solution, we take another solution ξ12(x, λ) of the differential Equation (4)
at the interval (r, a], so that the initial conditions at a = r are fulfilled.

ξ12(r) = ξ11(r)− λδ1ξ
′
11(r), ξ

′
12(r) = ξ

′
11(r)− λδ2ξ11(r). (15)

Hence,

u(x, λ) =

{
ξ11(x, λ); x ∈ [0, r)
ξ12(x, λ); x ∈ (r, a]

(16)

is a linearly independent solution for the differential Equation (4) on the interval [0, r), (r, a].
Finally, we have to find another linearly independent solution to measure the formula for
the problem pairs (4)–(8). Again, using Lemma 1, Equation (4) has two solutions: φ21(x, λ)
and φ22(x, λ) on the intervals [0, r) and (r, a], respectively.{

φ22(a) = −1, φ
′
22(a) = iλ

φ21(r) = φ22(r) + λδ1φ
′
22(r), φ

′
21(r) = φ

′
22(r) + λδ2φ22(r)

. (17)
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This means that the function v(x, λ) forms a linearly independent solution for (4) on
the interval [0, r), (r, a], where:

v(x, λ) =

{
φ21(x, λ); x ∈ [0, r)
φ22(x, λ); x ∈ (r, a]

. (18)

Consider the linear differential operator:

L[y] = y(2)(x) + q(x)y = λω(x)y(x, λ).

The above differential equation has a fundumental system of 2 linearly independent
solutions y1, y2 at the interval [a, b] ⊆ R [19]. If we have the following boundary conditions
Li[y]a,b = αi, for i = 1, 2, then the problem’s eigenvalues are the roots of the equation:∣∣∣∣L1[y1] L1[y2]

L2[y1] L2[y2]

∣∣∣∣ = 0. (19)

From the boundary conditions (5)–(8) and Equation (19), we provide the following
Wronskians:

W1(λ) =

∣∣∣∣ξ11(x, λ) φ21(x, λ)

ξ
′
11(x, λ) φ

′
21(x, λ)

∣∣∣∣, (20)

and

W2(λ) =

∣∣∣∣ξ12(x, λ) φ22(x, λ)

ξ
′
12(x, λ) φ

′
22(x, λ)

∣∣∣∣. (21)

The Wronskians are equivalent. That is, W1(λ) = W2(λ), for λ ∈ C. Hence, (19)–(21)
imply the following significant properties for obtaining a formula to establish the eigenval-
ues of problem (4)–(8):

Theorem 5. The eigenvalues the problem of (4)–(8) are the roots of the characteristic equations
W1(λ) = W2(λ).

Theorem 6. The problem (4)–(8) has only simple eigenvalues.

Proof. See the last note of Section 4.

3. Construction of the Fundamental Solutions

This section focuses on calculating formulas for linearly independent solutions of (4)
such that each solution meets the initial conditions (14)–(17), respectively. We also measure
the upper limit for the solution.

Lemma 2. Let λ = s2, s = σ + iτ. Then, the fundamental solution (16) (respectively, its deriva-
tive) satisfy the following integral equations:

ξ11(x, λ) =
−1
s

sin(sx)− 1
s

∫ x

0
sin(s(x− t))q1(t)ξ11(t)dt, (22)

ξ
′
11(x, λ) = − cos(sx)−

∫ x

0
cos(s(x− t))q1(t)ξ11(t)dt, (23)

ξ12(x, λ) =

[
1
s

ξ
′
11(r)− sδ2ξ11(r)

]
sin(s(x− r)) +

[
ξ11(r)− s2δ1ξ

′
11(r)

]
cos(s(x− r))

− 1
s

∫ x

r
sin(s(x− t))q2(t)ξ12(t)dt, (24)
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ξ
′
12(x, λ) =

[
ξ
′
11(r)− s2δ2ξ11(r)

]
cos(s(x− r)) +

[
sξ11(r)− s3δ1ξ

′
11(r)

]
sin(s(x− r))

−
∫ x

r
cos(s(x− t))q2(t)ξ12(t)dt. (25)

Proof. Remember Equation (4), so that we can now reform it as follows:

y
′′
(x, λ) + s2y(x, λ) = m(x). (26)

Assuming m(x) = q1(x)y(x, λ), therefore, expression (26) has an unique linearly
independent solution ξ11(x, λ) on [0, r), which passes the initial condition (14) of Lemma 1.
It is simple to confirm that eisx, and e−isx are linearly independent solutions:

y
′
(x, λ)− s2y(x, λ) = 0.

Using the Parameter Variance process, the solution ξ11(x, λ) has the following form:

ξ11(x, λ) =
−1
s

sin(sx)− 1
s

∫ x

0
sin(s(x− t))q1(t)ξ11(t)dt.

Thus, we acquire (22). By applying the Lebintz law, we differentiate this integral
inequality with respect to x, and then we obtain (23). Using related arguments, we get (24)
and (25).

Lemma 3. Let λ = s2, s = σ + iτ. Then, for a sufficiently large value of |λ|, the fundamental
solution (16) (respectively, its derivative) has the following approximate formulas:

ξ11(x, λ) =
−1
s

sin(sx) + O
(

1
|s|2 e|s|x

)
, (27)

ξ
′
11(x, λ) = − cos(sx) + O

(
1
|s| e
|s|x
)

, (28)

ξ12(x, λ) = −s2δ1ξ
′
11(r) cos(s(x− r)) + O

(
|s|e|s|x

)
, (29)

ξ
′
12(x, λ) = s3δ1ξ

′
11(r) sin(s(x− r)) + O

(
|s|2e|s|x

)
. (30)

Proof. Suppose that F11(x, λ) = |s|e−|s|xξ11(x, λ), and M = maxx∈[0,r)|F11(x, λ)|; then,
we have the following inequality for F11(x, λ):

|F11(x, λ)| ≤ 1 + M
∫ x

0
|q1(t)dt.

Since q1(t) is continuous on [0, r), then
∫ x

0 |q1(t)dt is bounded, which implies that

F11(x, λ) = O(1). Hence, we have ξ11 = O
(

1
|s| e
|s|x
)

. By substituting this value in (22), then
the approximate formula (27) holds. Similarly, we obtain (28), by differentiating (23) with
respect to x. If x = r in the integral Equation (22), then

ξ11(r, λ) =
−1
s

sin(sr)− 1
s

∫ r

0
sin(s(r− t))q1(t)ξ11(t)dt, (31)
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ξ
′
11(r, λ) = − cos(sr)−

∫ r

0
cos(s(r− t))q1(t)ξ11(t)dt. (32)

Substituting (31), (32) in (29), putting F12(x, λ) = |s|−2e−|s|xξ12(x, λ) and
M1 = maxx∈[0,r)|F11(x, λ)|, we obtain the following inequality for F12(x, λ):

|F12(x, λ)| ≤ 2
|s|3 +

δ2

|s|2 +
M1

|s|

∫ x

r
|q(t)dt + M0,

for some M0 > 0, which implies that F12(x, λ) = O(1). Hence, we have ξ12 = O
(
|s|2e|s|x

)
.

By substituting this value in (24), then the approximate formula (29) holds. Similarly, we
obtain (30), by differentiating (25) with respect to x.

During the next Lemma, we set the approximate formula for the linearly independent
solution v(x, λ).

Lemma 4. Let λ = s2, s = σ + iτ. Then, for a sufficiently large value of |λ|, the fundamental
solution (18) (respectively, its derivative) has the following approximate formulas:

φ22(x, λ) = is sin(s(x− a)) + O
(

e|s|(a−x)
)

, (33)

φ
′
22(x, λ) = −is2 cos(s(x− a)) + O

(
|s|e|s|(a−x)

)
, (34)

φ21(x, λ) = −s2δ1φ
′
22(r) cos(s(x− r)) + O

(
|s|3e|s|(a−x)

)
, (35)

φ
′
21(x, λ) = s3δ1φ

′
22(r) sin(s(x− r)) + O

(
|s|4e|s|(a−x)

)
. (36)

Proof. It is similar to Lemma 3.

Next, we are inspired to approximate the upper limits for the solutions of the problem
under certain thought. First of all, from Equation (22):

ξ11(x, λ) =
−1
s

sin(sx)− 1
s

∫ x

0
sin(s(x− t))q1(t)ξ11(t)dt,

consider s = σ + iτ, M = maxx∈[0,r) e|w1(x+1)|, Q1(t) = maxt∈[0,r){|q1(t)|},
∫ x

0 |Q(t)|dt <
∞ and |τ| ≤ |σ|. Then, the following relations |sinz | ≤ e|Im z| and |cosz | ≤ e|Im z|, imply
the following inequalities: |sins(x) | ≤ M|τ| ≤ M|σ|. Hence, we obtain an upper bound for
the solution (16):

|ξ11| ≤ M|σ|C1eC2 ,

for C2 =
∫ x

0 |Q(t)|dt and C1 = 1
|s| . In the same way as above, we can estimate upper

bounds for Equations (23)–(30). Hence, we have the following result:

Theorem 7. The spectrum λ is eigenvalue for problem (4)–(8), for all λ > 0, where the following
conditions were occurred

sup
x∈[0,r)∪(r,a]

u(x, λ) = ξ0 < ∞,

∫ x

0
|q1(t)|dt < ∞ and

∫ a

x
|q2(t)|dt < ∞.
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Proof. Since the linearly independent solutions are bounded, the proof is similar to Refer-
ence [8], Theorem 2.1.

4. Approximate Formulas for the Egenvalues and Eigenfunctions of Problem (4)–(8)

For this part, we create the necessary approximate formulas for the eigen-pairs of
problems (4)–(8). As for Theorem 4, the problem (4)–(8) has an infinite number of eigenval-
ues. Theorem 5 has then shown that the zeros of W1(λ) are the peculiar values of the query.
So, again, we need to calculate the expression for W1(λ):

Theorem 8. Suppose that λ = s2, s = σ + iτ. Then, W1(λ) has the following expression form:

W1(λ) = −s4δ1 cos(s(r)) cos(s(r− a)) + O
(
|s|3e2|s|(a)

)
, (37)

for a sufficiently large |λ|.

Proof. Because the functions ξ11(x, λ) meet the initial conditions (14) and φ22(x, λ) meet
the boundary conditions (8), then (29), (30), and (20), we derive the following expression:

W1(λ) =

∣∣∣∣ 0 φ21(0, λ)

−1 φ
′
21(0, λ)

∣∣∣∣ = φ21(0, λ) = −s2δ1φ
′
22(r) cos(s(r)) + O

(
|s|3e2|s|(a)

)
. (38)

If you evaluate φ
′
22(r, λ) and overwrite it with Equation (38), then you get (37). By a

related argument, we can obtain the same approximation for the characteristic W2(λ)
equation.

Mind that, if λ is a negative real number, say λ = −t2, then we can logically argue
that W1(−t2)→ ∞ has a large value of t. Such an element means that the eigenvalues of
problem (4)–(8) are bounded below, so that we can conclude that the eigenvalues are

λ0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ . . .

throughout the manner of an increasing sequence. In the next theorem, we describe the
approximate formula for the eigenvalues:

Theorem 9. The sequence of eigenvalues of problem (4)–(8) has the following approximate formulas:√
λn,1 =

(2n− 1)π
2r

+ O
(

1
n

)
, (39)

√
λn,2 =

(2n− 1)π
2(a− r)

+ O
(

1
n

)
. (40)

Proof. Because the problem’s eigenvalues are roots of W1(λ) by Theorem 5, we have
Equation (37), and then

cos(s(r)) cos(s(r− a)) = O
(

1
|s|

)
. (41)

Suppose that f (s) and g(s) are the left and right sides of Equation (41), respectively. It
is easy to determine | f (s)| ≤ |g(s)|. Rouch’s theorem leads that f (s) and f (s) + g(s) have
the same number of zeros. The roots of the function are similar to (2n−1)π

2r or (2n−1)π
2(a−r) ; see

Figure 1. This is why we obtain (39) and (40).
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Figure 1. Approximate characteristic equation, where r = 1, a = 6.

This is from the approximate expressions of the linearly independent solutions, eigen-
values and the characteristic equation W(λ). We shall create approximate formulas for
eigenfunctions (see Reference [20], Theorem 4.1).

Theorem 10. Approximate formulas for the eigenfunctions of (4)–(8) corresponding to the eigen-
values λn, 1, lambdan, 2 include the following forms:

φn,1(x, λn,1) = cos
(
(2n− 1)π

2r
x
)
+ O

(
1
n

)
, (42)

φn,2(x, λn,2) = cos
(
(2n− 1)π
2(a− r)

(x− a)
)
+ O

(
1
n

)
. (43)

Proof. From calculations (22), (28)–(30), we can approximate ξ11(x, λn, 1), ξ
′
11(x, λn, 1),

φ21(x, λn, 1), and φ
′(x,λn,1
21 ) and replace them with an equation characteristic of W(λ).

A basic calculation (42) and (43) can therefore be obtained.

Remember that, from (42), (43), we can check that the formulas (39) and (40) are
simple. Generally speaking, the problem’s eigenvalues (4)–(8) are simple (see Reference [7],
Theorem 4.2).

Example 1. Consider the eigenvalue problem:

− y
′′
(x, λ) + q(x)y(x, λ) = λy(x, λ), on [0, 1) ∪ (1, 6], (44)

with the following boundary:

y(0, λ) = 0, y
′
(6, λ) + iλy(6, λ) = 0, (45)

where

q(x) =

{
1; x ∈ [0, 1)
2; x ∈ (1, 6],

(46)

with the transmission conditions at x = r:

y(1+, λ)− y(1−, λ) + λy
′
(1−, λ) = 0, (47)
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y
′
(1+, λ)− y′(1−, λ) + λy(1−, λ) = 0. (48)

It is easy to see that, on the interval [0, 1), the eigenvalues of problem (45)–(48) are near to
(2n−1)π

2 , and, for sufficiently large n, and for each n, there is a corresponding eigenfunction of the

form cos
(
(2n−1)π

2 x
)

. In the same way, on the interval (1, 6], the eigenvalues of problem (45)–(48)

are near (2n−1)π
10 , and, for sufficiently large n, and for each n, there is a corresponding eigenfunction

of the form cos
(
(2n−1)π

10 x
)

(see Figure 1).

5. Conclusions

In this article, we investigated the spectral properties of the Regge-type problem. First
of all, we convert the problem for a linear operator in a special Krien space, and, according
to this operator, we provide a formula for calculating the eigenvalues of the problem. Lastly,
we obtained the simple and bounded eigenfunctions of the Regge-type problem (4)–(8).
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