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Abstract: In this work, we consider a type of second-order functional differential equations and
establish qualitative properties of their solutions. These new results complement and improve a
number of results reported in the literature. Finally, we provide an example that illustrates our results.
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1. Introduction

In this article, we consider the neutral differential equation

(
a(y)

(
w′(y)

)γ
)′

+
m2

∑
j=1

qj(y)xβ j
(
ϑj(y)

)
= 0, y ≥ y0, (1)

where w(y) = x(y) + ∑m1
i=1 pi(y)xαi (ςi(y)), αi, γ and β j, for all i = 1, · · · , m1 and j = 1, · · · , m2,

are quotients of odd positive integers.
It is natural to ask why time-delayed systems are so important. Time delays are intrinsic in many

real systems and, therefore, must be properly accounted for evolution models [1–4]. Recently there
has been a considerable interest in dynamical systems both neutral and involving time-delays with
applications ranging from Biology and Population Dynamics to Physics and Engineering, and from
Economics to Medicine. For instance, some interesting studies have shown how delay differential
equation can be used to solve cardiovascular models that have a discontinuous derivative [5].
Moreover, many researchers have studied the qualitative properties of delay mathematical models
examining oscillation and nonoscillation properties of different delay logistic models and their
modifications [6]. These studies are also concerned with the investigation of local and global
stability. Mainly the oscillation properties are investigated for models with delayed feedback,
hyperlogistic models, and models with varying capacity. For further details regarding the techniques
and other applications to Biology, we refer the reader to [6] and the references therein.

Symmetry 2020, 12, 1520; doi:10.3390/sym12091520 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-7251-9608
https://orcid.org/0000-0002-3265-3984
https://orcid.org/0000-0001-9740-3081
http://dx.doi.org/10.3390/sym12091520
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/12/9/1520?type=check_update&version=2


Symmetry 2020, 12, 1520 2 of 10

For a recent review of the main results in the framework of asymptotic properties for second and
higher-order functional differential equations (FDEs), we refer the reader to the interesting book [7].

For further details regarding oscillatory properties of differential equations, we suggest to read
the papers [1–4,8–35].

Throughout this work, we assume that the following assumptions are fulfilled for Equation (1):

(A1) ϑj, ςi ∈ C([y0, ∞),R+), ςi ∈ C2([y0, ∞),R+), ϑj(y) < y, ςi(y) < y, limy→∞ ϑj(y) = ∞,
limy→∞ ςi(y) = ∞ for all i = 1, 2, · · · , m1 and j = 1, 2, · · · , m2;

(A2) a ∈ C1([y0, ∞),R+), qj ∈ C([y0, ∞),R+); 0 ≤ qj(y), for all y ≥ 0 and j = 1, 2, · · · , m2; ∑m2
j=1 qj(y)

is not identically zero in any interval [b, ∞);
(A3) limy→∞ A(y) = ∞, where A(y) =

∫ y
y0

a−1/γ(η) dη;
(A4) pi : [y0, ∞)→ R+ are continuous functions for i = 1, 2, · · · , m;
(A5) there exists a differentiable function ϑ0(y) satisfying the properties 0 < ϑ0(y) = min

j=1,··· ,m2
{ϑj(y) :

y ≥ y∗ > y0} and ϑ′0(y) ≥ ϑ0 for y ≥ y∗ > y0, ϑ0 > 0.

Now we recall some basic definitions.

Definition 1. A function x(y) : [yx, ∞)→ R, yx ≥ y0 is said to be a solution of (1) if x(y) and a(y) (w′(y))γ

are continuously differentiable for all y ∈ [yx, ∞) and it satisfies Equation (1) for all y ∈ [yx, ∞).

We assume that (1) admits a solution in the sense of Definition 1.

Definition 2. A solution x(y) of (1) is said to be non-oscillatory if it is eventually positive or eventually
negative; otherwise, it is said to be oscillatory.

Definition 3. The Equation (1) is said to be oscillatory if all of its solutions are oscillatory.

In this paper, we restrict our attention in order to study oscillation and non-oscillation of (1).
First of all, it is interesting to make a review in the context of functional differential equation.

In 1978, Brands [36] proved that for each bounded delay ϑ(y), the equation

x′′(y) + q(y)x(y− ϑ(y)) = 0

is oscillatory if and only if the equation

x′′(y) + q(y)x(y) = 0

is oscillatory. In [37,38] Chatzarakis et al. considered a more general equation(
a(x′)β

)′
(y) + q(y)xβ(ϑ(y)) = 0, (2)

and established new oscillation criteria for (2) when limy→∞ A(y) = ∞ and limy→∞ A(y) < ∞.
Wong [39] has obtained the oscillation conditions of(

x(y) + px(y− ς)
)′′

+ q(y) f (x(y− ϑ)) = 0, −1 < p < 0,

in which the neutral coefficient and delays are constants. In [40,41], the authors Baculíková and
Džurina studied the equation(

a(y)
(
w′(y)

)γ
)′

+ q(y)xβ(ϑ(y)) = 0, w(y) = x(y) + p(y)x(ς(y)), y ≥ y0, (3)

and established the oscillation of solutions of (3) using comparison techniques when γ = β = 1,
0 ≤ p(y) < ∞ and limy→∞ A(y) = ∞. With the same technique, Baculíková and Džurina [42]
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considered (3) and obtained oscillation conditions of (3) considering the assumptions 0 ≤ p(y) < ∞
and limy→∞ A(y) = ∞. In [43], Tripathy et al. studied (3) and established several conditions of the
solutions of (3) when considering the assumptions limy→∞ A(y) = ∞ and limy→∞ A(y) < ∞ for
different values of the neutral coefficient p. In [44], Bohner et al. obtained sufficient conditions for the
oscillation of the solutions of (3) when γ = β, limy→∞ A(y) < ∞ and 0 ≤ p(y) < 1. Grace et al. [15]
studied the oscillation of (3) when γ = β j, considering the assumptions limy→∞ A(y) < ∞,
limy→∞ A(y) = ∞ and 0 ≤ p(y) < 1. In [45], Li et al. established sufficient conditions for the
oscillation of the solutions of (3), under the assumptions limy→∞ A(y) < ∞ and p(y) ≥ 0. Karpuz and
Santra [46] considered the equation(

a(y)(x(y) + p(y)x(ς(y)))′
)′
+ q(y) f

(
x(ϑ(y))

)
= 0,

When considering the assumptions limy→∞ A(y) < ∞ and limy→∞ A(y) = ∞, for different values
of p.

2. Preliminary Results

To simplify our notation, for any positive, continuous and decreasing to zero function ρ :
[y0, ∞)→ R+, we set

P(y) =

(
1−

m

∑
i=1

αi pi(y)−
1

ρ(y)

m

∑
i=1

(1− αi)pi(y)

)
;

Q1(y) =
m2

∑
j=1

qj(y)Pβ j
(
ϑj(y)

)
;

Q2(y) =
m2

∑
j=1

qj(y)Pβ j
(
ϑj(y)

)
ρβ j−1 (ϑj(y)

)
;

Q3(y) =
m2

∑
j=1

qj(y)Pβ j
(
ϑj(y)

)
Aβ j−1 (ϑj(y)

)
;

Q4(y) =
m2

∑
j=1

qj(y)Pβ j
(
ϑj(y)

)
Aβ j(ϑj(y));

U(y) =
∫ ∞

y

m2

∑
j=1

qj(ζ)xβ j(ϑj(ζ)) dζ .

Let us assume that P(y) and U(y) are non-negative in [y0, ∞). Moreover, it is worth pointing out
that the inequality P(y) ≥ 0 implies pi(y)→ 0 since ρ(y)→ 0.

We need the following technical Lemmas in order to obtain the main results.

Lemma 1 ([47]). If a1 and b1 are nonnegative numbers, then

a1
α1 b1

1−α1 ≤ α1a1 + (1− α1)b1 for 0 < α1 ≤ 1,

where equality holds if and only if a1 = b1.

Lemma 2. Let (A1)–(A4) hold for y ≥ y0. If a solution x of (1) is eventually positive, then w satisfies

w(y) > 0, w′(y) > 0, and
(
a(w′)γ

)′
(y) ≤ 0 for y ≥ y1. (4)
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Proof. Let the solution x be eventually positive. Hence, w(y) > 0 and there exists a y0 ≥ 0 such that
x(y) > 0, x(ςi(y)) > 0 and x

(
ϑj(y)

)
> 0 for all y ≥ y0 and for all i = 1, 2, · · · , m1 and j = 1, 2, · · · , m2.

From (1), it follows that

(
a(y)

(
w′(y)

)γ
)′

= −
m2

∑
j=1

qj(y)xβ j
(
ϑj(y)

)
≤ 0 for y ≥ y0.

Therefore, a(y) (w′(y))γ is non-increasing for y ≥ y0. Assume that a(y) (w′(y))γ≤0 for y ≥ y1 >

y0. Hence,
a(y)

(
w′(y)

)γ ≤ a(y1)
(
w′(y1)

)γ
< 0 for all y ≥ y1,

that is,

w′(y) ≤
(

a(y1)

a(y)

)1/γ

w′(y1) for y ≥ y1.

Integrating from y1 to y, we have

w(y) ≤ w(y1) + (a(y1))
1/γ w′(y1)A(y)→ −∞

as y→ ∞ due to (A3), which is a contradiction to w(y) > 0.
Therefore, a(y) (w′(y))γ > 0 for all y ≥ y1. From a(y) (w′(y))γ > 0 and a(y) > 0, it follows that

w′(y) > 0. This completes the proof.

Lemma 3. Let (A1)–(A4) hold for y ≥ y0. If a solution x of (1) is eventually positive, then w satisfies

w(y) ≥ (a(y))1/γ w′(y)A(y) for y ≥ y1

and

w(y)
A(y)

is decreasing for y ≥ y1.

Proof. Proceeding as in the proof of the Lemma 2, we obtain (4) for y ≥ y1. Because a(y) (w′(y))γ is
decreasing, we have

w(y) ≥
∫ y

y1

(a(η))1/γ w′(η)
1

(a(η))1/γ
dη

≥ (a(y))1/γ w′(y)
∫ y

y1

1

(a(η))1/γ
dη

≥ (a(y))1/γ w′(y)A(y).

Again, using the previous inequality, we have

(
w(y)
A(y)

)′
=

(a(y))1/γ w′(y)A(y)− w(y)

(a(y))1/γ A2(y)
≤ 0.

We conclude that w(y)
A(y) is decreasing for y ≥ y1. This completes the proof.

Lemma 4. Let (A1)–(A4) hold for y ≥ y0. If a solution x of (1) is eventually positive, then w satisfies

x(y) ≥ P(y)w(y) for y ≥ y1. (5)
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Proof. Let the solution x be eventually positive. Hence, w(y) > 0, and there exists a y0 ≥ 0, such that

x(y) = w(y)−
m

∑
i=1

pi(y)xαi (ςi(y))

≥ w(y)−
m

∑
i=1

pi(y)wαi (ςi(y))

≥ w(y)−
m

∑
i=1

pi(y)wαi (y)

≥ w(y)−
m

∑
i=1

pi(y) (αiw(y)− (1− αi))

=

(
1−

m

∑
i=1

αi pi(y)

)
w(y)−

m

∑
i=1

(1− αi)pi(y) (6)

using the Lemma 1. Since w(y) is positive and increasing and ρ(y) is positive and decreasing to zero,
there is a y0 ≥ y1 such that

w(y) ≥ ρ(y) for y ≥ y1. (7)

Using (7) in (6), we obtain

x(y) ≥ P(y)w(y).

This completes the proof.

Lemma 5. Let (A1)–(A4) hold for y ≥ y0. If a solution x of (1) is eventually positive, then there exist y1 > y0

and δ > 0, such that

0 < w(y) ≤ δA(y) and (8)

A(y)U1/γ(y) ≤ w(y) (9)

hold for all y ≥ y1.

Proof. Let the solution x be eventually positive. Then there exists a y0 > 0 such that
x(y) > 0, x(ςi(y)) > 0 and x

(
ϑj(y)

)
> 0 for all y ≥ y0 and for all i = 1, 2, · · · , m1 and

i = 1, 2, · · · , m2. So, there exists y1 > y0, such that Lemma 2 holds true and w satisfy (4) for y ≥ y1.
From a(y) (w′(y))γ > 0 and being non-increasing, we have

w′(y) ≤
(

a(y1)

a(y)

)1/γ

w′(y1) for y ≥ y1 .

Integrating this inequality from y1 to y,

w(y) ≤ w(y1) + (a(y1))
1/γ w′(y1)A(y) .

Because limy→∞ A(y) = ∞, there exists a positive constant δ, such that (8) holds. On the other
hand, limy→∞ a(y) (w′(y))γ exists and integrating (1) from y to ξ, we obtain

a(ξ)
(
w′(ξ)

)γ − a(y)
(
w′(y)

)γ
= −

∫ ξ

y

m2

∑
j=1

qj(η)xβ j(ϑj(η)) dη .
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Taking the limit as ξ → ∞, we get

a(y)
(
w′(y)

)γ ≥
∫ ∞

y

m2

∑
j=1

qj(η)xβ j(ϑj(η)) dη, (10)

that is,

w′(y) ≥
[

1
a(y)

∫ ∞

y

m2

∑
j=1

qj(η)xβ j(ϑj(η)) dη

]1/γ

.

Therefore,

w(y) ≥
∫ y

y1

[
1

a(η)

∫ ∞

η

m2

∑
j=1

qj(s)xβ j(ϑj(s)) ds

]1/γ

dη

≥
∫ y

y1

[
1

a(η)

∫ ∞

y

m2

∑
j=1

qj(s)xβ j(ϑj(s)) ds

]1/γ

dη

= A(y)

[∫ ∞

y

m2

∑
j=1

qj(s)xβ j(ϑj(s)) ds

]1/γ

.

This completes the proof.

3. Qualitative Properties of Solutions of (1)

Theorem 1. Assume that there exists a constant δ1, quotient of odd positive integers, such that 0 < β j < δ1 <

γ, and (A1)–(A4) hold for y ≥ y0. If

(A6)
∫ ∞

0 Q4(η) dη = ∞

holds, then every solution of (1) is oscillatory.

Proof. Let the solution x of (1) be eventually positive. Accordingly, there exists a y0 > 0 such that
x(y) > 0, x(ςi(y)) > 0 and x

(
ϑj(y)

)
> 0 for all y ≥ y0, i = 1, 2, · · · , m1 and j = 1, 2, · · · , m2.

Applying Lemmas 2 and 5 for y ≥ y1 > y0 we conclude that w satisfy (4), (5), (8) and (9) for all y ≥ y1.
We can find a y1 > 0, such that

w(y) ≥ A(y)U1/γ(y) ≥ 0 for y ≥ y1. (11)

Using (5) and (8), β j − δ1 < 0 and (11), we have

xβ j(y) ≥ Pβ j(y)wβ j−δ1(y)wδ1(y) ≥ Pβ j(y)(δA(y))β j−δ1 wδ1(y)

≥ Pβ j(y) (δA(y))β j−δ1
(

A(y)U1/γ(y)
)δ1

= Pβ j(y)δβ j−δ1 Aβ j(y)Uδ1/γ(y)

for y ≥ y2. Since, U′(y) = −∑m2
j=1 qj(y)xβ j(ϑj(y)) ≤ 0, y ≥ y2, that is, U is non-increasing, then the

last inequality becomes

xβ j
(
ϑj(η)

)
≥ Pβ j

(
ϑj(η)

)
δβ j−δ1 Aβ j

(
ϑj(η)

)
Uδ1/γ(ϑj(η)) (12)

≥ Pβ j
(
ϑj(η)

)
δβ j−δ1 Aβ j

(
ϑj(η)

)
Uδ1/γ(η) .

Since (
U1−δ1/γ(y)

)′
=

(
1− δ1

γ

)
U−δ1/γ(y)U′(y), (13)
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integrating (13) from y2 to y and using the fact that U ≥ 0, we find

∞ > U1−δ1/γ(y2) ≥
(

1− δ1

γ

) [
−
∫ y

y2

U−δ1/γ(η)U′(η) dη

]
=

(
1− δ1

γ

)[∫ y

y2

U−δ1/γ(η)

(
m2

∑
j=1

qj(η)xβ j(ϑj(η))

)
dη

]

≥
(

1− δ1

γ

)[∫ y

y2

m2

∑
j=1

1

δδ1−β j
qj(η)Pβ j

(
ϑj(η)

)
Aβ j(ϑj(η)) dη

]

which contradicts (A6) as y→ ∞. This completes the proof.

Theorem 2. Assume that there exists a constant δ2, quotient of odd positive integers, such that γ < δ2 < β j.
Furthermore, assume that (A1)–(A5) hold for y ≥ y0 and a(y) is non-decreasing. If

(A7)
∫ ∞

0

[
1

a(η)

∫ ∞
η Q1(ζ) dζ

]1/γ
dη = ∞

holds, then every solution of (1) is oscillatory.

Proof. Let x be an eventually positive solution of (1). Subsequently, there exists a y0 > 0 such that
x(y) > 0, x(ςi(y)) > 0 and x

(
ϑj(y)

)
> 0 for all y ≥ y0, i = 1, 2, · · · , m1 and j = 1, 2, · · · , m2.

Applying Lemmas 2 and 4 for y ≥ y1 > y0 we conclude that w satisfy (4), w is increasing and
x(y) ≥ P(y)w(y) for all y ≥ y1. Accordingly,

xβ j(y) ≥ Pβ j(y)wβ j(y) ≥ Pβ j(y)wβ j−δ2(y)wδ2(y) ≥ Pβ j(y)wβ j−δ2(y1)wδ2(y)

implies that

xβ j
(
ϑj(y)

)
≥ Pβ j

(
ϑj(y)

)
wβ j−δ2(y1)wδ2

(
ϑj(y)

)
for y ≥ y2 > y1 . (14)

Using (10) and (14), we have

a(y)
(
w′(y)

)γ ≥ wβ j−δ2(y1)

[∫ ∞

y

m2

∑
j=1

qj(η)Pβ j
(
ϑj(η)

)
dη

]
wδ2(ϑj(y))

≥ wβ j−δ2(y1)

[∫ ∞

y

m2

∑
j=1

qj(η)Pβ j
(
ϑj(η)

)
dη

]
wδ2(ϑ0(y)) (15)

for y ≥ y2. Being a(y) (w′(y))γ non-increasing and ϑ0(y) ≤ y, we have

a(ϑ0(y))
(
w′(ϑ0(y))

)γ ≥ a(y)
(
w′(y)

)γ .

Using the last inequality in (15), dividing by a(ϑ0(y))wδ2(ϑ0(y)) > 0, and then operating the
power 1/γ on both sides, we obtain

w′(ϑ0(y))
wδ2/γ(ϑ0(y))

≥
[

wβ j−δ2(y1)

a(ϑ0(y))

∫ ∞

y

m2

∑
j=1

qj(η)Pβ j
(
ϑj(η)

)
dη

]1/γ
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for y ≥ y2. Multiplying the left-hand side by ϑ′0(y)/ϑ0 ≥ 1 and integrating from y2 to y, we find

1
ϑ0

∫ y

y2

w′(ϑ0(η))ϑ
′
0(η)

wδ2/γ(ϑ0(η))
dη

≥ w(β j−δ2)/γ(y1)
∫ y

y2

[
1

a(ϑ0(η))

∫ ∞

η

m2

∑
j=1

qj(ζ)Pβ j
(
ϑj(ζ)

)
dζ

]1/γ

dη y ≥ y2 .
(16)

Because γ < δ2, a(ϑ0(η)) ≤ a(η) and

1
ϑ0(1− δ2/γ)

[
w1−δ2/γ(ϑ0(η))

]y

η=y2
≤ 1

ϑ0(δ2/γ− 1)
w1−δ2/γ(ϑ0(y2)) ,

it follows that (16) becomes

∫ ∞

y2

[
1

a(η)

∫ ∞

η

m2

∑
j=1

qj(ζ)Pβ j
(
ϑj(ζ)

)
dζ

]1/γ

dη < ∞

which contradicts (A7). This contradiction implies that the solution x cannot be eventually positive.
The case where x is eventually negative is very similar and we omit it here.

Remark 1. Theorems 1 and 2 hold for any index i and j (i.e., for i 6= j and i = j).

We conclude the paper presenting an example that shows the effectiveness and the feasibility of
the main results.

Example 1. Consider the differential equation[
(y + 1)

(
x(y) +

1
y2 x

1
3

(y
2

)
+

1
y4 x

3
5

(y
3

))′]′
+ y12x3

(y
2

)
+ y13x3

(y
3

)
= 0 for y ≥ 2, (17)

where a(y) :≡ y + 1, qj(y) :≡ yj+11, ϑj(y) :≡ y
i+1 , ϑ

′
0(y) > 1

3 = ϑ0, β j = 3 > γ = 1, pi(y) :≡ 1
y2i ,

αi :≡ 2i−1
2i+1 and ςi(y) :≡ y

i+1 for i = 1, 2; j = 1, 2 and y ≥ 2. All of the assumptions of Theorem 2 can be
verified with the index i = 1, 2 and ρ(y) = 1

y2 . Hence, due to Theorem 1, every solution of (17) is oscillatory.

4. Conclusions

In this work, we have undertaken the problem by taking a second order nonlinear neutral
differential equation with sublinear neutral terms and established sufficient conditions for the
oscillation of (1).
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