symmetry MBPY

Article

Fractional Hermite-Hadamard-Fejer Inequalities for
a Convex Function with Respect to an Increasing
Function Involving a Positive Weighted

Symmetric Function

Pshtiwan Othman Mohammed *(, Thabet Abdeljawad %*%*{ and Artion Kashuri °

1 Department of Mathematics, College of Education, University of Sulaimani,

Sulaimani 46001, Kurdistan Region, Iraq

Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833,

Riyadh 11586, Saudi Arabia

Department of Medical Research, China Medical University, Taichung 40402, Taiwan

Department of Computer Science and Information Engineering, Asia University, Taichung 41354, Taiwan
Department of Mathematics, Faculty of Technical Science, University Ismail Qemali, 9401 Vlora, Albania;
artion.kashuri@univlora.edu.al

*  Correspondence: pshtiwan. muhammad@univsul.edu.iq (P.O.M.); tabdeljawad@psu.edu.sa (T.A.)

Received: 1 September 2020; Accepted: 11 September 2020; Published: 12 September 2020 ﬁ';,e;gtfgsr

Abstract: There have been many different definitions of fractional calculus presented in the literature,
especially in recent years. These definitions can be classified into groups with similar properties.
An important direction of research has involved proving inequalities for fractional integrals of
particular types of functions, such as Hermite-Hadamard-Fejer (HHF) inequalities and related
results. Here we consider some HHF fractional integral inequalities and related results for a class of
fractional operators (namely, the weighted fractional operators), which apply to function of convex
type with respect to an increasing function involving a positive weighted symmetric function. We can
conclude that all derived inequalities in our study generalize numerous well-known inequalities
involving both classical and Riemann-Liouville fractional integral inequalities.

Keywords: symmetric; weighted fractional operators; convex functions; Hermite-Hadamard-Fejer inequality

1. Introduction

First of all, we recall the basic notation in convex analysis. A set V C R is said to be convex if
eh+(1—e)heV

for each ¢4, 9, € V and € € [0,1]. Based on a convex set V, we say that a function 2 : V — R is convex,
if the inequality

Bedr + (1—e)0h) < eh(th) + (1—e)fi(,), Vo,9 €V, ec€0,1] )

holds. We say that 7 is concave if —# is convex.

Theory and application of convexity play an important role in the field of fractional integral
inequalities due to the behavior of its properties and definition, especially in the past few years.
There is a strong relationship between theories of convexity and symmetry. Whichever one we study,
we can apply it to the other one; see, e.g., [1]. There are plenty of well-known integral inequalities
that have been established for the convex functions (1) in the literature; for example, Ostrowski type
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integral inequalities [2], Simpson type integral inequalities [3], Hardy type integral inequalities [4],
Olsen type integral inequalities [5], Gagliardo-Nirenberg type integral inequalities [6], Opial type type
integral inequalities [7,8] and Rozanova type integral inequalities [9]. However, the most common
integral inequalities are the Hermite-Hadamard type integral inequalities: the classical and fractional
Hermite-Hadamard type integral inequalities [10,11] are, respectively, given by:

01+ % 1 b2 R(81) + (%)
ﬁ( ! >§192191/01 By < ST, @)
and
01+ T(C+1) R e RL ¢ i) + 1i(9,)
ﬁ( 2 ) = 2(0, — t9)* [ T oy 11(02) + jﬂl*ﬁ(ﬂl)} =T ©)

where /i : V — Ris supposed to be a positive convex function, & € LY(81,8,) with 9, < &, and Rlefl "
and RL7T. 19{2— stand for the left-sided and right-sided Riemann-Liouville fractional integrals of order
£ > 0, respectively, and these are defined by [12,13]:

1 X
RL76  h(x) = 0] /191 (x — &) h(e)de, x> 8y; W

o
1 /z(e—x)()’_lﬁ(e)de, x < .
X

RLgg, hi(x) = 0.

The HH type inequality (2) has been applied to numerous types of convex functions, including
s-geometrically convex functions [14], GA-convex functions [15], MT-convex function [16] and
(a, m)-convex functions [17], and many other types can be found in [18]. Besides, the HH type
inequality (3) has been applied to a huge number of convex functions, such as F-convex functions [19],
Ay-convex functions [20], MT-convex functions [21] and (&, m)-convex functions [22], a new class
of convex functions [23], and many other types can be found in the literature. Meanwhile, it has
been applied to other models of fractional calculus, such as standard RL-fractional operators [24],
conformable fractional operators [25,26], generalized fractional operators [27], -RL-fractional
operators [28,29], tempered fractional operators [30] and AB and Prabhakar fractional operators [31].

After growing the field of Hermite-Hadamard type inequalities (2) and (3), many classical and
fractional integral inequalities have been established by many authors; for more details, see [24-31].

Definition 1 ([32]). Let g : [81,02] — [0, 00) be an integrable function; then we say g is symmetric with
respect to (01 + 92) /2, if
8(0 + 8 — x) = g(x), ®)

holds for each x € [0y, 9]
Based on this definition, the authors in [33,34] extended the HH-type inequalities (2) and (3) and

they could deduce the so-called Hermite-Hadamard-Fejer (HHF) type inequalities, and their results
were, respectively, as follows:

h+0) % 1 02 h(81) 4+ h() [P
ﬁ( 5 )/19 1 g(x)dx < R /0 1 () (x)dx < —————=- /19 g(x)dx, 6)

1

and

(B2 [44,s00) + 7%, s(o0)] <[5, () 02) + 175, _(g)60)]

2
_ h(B1) + h(8y)

< T RLg L g(8) + 7L Th, g(81)], ()
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where 71 is as before and g is as defined in Definition 1.

Definition 2. Let (81,0;) € R and o(x) be an increasing positive and monotonic function on the
interval (01, 9,] with a continuous derivative o’ (x) on the interval (8,,9;) with ¢(0) = 0, 0 € [0, 95].
Then, the left-side and right-side of the weighted fractional integrals of a function h with respect to another
function o (x) on [0, 93] are defined by [35]:

w(x) [¥

(s TR (x) = | / o' (&) (o (x) — o (€))i(e)w(e)de,

(41
w!(x)

®)
(o7578) ) = 5 /:fo'@)(‘f(@—U(X))e‘lﬁ(@w(s)de, (>0,

where w1 (x) = ﬁ, w(x) # 0.

Remark 1. From the Definition 2, one can observe that

o Ifoisspecialized by o(x) = x and w(x) = 1, then the weighted fractional integral operators (8) reduce to
the classical Riemann—Liouville fractional integral operators (4).

o Ifw(x) =1, we get the fractional integral operators of a function h with respect to another function o(x),
which is defined in [36,37] as follows:

(00075 0) (=5 | @) — (e o)t

(st;‘lﬁ) (x):zl“(1€) /xl?z o' (e) (o (e) — o(x))" Mi(e)de, £ >0

©)

This study investigates several inequalities of HHF type via the weighted fractional operators (8)
with positive weighted symmetric functions in the kernel.

The rest of the study is structured in the following way: In Section 2, we prove the necessary
and auxiliary lemmas that are useful in the next section. Section 3 contains our main results which
consists of proving several HHF fractional integral inequalities and some related results. In Section 4,
we discuss our results and give the comparison between our results and the existing results, and we
point out the future work. Section 5 is for the conclusions.

2. Auxiliary Results

Here, we shall prove analogues of the fractional HH inequalities (2) and (3) and HHF
inequalities (6) and (7) for weighted fractional integrals with positive weighted symmetric function
kernels. The main results here are Theorem 1 (a generalization of HH inequalities (2) and (3) and HHF
inequality (6), and a reformulation of HHF inequality (7)) and Lemma 2 (a consequence of Theorem 1).
First, we need the following fact.

Lemmal. (i) Let w : [01,8] — [0,00) be an integrable function and symmetric with respect to
(01 + 82)/2, 01 < Oy, then we have

w(et) + (1 —¢e)tp) = w((1 —€)8; +edr), (10)

foreach e € [0,1].
(i) Let w: [0,02] — [0,00) be an integrable and symmetric function with respect to (01 + 02)/2, %1 < Oy,
then we have for £ > 0:
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(o100 @0 0) (771(02)) = (T2 (w0 0) (07 00))
=3 (07" wo0) (702) + (750 (woe) (ow)] - a1

Proof. (i) Letx = e + (1 —e€)dy. It is clear that x € [0, 9] for each ¢ € [0,1] and then
% + % —x = (1 — &)ty + ed. Then, by using the assumptions and Definition 1, we get (10).
(ii) By using the symmetric property of w, we have

(wool(e) = w(o(e)) = w(®r + 8~ a(e)), Vee [o7'(91),07'(82)].

From this and by setting o(x) = ¢; + 9, — o (e), it follows that

(0007 @) (740) = 5 [ 02 o) w0 0) e’ )i

1 (02) :
T T(0) /_1(19 ) (0(e) = 81)""w(8y + 8, — o (€)' (¢)de
o 1
1 o7(8y)

15 s (@00 = ) o) @) (e

(1)

(75 4y (o)) (072 (8)).

This rearranges to the required (11). O

Remark 2. Throughout this study w=(x) = w(x) and o~ (x) is the inverse of the function o(x).
Example 1. Consider the following integrable and positive weighted function

2x+4,  0<x<

w(x) = X+ 5 <x<

—2x+3, 3<x<

One can easily show that

Thus, w(x) = w(1 — x) and hence the given weighted function is symmetric on [0, 1] with respect to %.

Theorem 1. Let hi: [0, 9] C [0,00) — R be an L' convex function with 0 < ¢y < 8rand w : [01, 0] — R
be an integrable, positive and weighted symmetric function with respect to l91+'92. If o is an increasing and
positive function on [0, 92) and o’ (x) is continuous on (91, 9;), then, we have for >0

ﬁ<ﬂl;ﬂz) (oo T @o0)) (071(82) + (T2 gy (w0 0)) (7 (81) )]

< w(d) ( quga(ﬁoff ) ( (02 )+w (woa 6:51(192)_(ﬁ00~>> (‘771(191)>

L[ ) () (7 ) ()] 2

Proof. Since /1 is a convex function on [¢y, ¥;], we have

ﬁ(x;l—y) < ﬁ(x);‘h(y), Vx,y € [81,9].
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Thus, for x = €1 + (1 — €)% and y = (1 — )8 + ed, € € [0,1], it follows that
2% (W) < B(ed) + (1—)0) + (1 — €)8; + eby). (13)

By multiplying both sides of (13) by &/ 'w(ed; + (1 — €)8), and then, by integrating the resulting
inequality with respect to € over [0, 1], we get

1 1
2h (W) / e lw(ed; + (1 —¢€)dy)de < / e h(eth + (1 — e)d)w(ed + (1 —¢)d)de
0 0

+ /01 e (1~ €)01 +ebp)w(edy + (1 —e)Bp)de. (14)
For the left hand side inequality, we make use of (11) to get
% [(U’W%HJW(W © ‘7)) (c71(%)) + (Jgfl(ﬂz)_(w o J)) (0*1(191))}
wf oy ( s T (woo)) (¢71(92)
= 0o 191 @—01)f f -1 )(192 —o(x) " Hwoo)(x)o’ (x)dx
*11<(5912>) (0§§—§f))g ' (wo o) (x)e’ (x) e

01 w(ed + (1 —¢)0,)de, {denoting g:= ‘9129;71(9?)} ) (15)

Now, we evaluate the weighted fractional operators as follows:

w0(82) (1)), T (B0 0)) (071(82)) +0(01) (o0 T £ _(Ho ) (071(81))
— (o) WD L) / Uz%wz (@) (R0 o) (x) (w0 0) (x)0 (x)dx

r'(¢) ~1(8y)

oo)-1 (01 o 1(8,
a(oy 0L w)/ o (00 = 00 (o)) w o) (1) (1)

(%8 @) (8o ! , dx
_#/ . (2 ) (110 )(x) (w0 0) (10" (¥) 5. -

(82— 01)° o (%) et . dx
+71*(£) / 1o1) 1927191 (hoo)(x)(woo)(x)o 007192*191’

where

il 1 1
(woo)™! ((7 1(2)) ~ s @ wE P (16)

Setting t = 19129 U(x) and t, = 1(9x)—191191, it follows that
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0(82) (,-1(9,) T 650 (100)) (071(82)) +0(81) (oo T 52 g, (H00)) (07 (80))

_ (B —191

T [/ BT (B0 + (1= t)0)w(thth + (1— t)d2)dh

1
+/0 B IR((1 — t2) 9 + b)) w((1 — t2) 0y + tat)dty

_ l
_ W l/ol (e + (1 — €)9)w(ed) + (1 — €)8y)de
1
Jr/o e TIR((1—€) 0 + 8y) w(ed + (1 —€)dh) ds} . (17)

by using (10)

By making use of (15) and (17) in (14), we get

(P [ o) + R, w(60)] < 08 (0, T B0 0)) (71 (02)
+0(01) (worT g,y (H00)) (071 (#1)) . (18)

The first inequality of (12) is proved.
On the other hand, we will prove the second inequality of (12). By making use of the convexity
of h, we get

(et + (1 —e)8r) + 1 ((1—¢)d +ed) < (d1) + (D7), (19)

We multiply both sides of (19) by e/~ w(ed; 4 (1 — €)d;) and integrate with respect to € over [0, 1]
to get

/1 (e + (1— ) 8n)w(edy + (1 — ¢)8y)de
+ / IR((1— &) 0 + edo)w(edy + (1 — €)d)de < (h(81) + 1i(8,)) /01 e lw(ed + (1—e)d)de.  (20)

Then, by using (10) and (17) in (20), we get

w(9,) <U’1(191)+\7£;g0(ﬁ00)) (0_71(192)) +w(d) (woaj % g (100) ) ( )

ﬁ(ﬂl)+ﬁ(ﬂz) [Mjé (8,) + RLJf;_w(ﬂl)}-

This completes the proof of our theorem. [

Remark 3. Particularly, in Theorem 1, if we take

(i) o(x) = x, then inequality (12) becomes

(B2 ) [ wten) + 77t w(on)] < (o) (£ETn) (82) + w(on) (R, 1) (00)

Sw[mﬂ (82) + L TG, _w (191)]’ 1)

where j ¢ and RL 78 9, are the left and right weighted Riemann—Liouville fractional operators,
defined by
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-1 -
(£74m) () = P8 [ g h(ee(erae

(R6T6,-1) (x) = w;é ) /:z(s — %) Ui(e)w(e)de, £ >0,

respectively.
(i) o(x) = xand ¢ = 1; then inequality (12) reduces to inequality (6).
(iii) o(x) = xand w(x) = 1; then inequality (12) reduces to inequality (3).
(iv) o(x) =x, w(x) = 1and ¢ = 1; then inequality (12) reduces to inequality (2).
Remark 4. From Remark 3, we can observe that the HH inequality (3) and the HHF inequality (6) are
essentially particular cases of our HHF inequality (12). Additionally, the HHF inequality (21) can be seen as a
reformulation of HHF inequality (12), even though it is about weighted fractional and RL-fractional integrals
rather than RL-fractional integrals explicitly.
Lemma 2. Let h : [0),0] C [0,00) — R be an L' function with b’ € L' and 0 < ¢ < 0,

and w : [0y, 0] — R be an integrable, positive and weighted symmetric function with respect to %. Ifois
an increasing and positive function on [81, ;) and o’ (x) is continuous on (91,9, ), then, we have for £ > 0:

MO LN () 9% o) (+00) (750 f0501) (o~ 00)]

_ [w(ﬁz) ( jfuga hoo) ) <¢7 ) +w(t) (WOUJ§Z<0Z)7(ﬁOU)> <01(01)>]
[/(, (8 — o(x)) "N wo o) (x)dx
/ : (x) = 61) " (woo)(x >dx} (H 00)(e)d! (e)de.  (22)

Proof. Setting

o) | re
F(lf)/alwi Vvlwna/(x)(ﬂrg( R
B /‘71(192) o (x)(o(x) — gl)f—l(woa)(x)dx] (W oc)(e)o’ (e)de

= 1"(15) /01(192) {/{:1(&1) U/(x) (192 - (T(x))ffl (w o (7) (x)dx} (ﬁ/ o U)(S)U/(S)dg

o=1(%)

N F_(% /:((192) [/8‘7 (92) o' (x) (o (x) — 191)4—1 (woo) (x)dx] (W o0)(e)o’ (e)de

~1()

[1]
[1]

1+ Ho.

By integration by parts, making use of Lemma 1, and definitions (8) and (9), we obtain
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B r<16> [ ) (02— o1 o o) ) (o ) e)de

o=1(dy)

o=1(%)

(woO')_1 (0'_1(192)) o (%) , B
—w(d) 0 /17—1(191) o (e) (8, — o (e)) Hwo o) () (hoo)(e)de
by using (16)
= 1(8) (109 T (@0 0)) (67(82)) = 0(B) (19, TS0 (li00)) (7 (82))

= (e 7o) (o7 00)) + (T (w0 ) (o7 0)

~0(82) (19, T (B0 @) (e71(82)) .

Analogously, one can get

19, o7(8y)
=0 ( [ e - z91>“<woa><x>dx> (10 0)(e)de

[1]

t=0-1(d)

B r(lg) /‘77 (%) o' (e)(a(e) — 81) Hwoo)(e)(hoo)(e)de

oc=1(dy)

_ (r(lg) / T ) o) ﬁl)f—l(woa)(x)dx> i(91)

o1(0y)

(woo)~t (¢=1(8y)) [o'(®)
— w(l91) r(g) : ./(771(191)

by using (16)

o'(e)(e(e) — 81) " (woo)(e)(fio o) (e)de

= (a7 o) (7700) + (910 o) (o7 0)

= 0(01) (1eeT % g (0 @) (71 (81)).

Thus, we can deduce

zy 4w, = MOIROL T 7 @) (o1 (82)) + (T gy @) (o (8)]

- [w(ﬁz) (100 T8 (0 0)) (071(82)) + (1) (a0 T %4y (B0 0)) (alwn)],

which completes the proof. O
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Remark 5. Particularly, in Lemma 2, if we take:

(i) o(x) = x, then equality (12) becomes

h(®1) + (%)

. [RET w(82) + BT, _ww(81)]

= [w(82) (s8F Th) (82) +w(8r) (R6Th,-1) (80)]

- ﬁ / " [ [, (8= x) x| (e 191>“w<x)dx} H(e)de,  (23)

1 1 €

where ﬁﬁj ¢ and RL7 f;z_ are as defined in Remark 3.
(i) o(x) = xand w(x) =1, then equality (12) becomes
h(%1) + h(,) r(¢+1)

T s AR O

-t
o 2

/01 [ = (1= &) W (01 + (1 — ) 0)dle,

which is already established in ([11], lemma 2).
(i) o(x) =x, w(x) =1and £ =1, we obtain

16 B0 1 2] -1 [! /
( 1); (%2) = /191 ﬁ(x)dx:%/o [1—26] 7/ (e81 + (1 —€)By)de,  (24)

which is already established in ([38] lemma 2.1).

Remark 6. From Remark 5 (i), we can observe that our result Lemma 2 is essentially a reformulation of the
result of ([34], lemma 2.4), even though it is about weighted fractional and RL-fractional integrals rather than
RL-fractional integrals explicitly. Additionally, from Remark 5 (ii) and (iii), we can observe that the results
of ([11], lemma 2) and ([38], lemma 2.1) are basically particular cases of our result Lemma 2.

3. Main Results

In view of Lemma 2, we can obtain the following HHF inequalities.

Theorem 2. Let /i : [01,0] C [0,00) — R be an L' function with i’ € L' and 0 < ¢ < 0,
and w : [8,92] — R be an integrable, positive and weighted symmetric function with respect to w. If |W|
is convex on [0y, 03], 0 is an increasing and positive function on [01,9;), and ¢’ (x) is continuous on (81, 9,).
Then, we have for £ > 0:

[w ool
(0 =) (L+1)

|81 + &l < [A0(6;01,82) 1 (81)] + Bo (€91, 82) 1 (82)]], (25)

where Zq and B, are defined as in the proof of Lemma 2, and

41 9 1(191) 1(’52) B g 1(61) v 1(‘52) o
(&2 7191) — 192 — —= 2 o —L27 V2 )
Ay(f,; 9],192) = 192

l+1 (+1
+1 (+2
(6, 7191)&1 _ (192 pe (”71(01);‘771("2)>> * (% 761)”2 _ (ﬂz pu ‘771(‘91);”71(‘92))> *
— e 7+1 * i+2
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(02— 00)*1 — (v (rl(wl);ﬂw) _ 191)”1 (20 (a*(&ﬂ;a*w ))”1
+o2 (+1 B (+1
_ _ (+1 _ _ (42
(9 — 191)/!+1 _ ((7 <<7 1(191)4;7 1(192)) _ 19]> (0, — 191)“2 _ ((7 (U 1(”1)27 1@2)) _19]>
—% (41 B (+2
0 o8+l \\ 1 () o (8) )
+7g+1<l92*(7( > €+2 192 (o 5 ,
and

By (6;01,8,) := 9 [(U(W)—ﬂl)“_l (02_ﬁl)é+2_<ﬂz_a(w))z+2
o\t U1, 02) i= U1 _

it (12
a1 (o () ) (g ()
et I1
+ % (8, — lgl)éﬂ _ (192 . (01(191) jzLa1(192)>>é+1
_ 6417 (09— 07)1+2 — (192 ., (01(191) 201(192)»“2}

1 1 +1 1 1 42
_€%1<%_0<a (o) +o Wﬁ>> +€12<®_0<a (o) +o wg)> .

Proof. By using Lemma 2 and properties of modulus, we have

o 1 o71(82)
|81 4+ 8] < 7/

0) Jo1(0y) /e o' (1)(92 = 0(x))" " (wo o) (x)dx

o1(0y)

|(W oa)(e)| |0’ (e)|de. (26)

Since || is convex on [87, 8], we get for e € [0 1(81),071(8,)]:

9 —o(e) o(e) — % 9 —o(e) o(e) — %
! = | 0 O )| < —=|H (9 ———— W (%)]. @7
0 o)) = [ (B=G0n + GL=Tres)| < 22T o)+ DL Pon). 2
Additionally, since w : [¢y,8%,] — R is symmetric weighted function with respect to @, 50 we

can write
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o (%)
/6‘ [ O’I(X)(O’(x) — ﬁl)éil(woﬂ)(x)dx

o (1) 40 (8)—e

B /0—1(191) o' (x) (92 — (%)) T (wo o) (@ (81) + 71 (82) — x)dx
o1 (8)+0 1 (8y)—¢
- /Wl(ﬂl) ' o (x) (% — o(x)) " Hw o o) (x)dx.

Then, we obtain

T ) = 80 (wo ) (1)

[ @ —o@) wor)xix— |

o1(8) e

o' (x)(92 — () (w0 o) (x)dx

/1771 (1)+01(8)—¢

€

SO ()] (8, — (@) (w0 o) ()| i, e € [ (8y), L@

IN

(28)

Ji sty iion < 17 @[ (02 = o) T woo)(x)|dx, e e [T o1 (9],

By applying the inequalities (26)—(28), we have

€

|"' ) | < 1 /01(01)?71(02) /0_1(191)+t7_1(l92)£
21 TR S oy
(€) Jo1(8y)

X (mm’(ﬂl)l + 0;5?__1;191|h/(192>|> UI(S)ds

o’ ()] | (82 = o(x)) (w0 o) ()| dx)

+r(1€)/% (/S |‘7,(x)|‘(192U(x))z_l(woa)(x)‘dx)

o1 (1) 40 (8y) ¢

< (BT e+ GO o) ) o (o) 00)

After simple calculations of integrals arising from inequality (29), we can obtain the desired result (25). [

Remark 7. Particularly, in Theorem 2, if we take

(i) o(x) = x, we have

‘W (R T w(9) + RETG,_w(®1)]

2

— [w(®) (sfET4h) (92) +w(81) (R6T5,h) wn]‘

 eolleo(® =81 (1
- I(¢+2) 20

) [ @ol+ 1 e]. o
(i) o(x) =xandw(x) =1, we get

Mo 20l TCED [ gty 57, o)

< gios (1= 50 ) [meol+ ], e

which is already established in ([11] Theorem 3).
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(iii) o(x) = x, w(x) = 1and £ =1, we obtain

h(%) + h(%) B 1
2 -t

% —
[ o] < 2L o+ e 62

which is already established in ([38] Theorem 2.2).

Remark 8. Again, from Remark 7 (i), we can observe that our result Lemma 2 is essentially a reformulation of
the result of ([34], Theorem 2.8), even though it is about weighted fractional and RL-fractional integrals rather
than RL-fractional integrals explicitly. In addition, from Remark 7 (ii) and (iii), we can observe that the results
of ([11], Theorem 3) and ([38], Theorem 2.2) are basically particular cases of our result Lemma 2.

Theorem 3. Let /i : [01,0] C [0,00) — R be an L' function with i’ € L' and 0 < ¢ < 0,
and w : [0, 8] — R be an integrable, positive and weighted symmetric function with respect to w.
If W], g > 1is convex on [81, 02, 0 is an increasing and positive function on [81,92) and o’ (x) is continuous
on (01, 8,). Then, we have for £ > 0:

|woolle

(2 — 191)%(«ng 1)

_1
121 + 5,| < (Co (601, 0))' 7

x| Dot 01, 82) [ (81)17 + Ex (€01, 02) 1 (92)]7] ", (33)

where
-1(8 -1 {41
| (192—191)15+1_(192—0(‘7 (040 u))) e
011’2.7‘6 €+1 o s V1,02
-1 -1 (41
+CP (601, 0,) — (82— () :
o s V1,02 g—‘—l ’
1)) +o1(8))
o\ ————= B B B Y4
cV(t; 01, 8,) = A ( ) [19270<(7 L) + 07 1(0) — o 1(x))} dx;
1
O 01,00 = [ (62— (e (81) + 07" (82) — ))]éd-
(o s V1,02) - — 0<071<91>+071(§2)> 2 —0\0 1 o 2 4 X X;
2
, 1) 401 (8,) \ \ T2
1[0 —0) 2= (0 —o (2572
Do (601, 82) = 4 ( ; +§ ) — 0 (601, 85) - DV (661, 02)
o (8) +o 1 (8y) ) ) 2
@, (92— (=) ). .
+ 9, Cy (f,l?l,ﬂz)f 712 — Dy (6,191,192) ;
a1 (8)+01(8p)
ol ——Y5——2 l
D((Tl)(f;ﬂl,ﬁz) = ( : ) X [192 -0 (0’71(191) +(771(l92) —0’71(X))} ax;

(1

&(ZLW> * {192 -7 (‘7_1(191) +o (%) - U_l(x))rdx,

2

DP (4,91, 8,) := /

o
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and
1] ¢ “1(9,) + o1 (8 041
Eo (601, 82) := 6{6—!—21 l(ﬁz—ﬁl)”l - (192—(7((7 (61) 5 o ( 2)))
1 oY) + o 1(8 (42
) (192—191)”2—(192—0( ( 1)2 (2))>
o2 -1 ) + -1 o I+1
“ g )T (192_"<U = > ( 2))> — DY (4; 81, 82) + 6.CH (481, 2)

+DP(4;81,9,) + 0

gil <z92 s ((71(191) eral(ﬁz)>>é+1 - Ct(rz)(f;ﬁllﬂz)l

e () e e ()

Proof. By using Lemma 2, the well-known power mean inequality, inequality (28), convexity of |1/|1
and properties of modulus, we can deduce

. Tl 0 1)) 4o (8) e
) /U—w]) /f

o7(8,) €
(]
il Vs G ( o1()+o1(8y)—¢

&1 + Ep| <

o (x) (0 — o (x) N (wo U)(X)‘ dx) o’ (e)de

1
q

1—
o (x) (0 — o (x)) M (wo a)(x)‘ dx) a’(e)ds}

Tl 0 1) 4o (8) e
</ /
o=1(%) €

o (%) €
(]
M ( o 1(8)+o1(8)—e

o' (x) (82 — o (x)) " (wo U)(X)‘ dX> (7' 0 o) (e) |10 (¢)de

1
q

o' (x) (82 — o (x)) " (wo 0)(96)‘ dx) (W o 0)(e) IqU’(S)dE]

€

1-1
(%) € q
+ ﬁl(t’ﬁyl(&z) (/ |0’ (x)] (%2 — U(x))é_ldx) a’(e)ds}

o1 (8y)+01(8) —

0_1(191)+(7_1(192) 1 1
|lwod|le | [~ 22 [ fo @)+ (B)—e | . ,
< b (3] (02— o) ) )

oL@y +o71(8y) -1 -1
U [ o 0y 401 (02)-
x l/alwnZ (/0 e £|0’(x)|(192—a(x))£1dx> |(H 0.0)(€)|90” (e)de

€

1

o1 (8) € q
+ /,1(6119)?,1(02) (/ o’ (x)] (92 — U(x))é_ldx) |(R o) (s)|qa’(s)de]

o (81)+o 1 (d2) e
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[ eI ) o (8) e
. m (Co(t501,8)) {/ww )z (/ |0’ (x)] (92 U(x))fldx>
2 —U1)1 1 S

< (BT e+ GO ol ) o (o

o1 (62) e ,
_ _ 19 _ 671(1 )
+/vlwl>;vlwz> (/‘,1(01)+01<192)8|‘7(x)|( 2—0o(x))" dx
1
L) () / q 0(8)_191 / q / !
X (19 — |7’ (01)] +7192—191 |1/ (92)]7 ) o' (e)de| . (34)

After simple calculations of integrals arising from inequality (34), one can obtain the desired
result (33). O

Remark 9. Particularly, in Theorem 3, if we take:
(i) o(x) = x, weget

h(81) + h(92) [

5 LT w(82) +RET G, w(81)]

— [w(82) (LT Gh) (92) +w(0r) (%575, 1) wn]‘

KPS
1
(B2 — 1)1 T(£+1)

< (C(6:81,82))" 7 [D(E; 8, 02) W (9)|7 + E(6591,0) [ (92)7) ", (35)

where
D((;0,,8,) : = % HLl ((192 7191)€+2 20, (1_92;191)6—&-1) - H% (W)HT ,
and

_ 42
E(4;0,0,) := % (1 — 21[> .

(i) o(x) =xandw(x) =1, we get

(%) + h(%2) _ r(¢+1)
2 200, - 0,)

< (601,02 D0y, ) (0) 1+ B0, 0 (02)17] ', (36)

(82— 91)7T(0)

where C(¢;91,02), D(¢; 91, 0,) and E(¢; %, 8,) are defined as above.

7 [oRbhon) + 75, o)
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(iii) o(x) = x, w(x) = 1and £ =1, we obtain

h(x)dx

h(81) + h(9) 1 /'L92

92\ 1g
_ < 1 ((192 191)) ’
2 192—191 A -

(192—191)% 2

— 92 - %)° i
) [(19212191)(2&2—5191)Ih’(191)|q+3(1924191)Iﬁ’(l‘f’z)lq BN

Remark 10. The specific results are different from those obtained in [11,34,38] according to Remark 9.

4. Discussion

We have considered the weighted fractional operators. In our present investigation, we have
established new fractional HHF integral inequalities involving the weighted fractional operators
associated with positive symmetric functions. The HHF fractional integral inequality (7) has been
applied to other class of convex functions, such as p-convex functions [39], generalized convex
functions [40], (11, 72)-convex functions [41] and many others that can be found in the literature.
Thus, the results obtained here can be also be applied to the above class of convex functions.

It is worthwhile to mention that there are three well-known versions of fractional
Hermite-Hadamard integral inequalities. The first version was established by Sarikaya et al. in [11]
and their result is given in (3). The other versions consist of

< h(61) + hi(9,)

<
ﬁ( > >_ (- 0,)° j(ﬂlzﬂz)Jrﬁ(ﬁZ)_'— ‘7<01?92)7ﬁ(191) > , (38)
and
O + 21T (0 +1) TR o0 M+ RL 0 + % fi(01) + (%)
H(B5%) Ty (e (M) s (B[ < HREEES e

these were already established by Sarikaya and Yaldiz [42], and Mohammed and Brevik [1],
respectively. We believe that the results in this study are very generic and can be extended to give
further potentially interesting and useful integral inequalities involving other versions of fractional
integral inequalities (38) and (39).

5. Conclusions

Integral inequality forms a significant branch of mathematical analysis, which has been combined
with all models of fractional calculus but never before with weighted fractional calculus models.
For this reason, in this study we have considered the Hermite-Hadamard-Fejer integral inequalities in
the context of fractional calculus with positive weighted symmetric function kernels.
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